首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The androgen receptor: a potential target for therapy of prostate cancer   总被引:7,自引:0,他引:7  
Santos AF  Huang H  Tindall DJ 《Steroids》2004,69(2):79-85
The androgen receptor plays a pivotal role in the prostate. Its primary function is to provide responsive gene products for differentiation and growth, but under abnormal conditions it contributes to the development of prostate cancer. The goal of this review is to elucidate the molecular functions of the androgen receptor and its role in prostate cancer. Initially the function of the androgen receptor will be described. Next, the clinical diagnosis, epidemiological impact, and treatments of androgen-dependent and -independent prostate cancer will be discussed. Finally we will examine how the mechanism of androgen action has played a role in the translation of new therapies and how this may influence future treatment modalities of prostate cancer.  相似文献   

2.
High-risk, clinically localized prostate cancer represents a diverse disease entity. Patients who are considered to be at highest risk for biochemical failure after localized treatments may not be at significant risk for disea-sespecific mortality. In this review, an attempt will be made to define high-risk status and help identify patients at high risk for mortality after a diagnosis of localized prostate cancer. Subsequently, a review of monotherapy approaches as well as previously successful strategies utilizing multimodality therapy for high-risk disease will be presented. Finally, a synopsis will be given of several ongoing randomized clinical trials using the most effective systemic therapies in the adjuvant setting following thorough local treatments such as radical prostatectomy. This review will provide a glimpse into the future and describe the tools that it is hoped will improve further upon the results of surgical monotherapy for high-risk, localized prostate cancer.  相似文献   

3.
Prostate cancer is the most common carcinoma of the male urinary system in developed countries. Androgen deprivation therapy has been commonly used in the treatment of prostate cancer for decades, but most patients will inevitably develop into more aggressive castration-resistant prostate cancer. Therefore, novel strategies are urgent to address this resistance mechanism. In this review, we discussed some new strategies for targeting androgen receptors through degradation pathways as potential treatments for prostate cancer.  相似文献   

4.
5.
Molecular regulation of androgen action in prostate cancer   总被引:1,自引:0,他引:1  
  相似文献   

6.
The maturation of MS technologies has provided a rich opportunity to interrogate protein expression patterns in normal and disease states by applying expression protein profiling methods. Major goals of this research strategy include the identification of protein biomarkers that demarcate normal and disease populations, and the identification of therapeutic biomarkers for the treatment of diseases such as cancer (Celis, J. E., and Gromov, P. (2003) Proteomics in translational cancer research: Toward an integrated approach. Cancer Cell 3, 9-151). Prostate cancer is one disease that would greatly benefit from implementing MS-based expression profiling methods because of the need to stratify the disease based on molecular markers. In this review, we will summarize the current MS-based methods to identify and validate biomarkers in human prostate cancer. Lastly, we propose a reverse proteomic approach implementing a quantitative MS research strategy to identify and quantify biomarkers implicated in prostate cancer development. With this approach, the absolute levels of prostate cancer biomarkers will be identified and quantified in normal and diseased samples by measuring the levels of native peptide biomarkers in relation to a chemically identical but isotopically labeled reference peptide. Ultimately, a centralized prostate cancer peptide biomarker expression database could function as a repository for the identification, quantification, and validation of protein biomarker(s) during prostate cancer progression in men.  相似文献   

7.
DNA methylation in prostate cancer   总被引:7,自引:0,他引:7  
Prostate cancer is the most common malignancy and the second leading cause of cancer death among men in the United States. There are three well-established risk factors for prostate cancer: age, race and family history. The molecular bases for these risk factors are unclear; however, they may be influenced by epigenetic events. Epigenetic events covalently modify chromatin and alter gene expression. Methylation of cytosine residues within CpG islands on gene promoters is a primary epigenetic event that acts to suppress gene expression. In tumorigenesis, the normal functioning of the epigenetic-regulatory system is disrupted leading to inappropriate CpG island hypermethylation and aberrant expression of a battery of genes involved in critical cellular processes. Cancer-dependent epigenetic regulation of genes involved in DNA damage repair, hormone response, cell cycle control and tumor-cell adhesion/metastasis can contribute significantly to tumor initiation, progression and metastasis and, thereby, increase prostate cancer susceptibility and risk. In this review, we will discuss current research on genes that are hypermethylated in human prostate cancer. We will also discuss the potential involvement of DNA methylation in age-related, race-related and hereditary prostate cancer, and the potential use of hypermethylated genes as biomarkers to detect prostate cancer and assess its risk.  相似文献   

