首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Molecular mechanism of thyroid hormone action   总被引:1,自引:0,他引:1  
  相似文献   

4.
Molecular mechanism of action of the fibrates   总被引:2,自引:0,他引:2  
Fibrates are old hypolipidemic drugs with pleitropic effects on lipid metabolism. Until, recently their intimate molecular mechanisms of action were mysterious. In the late 5 years, we have shown that the pharmacological effects of fibrates depend on their binding to "Peroxisome Proliferator Activated Receptor alpha" (PPAR alpha). The binding of fibrates to PPAR alpha induces the activation or the inhibition of multiple genes involved in lipid metabolism through the binding of the activated PPAR alpha to "Peroxisome Proliferator Response Element" (PPRE) located in the gene promoters. Fibrates reduce plasma triglyceride levels by altering the expression of numerous genes coding for proteins involved in fatty acid metabolism (fatty acid transport protein, acyl-CoA synthetase, etc.) and also by increasing the lipoprotein lipase synthesis and decreasing the apolipoprotein C-III synthesis. Fibrates increase HDL cholesterol levels by increasing apolipoprotein A-I and apolipoprotein A-II synthesis. Furthermore, we recently demonstrated that fibrates are potent anti-inflammatory molecules through an indirect modulation of the nuclear-factor-kappa B activity. Therefore, we suggest that fibrates inhibit atherosclerosis development not only by improving the plasma lipid profile but also by reducing inflammation in the vascular wall.  相似文献   

5.
Endosulfan is a broad-spectrum organochlorine pesticide, speculated to be detrimental to human health in areas of active exposure. However, the molecular insights to its mechanism of action remain poorly understood. In two recent studies, our group investigated the physiological and molecular aspects of endosulfan action using in vitro, ex vivo and in vivo analyses. The results showed that apart from reducing fertility levels in male animals, Endosulfan induced DNA damage that triggers compromised DNA damage response leading to undesirable processing of broken DNA ends. In this review, pesticide use especially of Endosulfan in the Indian scenario is summarized and the importance of our findings, especially the rationalized use of pesticides in the future, is emphasized.  相似文献   

6.
The mechanism by which pyocyanin inhibits bacterial growth was investigated. Several organisms possessing varying levels of superoxide dismutase were analyzed for their sensitivity to pyocyanin to test the possibility that reduced pyocyanin univalently reduces oxygen to superoxide, thus causing cell death. No correlation was found between the amount of superoxide dismutase possessed by an organism and resistance to pyocyanin. In addition, it was demonstrated that organisms growing anaerobically with nitrate as a terminal electron acceptor were as sensitive as, or more sensitive to the action of pyocyanin than organisms grown under aerobic conditions. We thus rule out the possibility that excess superoxide generation is the primary mechanism by which pyocyanin exerts its antibiotic effect. Oxygen electrode and radioisotope studies demonstrated that pyocyanin does inhibit bacterial respiration and active transport of solutes. Thus, it was concluded that the mechanism of action is the result of pyocyanin interacting with the cell membrane respiratory chain in such a way to render the cell unable to perform energy-requiring, membrane-bound metabolic processes such as active transport.  相似文献   

7.
Structures, physiological role and level regulation of the juvenile hormones are described. A scheme of juvenile hormone mode of action at the molecular level, which includes transport of hormone via its binding protein, is presented.  相似文献   

8.
Molecular mechanism of action of the vasoconstrictor peptide endothelin   总被引:28,自引:0,他引:28  
Endothelin, one of the most potent vasoconstrictor known, has been suggested to act as an endogenous agonist of L-type Ca2+ channels. In this paper we show that endothelin stimulates the metabolism of inositol phosphates and induces the mobilization of intracellular Ca2+ stores. The transient activation of Ca2+-sensitive K+ channel provokes an hyperpolarization of the membrane. It is followed by a sustained depolarization which is due to the opening of a non-specific cation channel which is permeable to Ca2+ and Mg2+. The depolarization then activates L-type Ca2+ channels. This mechanism of action explains why part of the endothelin-induced vasocontriction is eliminated by L-type Ca2+ channel blockers.  相似文献   

