首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 889 毫秒
1.
The actin slingshot   总被引:1,自引:0,他引:1  
Actin polymerization generates the force that deforms the cell membrane, pulls the cell forward and propels endosomes and bacteria within the cell. The mechanism of force generation has been probed using experimental biomimetic systems where force generation and movement occur by the same actin-polymerization processes observed in cells. The advantage of such systems over living cells is that their physical properties can be changed, such as the size of the load, its composition and its deformability, in order to respond to specific questions. Recent experimental developments and associated theoretical models have provided us with a better understanding of motility based on actin polymerization. This paves the way towards a better comprehension of cell motility.  相似文献   

2.
Actin polymerization drives cell membrane protrusions and the propulsion of intracellular pathogens. The molecular mechanisms driving actin polymerization are not yet fully understood. Various mathematical models have been proposed to explain how cells convert chemical energy released upon actin polymerization into a pushing force on a surface. These models have attempted to explain puzzling properties of actin-based motility, including persistent attachment of the network to the membrane during propulsion and the interesting trajectories of propelled particles. These models fall generally into two classes: those requiring filament (+)-ends to fluctuate freely from the membrane to add subunits, and those where filaments elongate with their (+)-ends persistently associated with surface through filament end-tracking proteins ("actoclampin" models). This review compares and contrasts the key predictions of these two classes of models with regard to force-velocity profiles, and evaluates them with respect to experiments with biomimetic particles, and the experimental evidence on the role of end-tracking proteins such as formins and nucleation-promoting factors in actin-based motility.  相似文献   

3.
Actin polymerization provides a major driving force for eukaryotic cell motility. Successive intercalation of monomeric actin subunits between the plasma membrane and the filamentous actin network results in protrusions of the membrane enabling the cell to move or to change shape. One of the challenges in understanding eukaryotic cell motility is to dissect the elementary biochemical and biophysical steps that link actin polymerization to mechanical force generation. Recently, significant progress was made using biomimetic, in vitro systems that are inspired by the actin-based motility of bacterial pathogens such as Listeria monocytogenes. Polystyrene microspheres and synthetic phospholipid vesicles coated with proteins that initiate actin polymerization display motile behavior similar to Listeria, mimicking the leading edge of lamellipodia and filopodia. A major advantage of these biomimetic systems is that both biochemical and physical parameters can be controlled precisely. These systems provide a test bed for validating theoretical models on force generation and polarity establishment resulting from actin polymerization. In this review, we discuss recent experimental progress using biomimetic systems propelled by actin polymerization and discuss these results in the light of recent theoretical models on actin-based motility.  相似文献   

4.
We review mathematical and computational models of the structure, dynamics, and force generation properties of dendritic actin networks. These models have been motivated by the dendritic nucleation model, which provided a mechanistic picture of how the actin cytoskeleton system powers cell motility. We describe how they aimed to explain the self-organization of the branched network into a bimodal distribution of filament orientations peaked at 35° and ??35° with respect to the direction of membrane protrusion, as well as other patterns. Concave and convex force–velocity relationships were derived, depending on network organization, filament, and membrane elasticity and accounting for actin polymerization at the barbed end as a Brownian ratchet. This review also describes models that considered the kinetics and transport of actin and diffuse regulators and mechanical coupling to a substrate, together with explicit modeling of dendritic networks.  相似文献   

5.
In contracting muscle, individual myosin molecules function as part of a large ensemble, hydrolyzing ATP to power the relative sliding of actin filaments. The technological advances that have enabled direct observation and manipulation of single molecules, including recent experiments that have explored myosin's force-dependent properties, provide detailed insight into the kinetics of myosin's mechanochemical interaction with actin. However, it has been difficult to reconcile these single-molecule observations with the behavior of myosin in an ensemble. Here, using a combination of simulations and theory, we show that the kinetic mechanism derived from single-molecule experiments describes ensemble behavior; but the connection between single molecule and ensemble is complex. In particular, even in the absence of external force, internal forces generated between myosin molecules in a large ensemble accelerate ADP release and increase how far actin moves during a single myosin attachment. These myosin-induced changes in strong binding lifetime and attachment distance cause measurable properties, such as actin speed in the motility assay, to vary depending on the number of myosin molecules interacting with an actin filament. This ensemble-size effect challenges the simple detachment limited model of motility, because even when motility speed is limited by ADP release, increasing attachment rate can increase motility speed.  相似文献   

