首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of yeast strain, the agave age and the cultivation field location of agave were evaluated using kinetic parameters and volatile compound production in the tequila fermentation process. Fermentations were carried out with Agave juice obtained from two cultivation fields (CF1 and CF2), as well as two ages (4 and 8 years) and two Saccharomyces cerevisiae yeast strains (GU3 and AR5) isolated from tequila fermentation must. Sugar consumption and ethanol production varied as a function of cultivation field and agave age. The production of ethyl acetate, 1-propanol, isobutanol and amyl alcohols were influenced in varying degrees by yeast strain, agave age and cultivation field. Methanol production was only affected by the agave age and 2-phenylethanol was influenced only by yeast strain. This work showed that the use of younger Agave tequilana for tequila fermentation resulted in differences in sugar consumption, ethanol and volatile compounds production at the end of fermentation, which could affect the sensory quality of the final product.  相似文献   

2.
Ethyl carbamate (EC), a pluripotent carcinogen, is mainly formed by a spontaneous chemical reaction of ethanol with urea in wine. The arginine, one of the major amino acids in grape musts, is metabolized by arginase (encoded by CAR1) to ornithine and urea. To reduce the production of urea and EC, an arginase-deficient recombinant strain YZ22 (Δcarl/Δcarl) was constructed from a diploid wine yeast, WY1, by successive deletion of two CAR1 alleles to block the pathway of urea production. The RT-qPCR results indicated that the YZ22 almost did not express CAR1 gene and the specific arginase activity of strain YZ22 was 12.64 times lower than that of parent strain WY1. The fermentation results showed that the content of urea and EC in wine decreased by 77.89 and 73.78 %, respectively. Furthermore, EC was forming in a much lower speed with the lower urea during wine storage. Moreover, the two CAR1 allele deletion strain YZ22 was substantially equivalent to parental strain in terms of growth and fermentation characteristics. Our research also suggested that EC in wine originates mainly from urea that is produced by the arginine.  相似文献   

3.
4.
Kong QX  Gu JG  Cao LM  Zhang AL  Chen X  Zhao XM 《Biotechnology letters》2006,28(24):2033-2038
To improve ethanol production in Saccharomyces cerevisiae, two yeast strains were constructed. In the mutant KAM-3, the FPS1 gene, which encodes a channel protein responsible for glycerol export, was deleted. The mutant KAM-11 had the GLT1 gene (encoding glutamate synthase) placed under the PGK1 promoter while having the FPS1 deletion. Growth rate and biomass concentration remained virtually unchanged with the mutant KAM-11, compared to that of the parent. Over-expression of GLT1 by the PGK1 promoter along with FPS1 deletion resulted in a 14% higher ethanol production and a 30% lower glycerol formation compared to the parental strain under anaerobic fermentation conditions. Furthermore, acetate and pyruvic acid formation was also reduced in order for cells to maintain redox balance.  相似文献   

5.
Enormous advances in genome editing technology have been achieved in recent decades. Among newly born genome editing technologies, CRISPR/Cas9 is considered revolutionary because it is easy to use and highly precise for editing genes in target organisms. CRISPR/Cas9 technology has also been applied for removing unfavorable target genes. In this study, we used CRISPR/Cas9 technology to reduce ethyl carbamate (EC), a potential carcinogen, which was formed during the ethanol fermentation process by yeast. Because the yeast CAR1 gene encoding arginase is the key gene to form ethyl carbamate, we inactivated the yeast CAR1 gene by the complete deletion of the gene or the introduction of a nonsense mutation in the CAR1 locus using CRISPR/Cas9 technology. The engineered yeast strain showed a 98 % decrease in specific activity of arginase while displaying a comparable ethanol fermentation performance. In addition, the CAR1-inactivated mutants showed reduced formation of EC and urea, as compared to the parental yeast strain. Importantly, CRISPR/Cas9 technology enabled generation of a CAR1-inactivated yeast strains without leaving remnants of heterologous genes from a vector, suggesting that the engineered yeast by CRISPR/Cas9 technology might sidestep GMO regulation.  相似文献   