9.
10.
11.
Cardiotoxin isolated from Naja mossambica mossambica selectively deactivates the sodium-potassium activated adenosine triphosphatase of axonal membranes. Tetrodotoxin binding and acetylcholinesterase activities are unaffected by cardiotoxin treatment. The details of association of cardiotoxin with the axonal membrane were studied by following the deactivation of the sodium-potassium activated adenosine triphosphatase and by direct binding measurements with a tritiated derivative of the native cardiotoxin. The maximal binding capacity of the membrane is 42-50 nmol of cardiotoxin/mg of membrane protein. The high amount of binding suggests association of the toxin with the lipid phase of the membrane. It has been shown that cardiotoxin first associates rapidly and reversibly to membrane lipids, then, in a second step, it induces a rearrangement of the membrane structure which produces and irreversible deactivation of the sodium-potassium activated adenosine triphosphatase. Solubilization of the membrane-bound ATPase with Lubrol WX gives an active enzyme species that is resistant to cardiotoxin-induced deactivation. Cardiotoxin binding to the membrane is prevented by high concentrations of Ca 2+ and dibucaine. Although cardiotoxins and neurotoxins of cobra venom have large sequence homologies, their mode of action on membranes is very different. The cardiotoxin seems to bind to the lipid phase of the axonal membrane and inhibits the sodium-potassium activated adenosine triphosphatase, whereas the neurotoxin associates with a protein receptor in the post-synaptic membrane and blocks acetylcholine transmission.  相似文献   

12.
The radioprotective effect of WR 2721 on catalase and the type and loci of its interaction with the enzyme have been investigated by means of spectrophotometric and electron spin resonance, (ESR) methods. The radiation damage, indicated by a change in enzymatic activity and in the Soret absorption band, has been the less the larger the WR 2721 concentration. In the case of ESR investigations, addition of WR 2721 has resulted in a reduction of the spin concentration of Cu-2+. Since cysteamine has exhibited similar results, however, to a lesser extent, it can be assumed that the RS-ions are responsible for the protective effect. From the results obtained it can be concluded that (the dephosphorilized) WR 2721 forms a complex with the enzyme and acts as an electron donor.  相似文献   

13.
Molecular mechanism for the antigonococcal action of lysosomal cathepsin G   总被引:3,自引:0,他引:3  
Human lysosomal cathepsin G (cat G) appears to be an important mediator of non-oxidative killing of Neisseria gonorrhoeae ingested by human polymorphonuclear leucocytes (PMNLs). Nearly isogenic strains of gonococci having variations in the structure of penicillin-binding protein 2 (PBP2) also exhibit different levels of susceptibility to the lethal action of cat G in vitro. Accordingly, we examined the relationship between gonococcal susceptibility to cat G and PBP2 structure. The results of this study suggest that cat G has the capacity to interact with PBP2, as evidenced by its ability to inhibit binding of [3H]-benzylpenicillin to PBP2. We also found that changes in the amino acid sequence within the transpeptidase domain of PBP2, because of certain penA mutations, modulated such interactions. We propose that PBP2 is an intracellular target for cat G and that levels of gonococcal susceptibility to cat G may be related to PBP2 structure and/or intracellular availability.  相似文献   

14.
Studies were made of the ability of alpha-tocopherol, incorporated into unilamellar liposomes from saturated or unsaturated phospholipids (donor liposomes) to inhibit the accumulation of lipid peroxidation (LPO) products in unilamellar liposomes from rat cerebral cortex lipids (acceptor liposomes) in the presence of LPO inducer (Fe + ascorbate). With the molar alpha-tocopherol: phospholipids rations from 1:1000 to 1:100 in donor liposomes, obtained through sonication of lipid dispersions, alpha-tocopherol was incorporated into both monolayers of liposomes and was distributed in monomeric form without forming clusters. Based on the dependencies of LPO inhibition on the alpha-tocopherol concentrations, we chose the ones that completely prevented the accumulation of LPO products in donor liposomes. Under these conditions LPO inhibition in mixtures of donor and acceptors liposomes was fully determined by the antioxidant effect of alpha-tocopherol in acceptor liposomes due to its intermembrane transfer. The efficiency of the "intermembrane" antioxidant action of alpha-tocopherol increased in the course of preincubation of donor and acceptor liposomes (up to 60 min) and this increase was more pronounced when the donor liposomes contained unsaturated phospholipids. Evidence was obtained that the intermembrane transfer of alpha-tocopherol did not result from the fusion of donor and acceptor liposomes during preincubation.  相似文献   