8.
The purpose of this review is to provide information on the molecular basis of prostate cancer biology and to identify some of the targets for therapy, and highlight some potential strategies for molecular treatment. Here we give a synopsis of what we have learned regarding molecular biology of cancer in general and the directions research might take in the future in order to impact prostate cancer specifically. This work is certainly not encyclopedic in nature and we apologize in advance to colleagues whose work we were no able to include. Hope lies in learning to utilize some of these molecular workings for better prevention, diagnosis, and treatment of the most common solid organ cancer in men. Prostate cancer is a formidable disease and at current rates of diagnosis will affect one-in-six men living in the United States (Greenlee et al., 2000) Many of these men are diagnosed at an early stage of the disease and can be effectively treated by surgery or radiation. However, a significant fraction of men are diagnosed with later stage disease or progress despite early curative therapeutic attempts. Unfortunately, many of these men succumb to prostate cancer, as management options are limited and not always successful. Through an understanding of the molecular processes that occur in the development and progression of prostate cancer, novel therapies will arise that will provide longer survival, better quality of life, and a chance for cure in men afflicted with this disease.  相似文献   

9.
Localized prostate cancer can be treated effectively with radical prostatectomy or radiation therapy. The treatment options for metastatic prostate cancer are limited to hormonal therapy; hormone-refractory cancer is treated with taxane-based chemotherapy, which provides only a modest survival benefit. New treatments are needed. The gene for the initiation of prostate cancer has not been identified; however, gene therapy can involve tumor injection of a gene to kill cells, systemic gene delivery to target and kill metastases, or local gene expression intended to generate a systemic response. This review will provide an overview of the various strategies of cancer gene therapy, focusing on those that have gone to clinical trial, detailing clinical experience in prostate cancer patients.  相似文献   

10.
Although at present, there is a high incidence of prostate cancer, particularly in the Western world, mortality from this disease is declining and occurs primarily only from clinically significant late stage tumors with a poor prognosis. A major current focus of this field is the identification of new biomarkers which can detect earlier, and more effectively, clinically significant tumors from those deemed “low risk”, as well as predict the prognostic course of a particular cancer. This strategy can in turn offer novel avenues for targeted therapies. The large family of Receptor Tyrosine Kinases, the Ephs, and their binding partners, the ephrins, has been implicated in many cancers of epithelial origin through stimulation of oncogenic transformation, tumor angiogenesis, and promotion of increased cell survival, invasion and migration. They also show promise as both biomarkers of diagnostic and prognostic value and as targeted therapies in cancer. This review will briefly discuss the complex roles and biological mechanisms of action of these receptors and ligands and, with regard to prostate cancer, highlight their potential as biomarkers for both diagnosis and prognosis, their application as imaging agents, and current approaches to assessing them as therapeutic targets. This review demonstrates the need for future studies into those particular family members that will prove helpful in understanding the biology and potential as targets for treatment of prostate cancer.  相似文献   

11.
Affecting over 30% of the population, obesity is an epidemic in the United States and is associated with multiple chronic medical problems. Obesity is also associated with numerous hormonal changes, many of which have been implicated in prostate cancer development and progression. Although, on the whole, controversy exists over whether obesity increases the risk of prostate cancer, data strongly suggest that obesity is a significant risk factor for prostate cancer death. In this review, we discuss the epidemiologic data surrounding obesity and prostate cancer. We also discuss some of the sequelae of obesity and their relationships with prostate cancer, including alterations in insulin, the insulin-like growth factor axis, and leptin levels; insulin resistance; and diabetes. Although a complete overview of all the various dietary and lifestyle factors that are associated with obesity and prostate cancer risk is beyond the scope of this review, we discuss data concerning the relationship between a high-fat diet and prostate cancer.  相似文献   

12.
Prostate cancer remains the most commonly diagnosed malignancy and the second leading cause of cancer-related deaths in men in the United States. The current standard of care consists of prostatectomy and radiation therapy, which may often be supplemented with hormonal therapies. Recurrence is common, and many develop metastatic prostate cancer for which chemotherapy is only moderately effective. It is clear that novel therapies are needed for the treatment of the malignant forms of prostate cancer that recur after initial therapies, such as hormone refractory (HRPC) or castration resistant prostate cancer (CRPC). With advances in understanding of the molecular mechanisms of cancer, we have witnessed unprecedented progress in developing new forms of targeted therapy. Several targeted therapeutic agents have been developed and clinically used for the treatment of solid tumors such as breast cancer, non-small cell lung cancer, and renal cancer. Some of these reagents modulate growth factors and/or their receptors, which are abundant in cancer cells. Other reagents target the downstream signal transduction, survival pathways, and angiogenesis pathways that are abnormally activated in transformed cells or metastatic tumors. We will review current developments in this field, focusing specifically on treatments that can be applied to prostate cancers. Finally we will describe aspects of the future direction of the field with respect to discovering biomarkers to aid in identifying responsive prostate cancer patients.  相似文献   