6.
Abiomimetic motility assay is used to analyze the mechanism of force production by site-directed polymerization of actin. Polystyrene microspheres, functionalized in a controlled fashion by the N-WASP protein, the ubiquitous activator of Arp2/3 complex, undergo actin-based propulsion in a medium that consists of five pure proteins. We have analyzed the dependence of velocity on N-WASP surface density, on the concentration of capping protein, and on external force. Movement was not slowed down by increasing the diameter of the beads (0.2 to 3 microm) nor by increasing the viscosity of the medium by 10(5)-fold. This important result shows that forces due to actin polymerization are balanced by internal forces due to transient attachment of filament ends at the surface. These forces are greater than the viscous drag. Using Alexa488-labeled Arp2/3, we show that Arp2/3 is incorporated in the actin tail like G-actin by barbed end branching of filaments at the bead surface, not by side branching, and that filaments are more densely branched upon increasing gelsolin concentration. These data support models in which the rates of filament branching and capping control velocity, and autocatalytic branching of filament ends, rather than filament nucleation, occurs at the particle surface.  相似文献   

7.
In this paper we describe an experimental investigation of the mechanism of motility of vertebrate cells. Human glioma cells were treated with neomycin, an inhibitor of the phosphatidylinositol cycle; and changes in cell motility and the cytoskeleton were examined by video, fluorescence, and scanning electron microscopy and by cytofluorometry. Neomycin stimulates a single protrusion of lamellipodia from the cell margin, which is correlated with an initial rapid decrease in the amount of F-actin throughout the cell, especially at the cell edge; the fragmentation of actin filaments within the lamellipodia; and the subsequent de novo polymerization of F-actin in a marginal band at the leading edge of lamellipodia. Changes in F-actin are paralleled by changes in the distribution and amount of gelsolin. These results support the hypothesis that protrusion is initiated by the gelsolin-mediated severing and subsequent depolymerization of cortical actin filaments, which weakens the cell cortex, allowing hydrostatic or gel osmotic pressure to force the cell margin to protrude. The accompanying polymerization of filaments actin at the leading edge of the protrusion may stabilize the protrusion and support its expansion.  相似文献   

8.
Although actin-based motility drives cell crawling and intracellular locomotion of organelles and certain pathogens, the underlying mechanism of force generation remains a mystery. Recent experiments demonstrated that Listeria exhibit episodes of 5.4-nm stepwise motion corresponding to the periodicity of the actin filament subunits, and extremely small positional fluctuations during the intermittent pauses [S. C. Kuo and J. L. McGrath. 2000. Nature. 407:1026-1029]. These findings suggest that motile bacteria remain firmly bound to actin filament ends as they elongate, a behavior that appears to rule out previous models for actin-based motility. We propose and analyze a new mechanochemical model (called the "Lock, Load & Fire" mechanism) for force generation by means of affinity-modulated, clamped-filament elongation. During the locking step, the filament's terminal ATP-containing subunit binds tightly to a clamp situated on the surface of a motile object; in the loading step, actin.ATP monomer(s) bind to the filament end, an event that triggers the firing step, wherein ATP hydrolysis on the clamped subunit attenuates the filament's affinity for the clamp. This last step initiates translocation of the new ATP-containing terminus to the clamp, whereupon another cycle begins anew. This model explains how surface-tethered filaments can grow while exerting flexural or tensile force on the motile surface. Moreover, stochastic simulations of the model reproduce the signature motions of Listeria. This elongation motor, which we term actoclampin, exploits actin's intrinsic ATPase activity to provide a simple, high-fidelity enzymatic reaction cycle for force production that does not require elongating filaments to dissociate from the motile surface. This mechanism may operate whenever actin polymerization is called upon to generate the forces that drive cell crawling or intracellular organelle motility.  相似文献   

9.
Dynamic turnover and transport of actin filament network is essential for protrusive force generation and traction force development during cell migration. To elucidate the dynamic coupling between actin network flow and turnover, we focused on flow dynamics in the lamella of one of the simplest but elegant motility systems; crawling fragments derived from fish keratocytes. Interestingly, we show that actin network in the lamella of fragments is not stationary as earlier reported, but exhibits a flow dynamics that is strikingly similar to that reported for higher order cells, suggesting that network flow is an intrinsic property of the actin cytoskeleton that is fundamental to cell migration. We also demonstrate that whereas polymerization mediates network assembly at the front, surprisingly, network flow convergence modulates network disassembly toward the rear of the lamella, suggesting that flow and turnover are coupled during migration. These results obtained using simple motility systems are significant to the understanding of actin network dynamics in migrating cells, and they will be found useful for developing biophysical models for elucidating the fundamental mechanisms of cell migration.  相似文献   