15.
Intermembrane transfer and exchange of tocopherol are not well understood. To study this we tested the ability of alpha-tocopherol containing unilamellar donor liposomes to inhibit the accumulation of lipid peroxidation products in acceptor liposomes. With molar ratios of alpha-tocopherol:phospholipids from 1:100 to 1:1000 in donor liposomes prepared by sonication of lipid dispersions, alpha-tocopherol was incorporated into both monolayers and was homogenously distributed in monomeric form without forming clusters in the liposomes. Concentrations of alpha-tocopherol which completely prevented the peroxidation of lipids were chosen for donor liposomes. Hence inhibition of lipid peroxidation in mixtures of donor and acceptor liposomes was determined by the antioxidant effect of alpha-tocopherol in acceptor liposomes which resulted from intermembrane transfer and exchange of alpha-tocopherol. Evidence was obtained that this was not due to fusion of donor with acceptor liposomes. The efficiency of the "intermembrane" antioxidant action of tocopherol was more pronounced when donor liposomes contained unsaturated phospholipids, indicating that the presence of unsaturated fatty acids in the outer monolayer phospholipids facilitates intermembrane tocopherol exchange.  相似文献   

16.
5,7-Dihydroxytryptamine (5,7-DHT) is a selective serotonergic neurotoxin by virtue of its selective uptake into 5-hydroxytryptamine neurons and its ability to undergo autoxidation. The mechanism by which 5,7-DHT induces neurodegenerative effects remains enigmatic. The mechanism of autoxidation of 5,7-DHT, which has been recently discovered, is unique among the autoxidizable neurotoxins and involves incorporation of oxygen to produce the 4-hydroperoxy-5-keto derivative of 5,7-DHT and thence the (4,7) p-quinone of 4,5,7-trihydroxytryptamine (4,5,7-THTQ), a relatively unreactive quinone. In addition, no reduced oxygen species such as hydrogen peroxide, superoxide and hydroxyl radical are produced during autoxidation of 5,7-DHT. Yet, there is evidence to suggest that both the covalent modification of endogenous macromolecules by 5,7-DHT derived products and the toxic effects of reduced oxygen species are, at least in part, responsible for the neurodegenerative effects of 5,7-DHT. Here we propose that (1) the 4-hydroperoxy-5-keto derivative of 5,7-DHT may serve as a substrate for glutathione peroxidase to eventually produce reduced oxygen species and 4,5,7-THTQ, (2) 4,5,7-THTQ may undergo redox cycling thereby generating reduced oxygen species and lowering the reducing equivalents of the neuron, (3) rapid oxygen consumption by 5,7-DHT and the products derived from it may lead to hypoxia, and (4) the product of autoxidation of 5,7-dihydroxyindole-3-acetaldehyde, the monoamine oxidase metabolite of 5,7-DHT, may serve as an alkylating (crosslinking) agent of proteins.  相似文献   

