首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Guan CX  Cui YR  Zhang M  Bai HB  Khunkhun R  Fang X 《Peptides》2007,28(9):1667-1673
Vasoactive intestinal peptide (VIP), a non-adrenergic, non-cholinergic neuromediator, plays an important role in maintaining the bronchial tone of the airway and has anti-inflammatory properties. Recently, we reported that VIP enhances wound repair in human bronchial epithelial cells (HBEC). In the present study, we have identified the intracellular signaling molecules that are involved in VIP-mediated wound healing in HBEC. The effects of VIP on wound repair of HBEC were partially blocked by H-7 (a protein kinase C (PKC) inhibitor), W-7 (a calmodulin inhibitor), H-89 (a protein kinase A (PKA) inhibitor), and PD98059 (a specific extracellular signal-regulated kinase (ERK) inhibitor). VIP-induced chemotactic migration was inhibited in the presence of W-7, H-89, PD98059 or H-7. H-7, W-7, and H-89 were also found to decrease VIP-induced expression of Ki67 as well as the proliferation index in HBEC. Furthermore, H-7, W-7, H-89, and PD98059 inhibited the expression of E-cd protein and mRNA induced by VIP. These results suggest that intracellular signaling molecules such as PKA, PKC, ERK, and calmodulin play important role in VIP-mediated wound healing of HBEC.  相似文献   

3.
Our previous study indicated that adhesion molecule catenin alpha‐like 1(CTNNAL1) is downregulated in airway epithelial cells of asthma patients and asthma animal model but little is known about how the CTNNAL1 affects asthma pathogenesis. To reveal the direct relationship between asthma and CTNNAL1, CTNNAL1‐deficient mouse model in bronchopulmonary tissue was constructed by introducing CTNNAL1‐siRNA sequence using adeno‐associated virus (AAV) as vector. The mouse model of asthma was established by stimulation of house dust mite (HDM). After HDM‐challenged, there was marked airway inflammation, especially mucus hypersecretion in the CTNNAL1‐deficient mice. In addition, the CTNNAL1‐deficient mice exhibited an increase of lung IL‐4 and IL‐13 levels, as well as a significant increase of goblet cell hyperplasia and MUC5AC after HDM exposure. The expression of Yes‐associated protein (YAP), protein that interacted with α‐catenin, was downregulated after CTNNAL1 silencing and was upregulated due to its overexpression. In addition, the interaction between CTNNAL1 and YAP was confirmed by CO‐IP. Besides, inhibition of YAP could decrease the secretion of MUC5AC, IL‐4 and IL‐13 in CTNNAL1‐deficient 16HBE14o‐cells. Above results indicated us that CTNNAL1 regulated mucus hypersecretion through YAP pathway. In addition, the expression of ROCK2 increased when CTNNAL1 was silenced and decreased after YAP silencing, and inhibition of YAP decreased the expression of ROCK2 in CTNNAL1‐deficient HBE cells. Inhibition of ROCK2 decreased MUC5AC expression and IL‐13 secretion. In all, our study demonstrates that CTNNAL1 plays an important role in HDM‐induced asthma, mediating mucus secretion through the YAP‐ROCK2 pathway.  相似文献   

4.
We recently demonstrated that human bronchial epithelial cells (HBEC) constitutively express the CXC chemokine receptor CXCR3, which when activated, induces directed cell migration. The present study in HBEC examined the relative expression of the CXCR3 splice variants CXCR3-A and -B, cell cycle dependence of CXCR3 expression, and the effects of the CXCR3 ligand, the interferon-gamma-inducible CXC chemokine I-TAC/CXCL11, on DNA synthesis and cell proliferation. Both CXCR3-A and -B mRNA, assessed by real-time RT-PCR, were expressed in normal HBEC (NHBEC) and the HBEC line 16-HBE. However, CXCR3-B mRNA was 39- and 6-fold greater than CXCR3-A mRNA in NHBEC and 16-HBE, respectively. Although most HBEC (>80%) assessed by flow cytometry and immunofluorescence microscopy contained intracellular CXCR3, only a minority (<40%) expressed it on the cell surface. In this latter subset of cells, most (>75%) were in the S + G(2)/M phases of the cell cycle. Stimulation of CXCR3 with I-TAC enhanced thymidine incorporation and cell proliferation and increased p38 and ERK1/2 phosphorylation. These data indicate that 1) human airway epithelial cells primarily express CXCR3-B mRNA, 2) surface expression of CXCR3 is largely confined to the S + G(2)/M phases of the cell cycle, and 3) activation of CXCR3 induces DNA synthesis, cell proliferation, and activation of MAPK pathways. We speculate that activation of CXCR3 exerts a mitogenic effect in HBEC, which may be important during airway mucosal injury in obstructive airway diseases such as asthma and chronic obstructive pulmonary disease.  相似文献   