6.
Invertase (β-D-fructofuranoside fructohydrolase, EC 3.2.1.26) finds major uses in confectionery and in the production of invert syrup. In the present study, we report on invertase production by wild cultures of Saccharomyces cerevisiae. The yeast strains were isolated from dates available in a local market. Five hyperproducing yeast strains (>100- fold higher invertase activity) were kinetically analysed for invertase production. Saccharomyces cerevisiae strain GCA-II was found to be a better invertase-yielding strain than all the other isolates. The values of Qp and Yp/s for GCA-II were economical as compared to other Saccharomyces cultures. The effect of sucrose concentration, rate of invertase synthesis, initial pH of fermentation medium and different organic nitrogen sources on the production of invertase under submerged culture conditions was investigated. Optimum concentrations of sucrose, urea and pH were 3, 0.2 (w/v), and 6 respectively. The increase in the enzyme yield obtained after optimization of the cultural conditions was 47.7%.  相似文献   

7.
【背景】商业酵母的使用造成葡萄酒同质化问题严重,发掘优良本土酿酒酵母具有十分重要的意义。【目的】从168株宁夏本土酿酒酵母菌株中筛选出性能优良、具有出色葡萄酒发酵能力的菌株。【方法】基于杜氏管发酵试验和乙醇、高糖等耐受性试验分析产H2S能力及生长曲线测定的方法,筛选出发酵力好、耐受性强、低产H2S的本土酿酒酵母进行赤霞珠葡萄酒发酵试验,测定葡萄酒样基础理化指标、酚类物质和挥发性成分,探究筛选出的酿酒酵母发酵特性。【结果】初步筛选出发酵快速,能适应13%乙醇、350 g/L葡萄糖、250 mg/L SO2、pH 1.0的生存环境且低产H2S的4株本土酿酒酵母YC-E8、QTX-D17、QTX-D7、YQY-E18。菌株YC-E8产甘油能力强,所发酵酒样香气与商业酵母XR、F33最为接近,适用于赤霞珠葡萄酒的发酵。菌株QTX-D17发酵酒样中酒精、单宁、总酚和花色苷含量最高,表现出本土酿酒酵母优良的发酵特性。菌株QTX-D7所发酵酒样香气中乙酸乙酯、辛酸乙酯、1-壬醇等物质含量较高,赋予了葡萄酒香蕉味、苹果味、菠萝味、椰子味等愉悦花果香。【结论】最终筛选出3株优良本土酿酒酵母QTX-D17...  相似文献   

8.
The fermentation process offers a wide variety of stressors for yeast, such as temperature, aging, and ethanol. To evaluate a possible beneficial effect of trehalose on ethanol production, we used mutant strains of Saccharomyces cerevisiae possessing different deficiencies in the metabolism of this disaccharide: in synthesis, tps1; in transport, agt1; and in degradation, ath1 and nth1. According to our results, the tps1 mutant, the only strain tested unable to synthesize trehalose, showed the lowest fermentation yield, indicating that this sugar is important to improve ethanol production. At the end of the first fermentation cycle, only the strains deficient in transport and degradation maintained a significant level of the initial trehalose. The agt1, ath1, and nth1 strains showed the highest survival rates and the highest proportions of non-petites. Accumulation of petites during fermentation has been correlated to low ethanol production. When recycled back for a subsequent fermentation, those mutant strains produced the highest ethanol yields, suggesting that trehalose is required for improving fermentative capacity and longevity of yeasts, as well as their ability to withstand stressful industrial conditions. Finally, according to our results, the mechanism by which trehalose improves ethanol production seems to involve mainly protection against protein oxidation.  相似文献   

9.
This work assessed the effect of the overexpression of ADH1 and HXT1 genes in the Saccharomyces cerevisiae AR5 strain during fermentation of Agave tequilana Weber blue variety must. Both genes were cloned individually and simultaneously into a yeast centromere plasmid. Two transformant strains overexpressing ADH1 and HXT1 individually and one strain overexpressing both genes were randomly selected and named A1, A3 and A5 respectively. Overexpression effect on growth and ethanol production of the A1, A3 and A5 strains was evaluated in fermentative conditions in A. tequilana Weber blue variety must and YPD medium. During growth in YPD and Agave media, all the recombinant strains showed lower cell mass formation than the wild type AR5 strain. Adh enzymatic activity in the recombinant strains A1 and A5 cultivated in A. tequilana and YPD medium was higher than in the wild type. The overexpression of both genes individually and simultaneously had no significant effect on ethanol formation; however, the fermentative efficiency of the A5 strain increased from 80.33% to 84.57% and 89.40% to 94.29% in YPD and Agave medium respectively.  相似文献   