10.
The polymerization motor   总被引:2,自引:0,他引:2  
Polymerization and depolymerization of actin filaments and microtubules are thought to generate force for movement in various kinds of cell motility, ranging from lamellipodial protrusion to chromosome segregation. This article reviews the thermodynamic and physical theories of how a nonequilibrium polymerization reaction can be used to transduce chemical energy into mechanical energy, and summarizes the evidence suggesting that actin polymerization produces motile force in several biological systems.  相似文献   

11.
Regulated actin filament assembly is critical for eukaryotic cell physiology. Actin filaments are polar structures, and those with free high affinity or barbed ends are crucial for actin dynamics and cell motility. Actin filament barbed-end-capping proteins inhibit filament elongation after binding, and their regulated disassociation is proposed to provide a source of free filament ends to drive processes dependent on actin polymerization. To examine whether dissociation of actin filament capping proteins occurs with the correct spatio-temporal constraints to contribute to regulated actin assembly in live cells, I measured the dissociation of an actin capping protein, gelsolin, from actin in cells using a variation of fluorescence resonance energy transfer (FRET). Uncapping was found to occur in cells at sites of active actin assembly, including protruding lamellae and rocketing vesicles, with the correct spatio-temporal properties to provide sites of actin filament polymerization during protrusion. These observations are consistent with models where uncapping of existing filaments provides sites of actin filament elongation.  相似文献   

12.
The actin cytoskeleton is constantly assembling and disassembling. Cells harness the energy of these turnover dynamics to drive cell motility and organize cytoplasm. Although much is known about how cells control actin polymerization, we do not understand how actin filaments depolymerize inside cells. I briefly describe how the combination of imaging actin filament dynamics in cells and using in vitro biochemistry progressively altered our views of actin depolymerization. I describe why I do not think that the prevailing model of actin filament turnover—cofilin-mediated actin filament severing—can account for actin filament disassembly detected in cells. Finally, I speculate that cells might be able to tune the mechanism of actin depolymerization to meet physiological demands and selectively control the stabilities of different actin arrays.  相似文献   

13.
We develop a mathematical model that describes key details of actin dynamics in protrusion associated with cell motility. The model is based on the dendritic-nucleation hypothesis for lamellipodial protrusion in nonmuscle cells such as keratocytes. We consider a set of partial differential equations for diffusion and reactions of sequestered actin complexes, nucleation, and growth by polymerization of barbed ends of actin filaments, as well as capping and depolymerization of the filaments. The mechanical aspect of protrusion is based on an elastic polymerization ratchet mechanism. An output of the model is a relationship between the protrusion velocity and the number of filament barbed ends pushing the membrane. Significantly, this relationship has a local maximum: too many barbed ends deplete the available monomer pool, too few are insufficient to generate protrusive force, so motility is stalled at either extreme. Our results suggest that to achieve rapid motility, some tuning of parameters affecting actin dynamics must be operating in the cell.  相似文献   