5.
Guan CX  Zhang M  Qin XQ  Cui YR  Luo ZQ  Bai HB  Fang X 《Peptides》2006,27(12):3107-3114
In the present study, we investigated the effects of vasoactive intestinal peptide (VIP) on wound healing of bronchial epithelium. Wound healing of the mechanical damaged human bronchial epithelial cells (HBEC) was observed in the absence or presence of VIP. Effects of VIP on chemotactic migration, cell proliferation of HBEC were also tested. HBEC chemotaxis was assessed by the blind well chamber technique, the cell cycle was determined by flow cytometry, and cell proliferation was determined by measuring the expression of proliferating cell nuclear antigen Ki67. Effects of VIP on epithelial E-cadherins protein and mRNA were also measured by immunohistochemistry and RT-PCR. The results showed that VIP accelerated the recovery of wound area of HBEC. VIP increased the migration and proliferation of HBEC, and these effects were blocked by a VPAC1 receptor antagonist. VIP also increased the expression of E-cadherin mRNA and protein in HBEC, suggesting that protective effects of VIP on wound healing may be related to its ability to increase the expression of E-cadherin. In conclusion, VIP has protective effects against human bronchial epithelial cell damage, and the beneficial effects of VIP might be mediated, at least in part, by VPAC1, and associated with increased expression of E-cadherin.  相似文献   

6.
7.
Tan YR  Qi MM  Qin XQ  Xiang Y  Li X  Wang Y  Qu F  Liu HJ  Zhang JS 《Peptides》2006,27(7):1852-1858
The present study was designed to investigate the role of bombesin receptor subtype 3 (BRS-3) in airway wound repair. The results showed that: (1) There was few expression of BRS-3 mRNA in the control group. In contrast, the expression of BRS-3 mRNA was gradually increased in the early 2 days, and peaked on the fourth day, and then decreased in the ozone-stressed AHR animal. BRS-3 mRNA was distributed in the ciliated columnar epithelium, monolayer columnar epithelium cells, scattered mesenchymal cells and Type II alveolar cells; (2) The wound repair and proliferation of bronchial epithelial cells (BECs) were accelerated in a concentration-dependent manner by BRS-3 activation with P3513, which could be inhibited by PKA inhibitor H89. The study demostrated that activation of BRS-3 may play an important role in wound repair of AHR.  相似文献   