10.
Summary The growing demand for high quality products and the immense export potential that cacha?a represents, demonstrated especially during the past few years, have clearly indicated the necessity of establishing well-defined standards of quality, as well as effective means of controlling the process of production of this beverage. The objective of this study was the selection of S. cerevisiae yeast strains and the investigation of their influence on the kinetic parameters of fermentation. Ninety strains of S. cerevisiae isolated from distilleries of the state of Minas Gerais were evaluated with respect to the following parameters: flocculation capacity, production of H2S and kinetic parameters of fermentation. The UFMGA 905 strain was used as a reference because it presented desirable characteristics for the production of cacha?a. Five strains presented high specific sedimentation velocities (SSV), indicating a high flocculation capacity, and two did not produce H2S. The strains presented significant statistical differences for fermentation parameters: yield of ethanol; efficiency of substrate conversion to ethanol; ratio of substrate conversion to ethanol (Y p/s), to cells (Y x/s), to organic acids (Y ac/s), and to glycerol (Y g/s); and productivity. In general, the strains presented a good fermentative potential, with ethanol yields varying from 74.7 to 82.1% and an efficiency of 76.1–84.4%. All strains presented high productivities (4.6–6.6 g l−1 h−1), indicating that this parameter can be used in the selection of strains for the production of cacha?a.  相似文献   

11.
Summary Maximum ethanol productions of two enological yeast strains (Saccharomyces cerevisiae K1 and 738-2) were compared during alcoholic fermentation under conditions where substrate was not a limiting factor. Although strain 738-2 seemed to exhibit the lowest sensitivity to ethanol, the strain K1 showed a higher production of ethanol, and a higher CO2 production rate in presence of ethanol than the strain 738-2.The main differences between these two strains were their kinetics of apparent loss of the hexose transport activity: this phenomenon is sufficient to explain the observed differences in maximum ethanol production. Moreover, these kinetics seemed to be biphasic for the strain K1. This result may be an indication of the existence of two different low-affinity components of hexose transport system in this strain.  相似文献   

12.
We have used liquid waste obtained from a beer brewery process to produce ethanol. To increase the productivity, genetically modified organism, Escherichia coli KO11, was used for ethanol fermentation. Yeast was also used to produce ethanol from the same feed stock, and the ethanol production rates and resulting concentrations of sugars and ethanol were compared with those of KO11. In the experiments, first the raw wastewater was directly fermented using two strains with no saccharification enzymes added. Then, commercial enzymes, α-amylase, pectinase, or a combination of both, were used for simultaneous saccharification and fermentation, and the results were compared with those of the no-enzyme experiments for KO11 and yeast. Under the given conditions with or without the enzymes, yeast produced ethanol more rapidly than E. coli KO11, but the final ethanol concentrations were almost the same. For both yeast and KO11, the enzymes were observed to enhance the ethanol yields by 61–84% as compared to the fermentation without enzymes. The combination of the two enzymes increased ethanol production the most for the both strains. The advantages of using KO11 were not demonstrated clearly as compared to the yeast fermentation results.  相似文献   

13.
CRISPR/Cas9基因编辑技术已经被广泛应用于工程酿酒酵母的基因插入、基因替换和基因敲除,通过使用选择标记进行基因编辑具有简单高效的特点。前期利用CRISPR/Cas9系统敲除青蒿酸生产菌株酿酒酵母(Saccharomyces cerevisiae) 1211半乳糖代谢负调控基因GAL80,获得菌株S. cerevisiae 1211-2,在不添加半乳糖诱导的情况下,青蒿酸摇瓶发酵产量达到了740 mg/L。但在50 L中试发酵实验中,S. cerevisiae 1211-2很难利用对青蒿酸积累起到决定性作用的碳源-乙醇,青蒿酸的产量仅为亲本菌株S.cerevisiae 1211的20%–25%。我们推测因遗传操作所需的筛选标记URA3突变,影响了其生长及青蒿酸产量。随后我们使用重组质粒pML104-KanMx4-u连同90 bp供体DNA成功恢复了URA3基因,获得了工程菌株S. cerevisiae 1211-3。S. cerevisiae 1211-3能够在葡萄糖和乙醇分批补料的发酵罐中正常生长,其青蒿酸产量超过20g/L,与亲本菌株产量相当。研究不但获得了不加半乳糖诱导的青...  相似文献   