17.
新型二酰胺类杀虫剂对鱼尼丁受体作用的分子机理   总被引:16,自引:0,他引:16  
唐振华  陶黎明 《昆虫学报》2008,51(6):646-651
最近发现了一类新型二酰胺类杀虫剂——氟虫酰胺和氯虫酰胺,其作用靶标是鱼尼丁受体 (ryanodine receptors, RyRs)。本文对RyR的结构与功能、电压门控钙离子通道和鱼尼丁受体钙离子释放通道对细胞质钙离子内环境稳定的调节以及二酰胺类杀虫剂对RyRs作用的分子机理进行综述。二酰胺类杀虫剂使昆虫RyR通道处于持续的开放状态,引发钙离子从肌质网腔内大量释放,破坏了细胞质钙离子内环境的稳定,从而产生不同的药物学特性。这些变化都是由一个不同于鱼尼丁在RyR上的结合部位介导的。该类杀虫剂的作用对昆虫RyR s是高度专一的,结果产生选择毒性。由于二酰胺类杀虫剂的结构独特,作用方式新颖,对鳞翅目害虫效果好、杀虫谱广,对各种益虫和天敌安全,并对现用的杀虫剂无交互抗性,故它们非常适合于抗性治理和IPM。  相似文献   

18.
Inhibitors of tumor necrosis factor-α converting enzyme (TACE) have potential as therapeutics for various diseases. Many small molecule inhibitors, however, exhibit poor specificity profiles because they target the highly conserved catalytic cleft of TACE. We report for the first time the molecular interaction of a highly specific anti-TACE antagonistic antibody (MEDI3622). We characterized the binding of MEDI3622 using mutagenesis, as well as structural modeling and docking approaches. We show that MEDI3622 recognizes a unique surface loop of sIVa-sIVb β-hairpin on TACE M-domain, but does not interact with the conserved catalytic cleft or its nearby regions. The exquisite specificity of MEDI3622 is mediated by this distinct structural feature on the TACE M-domain. These findings may aid the design of antibody therapies against TACE.  相似文献   

19.
Molecular beacons for detecting DNA binding proteins: mechanism of action   总被引:3,自引:0,他引:3  
New methodology for detecting sequence-specific DNA binding proteins has been recently developed (T. Heyduk, and E. Heyduk, Nat. Biotechnol. 20 (2002) 171). The central feature of this assay is protein-dependent association of two DNA fragments, each containing about half of a DNA sequence-defining the protein binding site. In this report we propose a physical model explaining the functioning of the assay. The model involves two linked equilibria: association between the two DNA fragments and binding of the protein exclusively to the complex between the two DNA fragments. Equilibrium and kinetic experiments provided evidence supporting the proposed model and showed that the model was sufficient to describe the behavior of the assay under a variety of conditions. Kinetic data identified the association between the two DNA half-sites as the rate-limiting step of the assay. Theoretical simulations based on the proposed model were used to investigate parameters important for the maximal sensitivity of the assay. Physical understanding of the assay will provide means for rational design of the assay for a variety of target proteins.  相似文献   

20.
Duchenne muscular dystrophy (DMD) is a lethal muscle-wasting disease. Studies in Drosophila showed that genetic increase of the levels of the bioactive sphingolipid sphingosine-1-phosphate (S1P) or delivery of 2-acetyl-5-tetrahydroxybutyl imidazole (THI), an S1P lyase inhibitor, suppresses dystrophic muscle degeneration. In the dystrophic mouse (mdx), upregulation of S1P by THI increases regeneration and muscle force. S1P can act as a ligand for S1P receptors and as a histone deacetylase (HDAC) inhibitor. Because Drosophila has no identified S1P receptors and DMD correlates with increased HDAC2 levels, we tested whether S1P action in muscle involves HDAC inhibition. Here we show that beneficial effects of THI treatment in mdx mice correlate with significantly increased nuclear S1P, decreased HDAC activity and increased acetylation of specific histone residues. Importantly, the HDAC2 target microRNA genes miR-29 and miR-1 are significantly upregulated, correlating with the downregulation of the miR-29 target Col1a1 in the diaphragm of THI-treated mdx mice. Further gene expression analysis revealed a significant THI-dependent decrease in inflammatory genes and increase in metabolic genes. Accordingly, S1P levels and functional mitochondrial activity are increased after THI treatment of differentiating C2C12 cells. S1P increases the capacity of the muscle cell to use fatty acids as an energy source, suggesting that THI treatment could be beneficial for the maintenance of energy metabolism in mdx muscles.KEY WORDS: HDAC, S1P, THI, dys, Dystrophin, mdx  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号