8.
Background: In airway disease such as asthma a hyperactive cellular event of epithelial-mesenchymal transition (EMT) is considered as the mechanism of pathological airway tissue remodeling after injury to the airway epithelium. And the initiation of EMT in the airways depends on the epithelial disruption involving dissolution and/or destabilization of the adhesive structures between the cells and ECM. Previously, we have shown that integrin-β4, an epithelial adhesion molecule in bronchial epithelium is an important regulator of cell proliferation and wound repair in human airway epithelial cells. Therefore, in this study we aimed to investigate whether integrin-β4 also regulates EMT phenotypes during injury and repair in airway epithelial cells of both wild type/integrin-β4-/- mice in vivo and cultured cells treated with integrin-β4/nonsense siRNA in vitro.Methods: We induced injury to the airway epithelial cells by either repeated exposure to ozone and mechanical scratch wound, and subsequently examined the EMT-related phenotypic features in the airway epithelial cells including biomarkers expression, adhesion and cytoskeleton reorganization and cell stiffness.Results: The results show that in response to injury (ozone exposure/scratch wound) and subsequent spontaneous repair (ozone withdrawal/wound healing) both in vivo and in vitro, the airway epithelial cells underwent dynamic changes in the epithelial and mesenchymal biomarkers expression, adhesion and cytoskeleton structures as well as cell stiffness, all together exhibiting enhanced EMT phenotypic features after injury and reversal of the injury-induced effects during repair. Importantly, these injury/repair-associated EMT phenotypic changes in airway epithelial cells appeared to be dependent on integrin-β4 expression. More specifically, when integrin-β4 was deficient in mice (integrin-β4-/-) the repair of ozone-injured airway epithelium was impaired and the recovery of ozone-enhanced EMT biomarkers expression in the airway epithelium was delayed. Similarly, in the scratch wounded airway epithelial cells with integrin-β4 knockdown, the cells were impaired in all aspects related to EMT during wound and repair including cell proliferation, wound closure rate, adhesion and cytoskeleton protein expression (vinculin and vimentin), mesenchymal-like F-actin reorganization, cell stiffness and RhoA activation.Conclusion: Taken together, these results suggested that integrin-β4 may be essential in regulating the effects of injury and repair on EMT in airway epithelial cells via influencing both the cell adhesion to ECM and cells'' physical phenotypes through RhoA signaling pathway.  相似文献   

9.
Integrin beta 4 (ITGB4) is a structural adhesion molecule which engages in maintaining the integrity of airway epithelial cells. Its specific cytomembrane structural feature strongly indicates that ITGB4 may engage in many signaling pathways and physiologic processes. However, in addition to adhesion, the specific biologic significance of ITGB4 in airway epithelial cells is almost unknown. In this article, we investigated the expression and functional properties of ITGB4 in airway epithelial cells in vivo and in vitro. Human bronchial epithelial cell line (16HBE14O-cells) and primary rat tracheal epithelial cells (RTE cells) were used to determine ITGB4 expression under ozone tress or mechanical damage, respectively. An ovalbumin (OVA)-challenged asthma model was used to investigate ITGB4 expression after antigen exposure in vivo. In addition, an ITGB4 overexpression vector and ITGB4 silence virus vector were constructed and transfected into RTE cells. Then, wound repair ability and anti-oxidation capacity was evaluated. Our results demonstrated that, on the edge of mechanically wounded cell areas, ITGB4 expression was increased after mechanical injury. After ozone stress, upregulation expression of ITGB4 was also detected. In the OVA-challenged asthma model, ITGB4 expression was decreased on airway epithelial cells accompanying with structural disruption and damage of anti-oxidation capacity. Besides, our study revealed that upregulation of ITGB4 promotes wound repair ability and anti-oxidative ability, while such abilities were blocked when ITGB4 was silenced. Taken together, these results showed that ITGB4 was a new interesting molecule involved in the regulation of wound repair and anti-oxidation processes for airway epithelial cells.  相似文献   

10.
The KCa3.1 K+ channel has been proposed as a novel target for pulmonary diseases such as asthma and pulmonary fibrosis. It is expressed in epithelia but its expression and function in primary human bronchial epithelial cells (HBECs) has not been described. Due to its proposed roles in the regulation of cell proliferation, migration, and epithelial fluid secretion, inhibiting this channel might have either beneficial or adverse effects on HBEC function. The aim of this study was to assess whether primary HBECs express the KCa3.1 channel and its role in HBEC function. Primary HBECs from the airways of healthy and asthmatic subjects, SV-transformed BEAS-2B cells and the neoplastic H292 epithelial cell line were studied. Primary HBECs, BEAS-2B and H292 cells expressed KCa3.1 mRNA and protein, and robust KCa3.1 ion currents. KCa3.1 protein expression was increased in asthmatic compared to healthy airway epithelium in situ, and KCa3.1 currents were larger in asthmatic compared to healthy HBECs cultured in vitro. Selective KCa3.1 blockers (TRAM-34, ICA-17043) had no effect on epithelial cell proliferation, wound closure, ciliary beat frequency, or mucus secretion. However, several features of TGFβ1-dependent epithelial-mesenchymal transition (EMT) were inhibited by KCa3.1 blockade. Treatment with KCa3.1 blockers is likely to be safe with respect to airway epithelial biology, and may potentially inhibit airway remodelling through the inhibition of EMT.  相似文献   