14.
One of the most important issues of molecular biophysics is the complex and multifunctional behavior of the cell's cytoskeleton. Interiors of living cells are structurally organized by the cytoskeleton networks of filamentous protein polymers: microtubules, actin and intermediate filaments with motor proteins providing force and directionality needed for transport processes. Microtubules (MT's) take active part in material transport within the cell, constitute the most rigid elements of the cell and hence found many uses in cell motility (e.g. flagella andcilia). At present there is, however, no quantitatively predictable explanation of how these important phenomena are orchestrated at a molecular level. Moreover, microtubules have been demonstrated to self-organize leading to pattern formation. We discuss here several models which attempt to shed light on the assembly of microtubules and their interactions with motor proteins. Subsequently, an overview of actin filaments and their properties isgiven with particular emphasis on actin assembly processes. The lengths of actin filaments have been reported that were formed by spontaneous polymerization of highly purified actin monomers after labeling with rhodamine-phalloidin. The length distributions are exponential with a mean of about 7 μm. This length is independent of the initial concentration of actin monomer, an observation inconsistent with a simple nucleation-elongation mechanism. However, with the addition of physically reasonable rates of filament annealing and fragmenting, a nucleation-elongation mechanism can reproduce the observed average length of filaments in two types of experiments: (1) filaments formed from a wide range of highly purified actin monomer concentrations, and (2) filaments formed from 24 mM actin over a range of CapZ concentrations. In the final part of the paper we briefly review the stochastic models used to describe the motion of motor proteins on protein filaments. The vast majority of these models are based on ratchet potentials with the presence of thermal noise and forcing due to ATP binding and a subsequent hydrolysis. Many outstanding questions remain to be quantitatively addressed on a molecular level in order to explain the structure-to-function relationship for the key elements of the cytoskeleton discussed in this review. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
Upon bacterial infection lipopolysaccharide (LPS) induces migration of monocytes/macrophages to the invaded region and production of pro‐inflammatory mediators. We examined mechanisms of LPS‐stimulated motility and found that LPS at 100 ng/ml induced rapid elongation and ruffling of macrophage‐like J774 cells. A wound‐healing assay revealed that LPS also activated directed cell movement that was followed by TNF‐α production. The CD14 and TLR4 receptors of LPS translocated to the leading lamella of polarized cells, where they transiently colocalized triggering local accumulation of actin filaments and phosphatidylinositol 4,5‐bisphosphate. Fractionation of Triton X‐100 cell lysates revealed that LPS induced polymerization of cytoskeletal actin filaments by 50%, which coincided with the peak of cell motility. This microfilament population appeared at the expense of short filaments composing the plasma membrane skeleton of unstimulated cells and actin monomers consisting prior to the LPS stimulation about 60% of cellular actin. Simultaneously with actin polymerization, LPS stimulated phosphorylation of two actin‐regulatory proteins, paxillin on tyrosine 118 by 80% and N‐WASP on serine 484/485 by 20%, and these events preceded activation of NF‐κB. LPS‐induced protein phosphorylation and reorganization of the actin cytoskeleton were inhibited by PP2, a drug affecting activity of tyrosine kinases of the Src family. The data indicate that paxillin and N‐WASP are involved in the reorganization of actin cytoskeleton driving motility of LPS‐stimulated cells. Disturbances of actin organization induced by cytochalasin D did not inhibit TNF‐α production suggesting that LPS‐induced cell motility is not required for TNF‐α release. J. Cell. Biochem. 113: 80–92, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

16.
Cells migrate through a crowded environment during processes such as metastasis or wound healing, and must generate and withstand substantial forces. The cellular motility responses to environmental forces are represented by their force-velocity relation, which has been measured for fish keratocytes but remains unexplained. Even pN opposing forces slow down lamellipodium motion by three orders of magnitude. At larger opposing forces, the retrograde flow of the actin network accelerates until it compensates for polymerization, and cell motion stalls. Subsequently, the lamellipodium adapts to the stalled state. We present a mechanism quantitatively explaining the cell's force-velocity relation and its changes upon application of drugs that hinder actin polymerization or actomyosin-based contractility. Elastic properties of filaments, close to the lamellipodium leading edge, and retrograde flow shape the force-velocity relation. To our knowledge, our results shed new light on how these migratory responses are regulated, and on the mechanics and structure of the lamellipodium.  相似文献   

17.
Listeria monocytogenes is a pathogenic bacterium that moves within infected cells and spreads directly between cells by harnessing the cell's dendritic actin machinery. This motility is dependent on expression of a single bacterial surface protein, ActA, a constitutively active Arp2,3 activator, and has been widely studied as a biochemical and biophysical model system for actin-based motility. Dendritic actin network dynamics are important for cell processes including eukaryotic cell motility, cytokinesis, and endocytosis. Here we experimentally altered the degree of ActA polarity on a population of bacteria and made use of an ActA-RFP fusion to determine the relationship between ActA distribution and speed of bacterial motion. We found a positive linear relationship for both ActA intensity and polarity with speed. We explored the underlying mechanisms of this dependence with two distinctly different quantitative models: a detailed agent-based model in which each actin filament and branched network is explicitly simulated, and a three-state continuum model that describes a simplified relationship between bacterial speed and barbed-end actin populations. In silico bacterial motility required a cooperative restraining mechanism to reconstitute our observed speed-polarity relationship, suggesting that kinetic friction between actin filaments and the bacterial surface, a restraining force previously neglected in motility models, is important in determining the effect of ActA polarity on bacterial motility. The continuum model was less restrictive, requiring only a filament number-dependent restraining mechanism to reproduce our experimental observations. However, seemingly rational assumptions in the continuum model, e.g. an average propulsive force per filament, were invalidated by further analysis with the agent-based model. We found that the average contribution to motility from side-interacting filaments was actually a function of the ActA distribution. This ActA-dependence would be difficult to intuit but emerges naturally from the nanoscale interactions in the agent-based representation.  相似文献   