14.
Ethanolic fermentation of simple sugars is an important step in the production of bioethanol as a renewable fuel. Significant levels of organic acids, which are generally considered inhibitory to microbial metabolism, could be accumulated during ethanolic fermentation, either as a fermentation product or as a by-product generated from pre-treatment steps. To study the impact of elevated concentrations of organic acids on ethanol production, varying levels of exogenous acetate or lactate were added into cultures of Thermoanaerobacter ethanolicus strain 39E with glucose, xylose or cellobiose as the sole fermentation substrate. Our results found that lactate was in general inhibitory to ethanolic fermentation by strain 39E. However, the addition of acetate showed an unexpected stimulatory effect on ethanolic fermentation of sugars by strain 39E, enhancing ethanol production by up to 394%. Similar stimulatory effects of acetate were also evident in two other ethanologens tested, T. ethanolicus X514, and Clostridium thermocellum ATCC 27405, suggesting the potentially broad occurrence of acetate stimulation of ethanolic fermentation. Analysis of fermentation end product profiles further indicated that the uptake of exogenous acetate as a carbon source might contribute to the improved ethanol yield when 0.1% (w/v) yeast extract was added as a nutrient supplement. In contrast, when yeast extract was omitted, increases in sugar utilization appeared to be the likely cause of higher ethanol yields, suggesting that the characteristics of acetate stimulation were growth condition-dependent. Further understanding of the physiological and metabolic basis of the acetate stimulation effect is warranted for its potential application in improving bioethanol fermentation processes.  相似文献   

15.
燃料乙醇发酵过程中酿酒酵母细胞活性被高浓度乙醇严重抑制而导致发酵提前终止,生产强度严重降低,因此构建同时具有高耐受性、高发酵性能的菌株一直是发酵工业追求的目标。选取酿酒酵母细胞形态调节关键基因小GTP酶家族成员Rho1,构建易错PCR产物文库,以酿酒酵母S288c为出发菌株采取“富集-自然生长-复筛”的筛选策略,成功筛选得到两株乙醇胁迫耐受性与发酵性能均提高的突变株M2和M5。测序发现突变株过表达的Rho1序列出现了3~5个氨基酸的突变和大片段的缺失突变。以300 g/L起始葡萄糖进行乙醇发酵,72 h时,M2和M5的乙醇滴度比对照菌株分别提高了19.4%和22.3%,超高浓度乙醇发酵能力显著提高。本研究为利用蛋白定向进化方法改良酵母菌复杂表型提供了新的作用靶点。  相似文献   

16.
Due to its high content of lactose and abundant availability, cheese whey powder (CWP) has received much attention for ethanol production in fermentation processes. However, lactose‐fermenting yeast strains including Kluyveromyces marxianus can only produce alcohol at a relatively low level, while the most commonly used distiller yeast strain Saccharomyces cerevisiae cannot ferment lactose since it lacks both β‐galactosidase and the lactose permease system. To combine the unique aspects of these two yeast strains, hybrids of K. marxianus TY‐22 and S. cerevisiae AY‐5 were constructed by protoplast fusion. The fusants were screened and characterized by DNA content, β‐galactosidase activity, ethanol tolerance, and ethanol productivity. Among the genetically stable fusants, the DNA content of strain R‐1 was 6.94%, close to the sum of the DNA contents of TY‐22 (3.99%) and AY‐5 (3.51%). The results obtained by random‐amplified polymorphic DNA analysis suggested that R‐1 was a fusant between AY‐5 and TY‐22. During the fermentation process with CWP, the hybrid strain R‐1 produced 3.8% v/v ethanol in 72 h, while the parental strain TY‐22 only produced 3.1% v/v ethanol in 84 h under the same conditions.  相似文献   