11.
In vivo, transforming growth factor (TGF)-beta1 and matrix metalloproteinases (MMPs) present at the site of airway injury are thought to contribute to epithelial wound repair. As TGF-beta1 can modulate MMP expression and MMPs play an important role in wound repair, we hypothesized that TGF-beta1 may enhance airway epithelial repair via MMPs secreted by epithelial cells. We evaluated the in vitro influence of TGF-beta1 on wound repair in human airway epithelial cells cultured under conditions allowing differentiation. The results showed that TGF-beta1 accelerated in vitro airway wound repair, whereas MMP inhibitors prevented this acceleration. In parallel, we examined the effect of TGF-beta1 on the expression of MMP-2 and MMP-9. TGF-beta1 induced a dramatic increase of MMP-2 expression with an increased steady-state level of MMP-2 mRNA, contrasting with a slight increase in MMP-9 expression. To confirm the role of MMP-2, we subsequently evaluated the effect of MMP-2 on in vitro airway wound repair and demonstrated that the addition of MMP-2 reproduced the acceleration of wound repair induced by TGF-beta1. These results strongly suggest that TGF-beta1 increases in vitro airway wound repair via MMP-2 upregulation. It also raises the issue of a different in vivo biological role of MMP-2 and MMP-9 depending on the cytokine microenvironment.  相似文献   

12.
Epidemiological data indicate an increasing incidence of asthma in the obese individuals recent decades, while very little is known about the possible association between them. Here, we compared the roles of adipocyte-derived factors, including leptin, adiponectin and resistin on proliferation, wound repair and apoptosis in human bronchial epithelial cells (HBECs) which play an important role in the pathogenesis of asthma. The results showed that exogenous globular adiponectin (gAd) promoted proliferation, cell-cycle and wound repair of HBECs. This effect may be relevant to Ca2+/calmodulin signal pathway. Besides, gAd inhibited apoptosis induced by ozone and release of lactate dehydrogenase (LDH) of HBECs via regulated adipoR1 and reactive oxygen species. No effects of leptin or resistin on proliferation, wound repair and apoptosis of HBECs were detectable. These data indicate that airway epithelium is the direct target of gAd which plays an important role in protecting HBECs from mechanical or oxidant injuries and may have therapeutic implications in the treatment of asthma.  相似文献   

13.
Increased levels of NO in exhaled air in association with increased NO synthetase (NOS)2 expression in bronchial epithelial are hallmark features of asthma. It has been suggested that NO contributes to asthma pathogenesis by selective down-regulation of TH1 responses. We demonstrate, however, that NO can reversibly limit in vitro expansion of both human TH1 and TH2 CD4+ T cells. Mechanistically, NO induces cGMP-mediated reversible STAT5 dephosphorylation and therefore interferes with the IL-2R activation cascade. Human bronchial epithelial cells (HBEC) up-regulate NOS2 after stimulation with IFN-gamma secreted by TH1 CD4+ T cells and release NO, which inhibits both TH1 and TH2 cell proliferation. This reversible T cell growth arrest depends on NO because T cell proliferation is completely restored after in vitro blocking of NOS2 on HBEC. HBEC thus drive the effector end of a TH1-controlled feedback loop, which protects airway mucosal tissues at the potential lesional site in asthma from overwhelming CD4+ TH2 (and potentially TH1) responses following allergen exposure. Variations in the efficiency of this feedback loop provides a plausible mechanism to explain why only a subset of atopics sensitized to ubiquitous aeroallergens progress to expression of clinically relevant levels of airways inflammation.  相似文献   