13.
Klein RD 《Mutation research》2005,576(1-2):111-119
The ability to modify the expression of specific genes in the mouse through genetic engineering technologies allows for the generation of previously unavailable models for prostate cancer prevention research. Although animal models have existed for some time for the study of prostate cancer prevention (primarily in the rat), it is uncertain if the mechanisms that drive prostate carcinogenesis in these models are relevant to those in human prostate cancer. Cell culture studies are of limited usefulness because the conditions are inherently artificial. Factors such as relevant physiologic concentrations and metabolism of putative chemoprevention compounds are difficult to model in an in vitro system. These studies also preclude the types of interactions known to occur between multiple cell types in vivo. In addition, all prostate cancer cell lines are already highly progressed and are not representative of the type of cells to which most preventive strategies would be targeted. Due to the advent of genetically engineered mouse (GEM) models, we now have models of prostate cancer that are dependent on molecular mechanisms already implicated in human prostate carcinogenesis. With these models we can perform a variety of experiments that could previously only be done in cell culture or in prostate cancer cell line xenografts. The currently available GEM models of prostate cancer have been extensively reviewed therefore, this review will focus on the types of models available and their usefulness for various types of preclinical studies relevant to prostate cancer prevention.  相似文献   

14.
Prostate cancer remains the most commonly diagnosed malignancy and the second leading cause of cancer-related deaths in men in the United States. The current standard of care consists of prostatectomy and radiation therapy, which may often be supplemented with hormonal therapies. Recurrence is common, and many develop metastatic prostate cancer for which chemotherapy is only moderately effective. It is clear that novel therapies are needed for the treatment of the malignant forms of prostate cancer that recur after initial therapies, such as hormone refractory (HRPC) or castration resistant prostate cancer (CRPC). With advances in understanding of the molecular mechanisms of cancer, we have witnessed unprecedented progress in developing new forms of targeted therapy. Several targeted therapeutic agents have been developed and clinically used for the treatment of solid tumors such as breast cancer, non-small cell lung cancer, and renal cancer. Some of these reagents modulate growth factors and/or their receptors, which are abundant in cancer cells. Other reagents target the downstream signal transduction, survival pathways, and angiogenesis pathways that are abnormally activated in transformed cells or metastatic tumors. We will review current developments in this field, focusing specifically on treatments that can be applied to prostate cancers. Finally we will describe aspects of the future direction of the field with respect to discovering biomarkers to aid in identifying responsive prostate cancer patients.  相似文献   

15.
Prostate cancer remains a common cause of cancer death in men. Applications of new genomic technologies to the recent development of high-quality prostate cancer models in multiple contexts have added great molecular insight into the development of and progression to metastasis. Genomic analysis of DNA, RNA, and protein alterations allows for the global assessment of this disease and provides the molecular framework to improve risk classification, outcome prediction, and development of targeted therapies. The creation of expression profiles and signatures will allow the evaluation of cancer phenotypes and give insight into determining those with increased risk of cancer, identification of critical pathways involved in the development of cancer, prediction of disease outcome, and assessment of the response of cancer to established and novel therapies.This review focuses on highlighting recent work in genomics and on its role in evaluating potential genetic modifiers of prostate cancer and novel biomarkers that may help with prostate cancer diagnosis, its potential to provide a better understanding of prostate cancer behavior and transition to metastatic disease, and its role in current and new therapies in prostate cancer. This framework has the exciting potential to be predictive and provide personalized and individual treatment to the large number of men diagnosed with prostate cancer each year.  相似文献   

16.
J Hartman  A Ström  JK Gustafsson 《Steroids》2012,77(12):1262-1266
An increasing amount of evidence points at important roles for estrogen receptors in prostate carcinogenesis and progression. Of the two estrogen receptors, estrogen receptor β is the most prominent within the prostate gland. Although there is much yet to be known, the findings from the discovery of the receptor in 1996 until now point at a role of the receptor in maintaining differentiation and reducing cellular proliferation in the prostate. Moreover, estrogen receptor β is the main target for phytoestrogens, perhaps at least partially explaining the difference in incidence of prostate cancer in the Western world compared to Asia where the intake of soy-based, phytoestrogen-rich food is higher. The tumor suppressive capability of estrogen receptor β makes it a promising drug target for the treatment and prevention of prostate cancer. This review will focus on different aspects of estrogen receptor signaling and prostate cancer.  相似文献   

17.
18.
19.
Prostate epithelial differentiation is dictated by its surrounding stroma which determines androgen induced growth responsiveness and expression of specific secretory proteins in normal prostate gland. During neoplastic progression, organ specific stroma has been shown to determine the rate of neoplastic progression from androgen-dependent to androgen-independent and metastatic states. Although growth factors and extracellular matrix are recognized as important contributors to prostate epithelial growth, hormonal responsiveness, and neoplastic progression, the exact mechanism of intercellular communication between stromal and epithelial cells remains undefined. In addition to the importance of defining the reciprocal interaction between stromal and epithelial interaction in the prostate, clonal interaction between two dissimilar prostate epithelial cells is also recognized to contribute to disease progression. In this review, we summarized recent advances made in delineating molecular mechanisms underlying stromal epithelial interaction and clonal interaction between androgen-dependent and androgen-independent prostate cancer cells in vivo and in culture. Understanding cellular interaction between prostate epithelium and its surrounding stroma could help us in developing metastatic models of prostate carcinogenesis. This concept will allow us to define epithelial-specific markers, markers induced as the result of stromal-epithelial interaction, and stroma-associated markers. These markers together will assist us in diagnosing, preventing, prognosing and treating prostate cancer more efficaciously in the future.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号