17.
耐热克鲁维酵母(Lachancea thermotolerans)是一种具有优良酿造学特性的非酿酒酵母(non-Saccharomyces cevevisiae),近年来由于其对葡萄酒的发酵进程及香气、滋味等感官特性均有着重要影响而受到越来越多的关注。耐热克鲁维酵母突出的特点表现为高产乳酸、甘油、2-苯乙醇及乙酯类香气成分,低产乙醇及挥发酸类物质,并且相关研究显示不同耐热克鲁维酵母发酵对葡萄酒的影响存在明显的菌株特异性。文章围绕耐热克鲁维酵母的菌株多样性、其对葡萄酒质量的影响及在混合发酵中的应用等方面进行综述,以期为本土耐热克鲁维酵母菌株性状的筛选、产酸及产香机制的解析提供参考依据,促进我国酿酒微生物种质资源的良性发展。  相似文献   

18.
Xylose is a second‐most abounded sugar after glucose in lignocellulosic hydrolysates and should be efficiently fermented for economically viable second‐generation ethanol production. Despite significant progress in metabolic and evolutionary engineering, xylose fermentation rate of recombinant Saccharomyces cerevisiae remains lower than that for glucose. Our recent study demonstrated that peroxisomedeficient cells of yeast Ogataea polymorpha showed a decrease in ethanol production from xylose. In this work, we have studied the role of peroxisomes in xylose alcoholic fermentation in the engineered xylose‐utilizing strain of S. cerevisiae. It was shown that peroxisome‐less pex3Δ mutant possessed 1.5‐fold decrease of ethanol production from xylose. We hypothesized that peroxisomal catalase Cta1 may have importance for hydrogen peroxide, the important component of reactive oxygen species, detoxification during xylose alcoholic fermentation. It was clearly shown that CTA1 deletion impaired ethanol production from xylose. It was found that enhancing the peroxisome population by modulation the peroxisomal biogenesis by overexpression of PEX34 activates xylose alcoholic fermentation.  相似文献   

19.
Saccharomyces cerevisiae alcohol dehydrogenases responsible for NADH-, and NADPH-specific reduction of the furaldehydes 5-hydroxymethyl-furfural (HMF) and furfural have previously been identified. In the present study, strains overexpressing the corresponding genes (mut-ADH1 and ADH6), together with a control strain, were compared in defined medium for anaerobic fermentation of glucose in the presence and absence of HMF. All strains showed a similar fermentation pattern in the absence of HMF. In the presence of HMF, the strain overexpressing ADH6 showed the highest HMF reduction rate and the highest specific ethanol productivity, followed by the strain overexpressing mut-ADH1. This correlated with in vitro HMF reduction capacity observed in the ADH6 overexpressing strain. Acetate and glycerol yields per biomass increased considerably in the ADH6 strain. In the other two strains, only the overall acetate yield per biomass was affected. When compared in batch fermentation of spruce hydrolysate, strains overexpressing ADH6 and mut-ADH1 had five times higher HMF uptake rate than the control strain and improved specific ethanol productivity. Overall, our results demonstrate that (1) the cofactor usage in the HMF reduction affects the product distribution, and (2) increased HMF reduction activity results in increased specific ethanol productivity in defined mineral medium and in spruce hydrolysate.  相似文献   

20.
Amid known microbial bioethanol producers, the yeast Scheffersomyces (Pichia) stipitis is particularly promising in terms of alcoholic fermentation of both glucose and xylose, the main constituents of lignocellulosic biomass hydrolysates. However, the ethanol yield and productivity, especially from xylose, are still insufficient to meet the requirements of a feasible industrial technology; therefore, the construction of more efficient S. stipitis ethanol producers is of great significance. The aim of this study was to isolate the insertional mutants of S. stipitis with altered ethanol production from glucose and xylose and to identify the disrupted gene(s). Mutants obtained by random insertional mutagenesis were screened for their growth abilities on solid media with different sugars and for resistance to 3-bromopyruvate. Of more than 1,300 screened mutants, 17 were identified to have significantly changed ethanol yields during the fermentation. In one of the best fermenting strains (strain 4.6), insertion was found to occur within the ORF of a homolog to the Saccharomyces cerevisiae gene HEM25 (YDL119C), encoding a mitochondrial glycine transporter required for heme synthesis. The role of HEM25 in heme accumulation, respiration, and alcoholic fermentation in the yeast S. stipitis was studied using strain 4.6, the complementation strain Comp—a derivative from the 4.6 strain with expression of the WT HEM25 allele and the deletion strain hem25Δ. As hem25Δ produced lower amounts of ethanol than strain 4.6, we assume that the phenotype of strain 4.6 may be caused not only by HEM25 disruption but additionally by some point mutation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号