14.
Airway epithelium functions not only as a physical barrier, but also a regulator of lung inflammation. IFN‐γ plays a critical role in airway inflammation associated with respiratory viral infection. We investigated differential protein profiling in IFN‐γ‐stimulated normal human bronchial epithelial cells (HBEC) using a 2‐dimensional gel electrophoresis followed by MALDI‐TOF‐MS/MS. IFN‐γ markedly stimulated apolipoprotein L2 (ApoL2) protein expression in normal HBEC. ApoL2 mRNA expression was also elevated in normal human lung fibroblasts and smooth muscle cells stimulated with IFN‐γ, in lung tissues from an IFN‐γ‐predominant influenza A virus‐infected mouse lung injury model, and in cancer lung tissues from human patients. Normal HBEC showed strong resistance to IFN‐γ‐induced cytotoxicity. ApoL2 knockdown by siRNA promoted IFN‐γ‐induced cytotoxicity as revealed by a significant drop in cell viability using MTT and CyQUANT NF cell proliferation assays, and a marked increase in hypodiploid sub‐G1 cell population in cell cycle analysis. Furthermore, depletion of ApoL2 facilitated IFN‐γ‐induced membrane damage and chromatin condensation as observed in Hoechst and propidium iodide‐double staining and in transmission electron microscopy, and DNA fragmentation using a DNA laddering assay, in a caspase‐dependent manner. Our results reveal a novel function for ApoL2 in conferring anti‐apoptotic ability of human bronchial epithelium to the cytotoxic effects of IFN‐γ, in maintaining airway epithelial layer integrity. J. Cell. Physiol. 226: 397–406, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

15.

Background

The extracellular matrix is a dynamic and complex network of macromolecules responsible for maintaining and influencing cellular functions of the airway. The role of fibronectin, an extracellular matrix protein, is well documented in asthma. However, the expression and function of fibulin-1, a secreted glycoprotein which interacts with fibronectin, has not been reported. Fibulin-1 is widely expressed in basement membranes in many organs including the lung. There are four isoforms in humans (A–D) of which fibulin-1C and 1D predominate. The objective of this study was to study the expression of fibulin-1 in volunteers with and without asthma, and to examine its function in vitro.

Methodology/Principal Findings

We used immunohistochemistry and dot-blots to examine fibulin-1 levels in bronchial biopsies, bronchoalveolar lavage fluid and serum. Real-time PCR for fibulin-1C and 1D, and ELISA and western blotting for fibulin-1 were used to study the levels in airway smooth muscle cells. The function of fibulin-1C was determined by assessing its role, using an antisense oligonucleotide, in cell proliferation, migration and wound healing. A murine model of airway hyperresponsiveness (AHR) was used to explore the biological significance of fibulin-1. Levels of fibulin-1 were significantly increased in the serum and bronchoalveolar lavage fluid of 21 asthmatics compared with 11 healthy volunteers. In addition fibulin-1 was increased in asthma derived airway smooth muscle cells and fibulin-1C contributed to the enhanced proliferation and wound repair in these cells. These features were reversed when fibulin-1C was suppressed using an antisense oligomer. In a mouse model of AHR, treatment with an AO inhibited the development of AHR to methacholine.

Conclusions

Our data collectively suggest fibulin-1C may be worthy of further investigation as a target for airway remodeling in asthma.  相似文献   

16.
17.
Ambient particulate matter, including diesel exhaust particles (DEP), promotes the development of allergic disorders. DEP increase oxidative stress and influence human bronchial epithelial cell (HBEC)-dendritic cell interactions via cytokines, including thymic stromal lymphopoietin (TSLP). Upregulation of TSLP results in Th2 responses. Using primary culture HBEC and human myeloid dendritic cell (mDC) cocultures, we show in this study that DEP upregulation of Th2 responses occurred via HBEC-dependent mechanisms that resulted from oxidative stress. Moreover, DEP-treated HBEC and ambient particulate matter-treated HBEC upregulated OX40 ligand (OX40L) and the Notch ligand Jagged-1 mRNA and expression on mDC. Upregulation of OX40L as well as Jagged-1 on mDC required HBEC and did not occur in the presence of N-acetylcysteine. Furthermore, OX40L and Jagged-1 upregulation was inhibited when HBEC expression of TSLP was silenced. Thus, DEP treatment of HBEC targeted two distinct pathways in mDC that were downstream of TSLP expression. Upregulation of OX40L and Jagged-1 by mDC resulted in mDC-driven Th2 responses. These studies expand our understanding of the mechanism by which ambient pollutants alter mucosal immunity and promote disorders such as asthma.  相似文献   