18.
Salmonella force their way into nonphagocytic host intestinal cells to initiate infection. Uptake is triggered by delivery into the target cell of bacterial effector proteins that stimulate cytoskeletal rearrangements and membrane ruffling. The Salmonella invasion protein A (SipA) effector is an actin binding protein that enhances uptake efficiency by promoting actin polymerization. SipA-bound actin filaments (F-actin) are also resistant to artificial disassembly in vitro. Using biochemical assays of actin dynamics and actin-based motility models, we demonstrate that SipA directly arrests cellular mechanisms of actin turnover. SipA inhibits ADF/cofilin-directed depolymerization both by preventing binding of ADF and cofilin and by displacing them from F-actin. SipA also protects F-actin from gelsolin-directed severing and reanneals gelsolin-severed F-actin fragments. These data suggest that SipA focuses host cytoskeletal reorganization by locally inhibiting both ADF/cofilin- and gelsolin-directed actin disassembly, while simultaneously stimulating pathogen-induced actin polymerization.  相似文献   

19.
Eukaryotic cells assemble viscoelastic networks of crosslinked actin filaments to control their shape, mechanical properties, and motility. One important class of actin network is nucleated by the Arp2/3 complex and drives both membrane protrusion at the leading edge of motile cells and intracellular motility of pathogens such as Listeria monocytogenes. These networks can be reconstituted in vitro from purified components to drive the motility of spherical micron-sized beads. An Elastic Gel model has been successful in explaining how these networks break symmetry, but how they produce directed motile force has been less clear. We have combined numerical simulations with in vitro experiments to reconstitute the behavior of these motile actin networks in silico using an Accumulative Particle-Spring (APS) model that builds on the Elastic Gel model, and demonstrates simple intuitive mechanisms for both symmetry breaking and sustained motility. The APS model explains observed transitions between smooth and pulsatile motion as well as subtle variations in network architecture caused by differences in geometry and conditions. Our findings also explain sideways symmetry breaking and motility of elongated beads, and show that elastic recoil, though important for symmetry breaking and pulsatile motion, is not necessary for smooth directional motility. The APS model demonstrates how a small number of viscoelastic network parameters and construction rules suffice to recapture the complex behavior of motile actin networks. The fact that the model not only mirrors our in vitro observations, but also makes novel predictions that we confirm by experiment, suggests that the model captures much of the essence of actin-based motility in this system.  相似文献   

20.
In nematode sperm cell motility, major sperm protein (MSP) filament assembly results in dynamic membrane protrusions in a manner that closely resembles actin-based motility in other eukaryotic cells. Paradoxically, whereas actin-based motility is driven by addition of ATP-bound actin subunits onto actin filament plus-ends located at the cell membrane, MSP dimers assemble from solution into nonpolar filaments that lack a nucleotide binding site. Thus, filament polarity and on-filament ATP hydrolysis, although essential for actin-based motility, appear to be unnecessary for membrane protrusions by MSP. As a potential resolution to this paradox, we propose a model for MSP filament assembly and force generation by MSP filament end-tracking proteins. In this model, ATP hydrolysis drives affinity-modulated, processive interactions between membrane-associated proteins and elongating filament ends. However, in contrast to the "actoclampin" model for actin filament end-tracking motors, ATP activates the tracking protein (or a soluble cofactor) rather than the MSP subunits themselves (in contrast to activation of actin subunits by ATP binding). The MSP end-tracking model predicts properties that are consistent with several key observations of MSP-based motility, including persistent membrane attachment, polymerization of filament ends at the membrane with depolymerization of free-filament ends away from the membrane, as well as a saturating dependence of polymerization rate on the concentration of non-MSP soluble cytoplasmic components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号