18.
TWEAK, a member of the TNF family, induces cell death in some tumor cell lines, but also induces proliferation of endothelial cells and angiogenesis. Recently, fibroblast growth factor-inducible 14 (Fn14) has been identified to be a TWEAK receptor, which may be responsible for the proliferation of endothelial cells and angiogenesis. In this study, we investigated the pro-inflammatory effect of TWEAK on human umbilical vein endothelial cells (HUVEC). We demonstrated that TWEAK could not only induce the proliferation and migration but also upregulate the cell surface expression of adhesion molecules such as ICAM-1 and E-selectin, and induce the secretion of chemokines such as IL-8 and MCP-1 in HUVEC. Moreover, by using an anti-Fn14 mAb that blocks the TWEAK/Fn14 interaction, we demonstrated that Fn14 was constitutively expressed on HUVEC and totally mediated the biological effects of TWEAK on HUVEC. These results indicated that TWEAK could induce pro-inflammatory reactions via Fn14 on HUVEC.  相似文献   

19.
Bcl-2, a prosurvival protein, regulates programmed cell death during development and repair processes, and it can be oncogenic when cell proliferation is deregulated. The present study investigated what factors modulate Bcl-2 expression in airway epithelial cells and identified the pathways involved. Microarray analysis of mRNA from airway epithelial cells captured by laser microdissection showed that increased expression of IL-1β and insulin-like growth factor-1 (IGF-1) coincided with induced Bcl-2 expression compared with controls. Treatment of cultured airway epithelial cells with IL-1β and IGF-1 induced Bcl-2 expression by increasing Bcl-2 mRNA stability with no discernible changes in promoter activity. Silencing the IGF-1 expression using short hairpin RNA showed that intracellular IGF-1 (IC-IGF-1) was increasing Bcl-2 expression. Blocking epidermal growth factor receptor or IGF-1R activation also suppressed IC-IGF-1 and abolished the Bcl-2 induction. Induced expression and colocalization of IC-IGF-1 and Bcl-2 were observed in airway epithelial cells of mice exposed to LPS or cigarette smoke and of patients with cystic fibrosis and chronic bronchitis but not in the respective controls. These studies demonstrate that IC-IGF-1 induces Bcl-2 expression in epithelial cells via IGF-1R and epidermal growth factor receptor pathways, and targeting IC-IGF-1 could be beneficial to treat chronic airway diseases.  相似文献   

20.
Macrophage migration inhibitory factor (MIF) is an inflammatory mediator that contributes to asthmatic airway remodeling; however, little is known regarding the effects of MIF on airway smooth muscle cells (ASMCs). In the present study, we found that an enhanced expression of MIF promoted ASMC proliferation, increased the population of cells in the S/G2 phase, downregulated P21 expression, and upregulated cyclin D1, cyclin D3, and Cdk6 expression. In addition, the apoptosis of ASMCs was significantly decreased in response to MIF overexpression, compared with the negative control. Moreover, MIF facilitated the migration of ASMCs by upregulating the expression of matrix metalloproteinase (MMP)‐2. Finally, we showed that MIF increased the phosphorylation of extracellular regulated protein kinases (ERK) 1/2 and focal adhesion kinase (FAK), which are associated with proliferation and migration. In conclusion, this study demonstrated that MIF overexpression promotes the proliferation and migration of ASMCs by upregulating the activity of the ERK1/2 and FAK signaling pathways in these cells, further indicating that inhibition of MIF may prove to be an effective strategy for treating asthma patients with airway remodeling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号