首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new kallikrein-kinin system inhibitor, designated anophensin, was identified in the salivary glands of the malaria vector mosquito, Anopheles stephensi. In vitro reconstitution experiments showed that anophensin inhibits activation of the kallikrein-kinin system by inhibiting the reciprocal activation of factor XII (FXII) and prekallikrein (PK), and subsequent release of bradykinin. Additionally, anophensin inhibits activation of the kallikrein-kinin system on cultured human umbilical vein endothelial cells (HUVECs). Direct binding assays show that this inhibitory effect is due to Zn(2+)-dependent specific binding of anophensin to both FXII and high molecular weight kininogen (HK). Furthermore, anophensin interacts with both the N-terminus of FXII and domain D5 of HK, which are the binding domains for biological activating surfaces. These results suggest that anophensin inhibits activation of the kallikrein-kinin system by interfering with the association of FXII and HK with biological activating surfaces, resulting in the inhibition of bradykinin release in a host animal during insect blood-feeding.  相似文献   

2.
The salivary glands of female mosquitoes contain a variety of bioactive substances that assist their blood-feeding behavior. Here, we report a salivary protein of the malarial vector mosquito, Anopheles stephensi, that inhibits activation of the plasma contact system. This factor, named hamadarin, is a 16-kDa protein and a major component of the saliva of this mosquito. Assays using human plasma showed that hamadarin dose-dependently inhibits activation of the plasma contact system and subsequent release of bradykinin, a primary mediator of inflammatory reactions. Reconstitution experiments showed that hamadarin inhibits activation of the plasma contact system by inhibition of the reciprocal activation of factor XII and kallikrein. Direct binding assays demonstrated that this inhibitory effect is due to hamadarin binding to both factor XII and high molecular weight kininogen and interference in their association with the activating surface. The assays also showed that hamadarin binding to these proteins depends on Zn(2+) ions, suggesting that hamadarin binds to these contact factors by recognizing their conformational change induced by Zn(2+) binding. We propose that hamadarin may attenuate the host's acute inflammatory responses to the mosquito's bites by inhibition of bradykinin release and thus enable mosquitoes to take a blood meal efficiently and safely.  相似文献   

3.
Bradykinin is a potent inflammatory mediator that induces vasodilation, vascular leakage, and pain sensations. This short-lived peptide hormone is liberated from its large precursor protein high molecular weight kininogen (HK) through the contact system cascade involving coagulation factor XII and plasma kallikrein. Although bradykinin release is well established in vitro, the factors and mechanisms controlling bradykinin generation in vivo are still incompletely understood. In this study we demonstrate that binding of HK to glycosaminoglycans (GAGs) of the heparan and chondroitin sulfate type efficiently interferes with bradykinin release in plasma and on endothelial surfaces. Proteolytic bradykinin production on endothelial cells is restored following degradation of cell surface GAG through heparinase. Alternatively, application of HK fragments D3 or light chain, which compete with uncleaved HK for cell binding, promote kininogen proteolysis and bradykinin release. Intravital microscopy revealed that HK fragments increase bradykinin-mediated mesentery microvascular leakage. Topical application of D3 or light chain enhanced bradykinin generation and edema formation in the mouse skin. Our results demonstrate that bradykinin formation is controlled by HK binding to and detachment from GAGs. Separation of the precursor from cell surfaces is a prerequisite for its efficient proteolytic processing. By this means, fragments arising from HK processing propagate bradykinin generation, revealing a novel regulatory level for the kallikrein-kinin system.  相似文献   

4.
Haemaphysalin is a kallikrein-kinin system inhibitor from hard tick Haemaphysalis longicornis, and consists of two Kunitz type protease inhibitor domains. Each domain as well as haemaphysalin inhibited intrinsic coagulation by inhibiting activation of the kallikrein-kinin system without affecting the amidolytic activities of intrinsic coagulation factors, indicating that both domains were involved in the inhibition through a similar mechanism to that for haemaphysalin. Reconstitution experiments showed that the C-terminal domain contributed more predominantly to this inhibition. Direct binding assaying showed that the C-terminal domain could bind to the cell-binding region of high molecular weight kininogen (HK), suggesting that it also binds to the cell-binding region of factor XII. Judging from these findings, the C-terminal domain may more effectively inhibit the association of factor XII and HK with the cell surface by binding to cell-binding regions, and hence would predominantly contribute to the inhibition of activation of the kallikrein-kinin system.  相似文献   

5.
Blood coagulation factor XII (FXII, Hageman factor) is a plasma serine protease which is autoactivated following contact with negatively charged surfaces in a reaction involving plasma kallikrein and high-molecular-weight kininogen (contact phase activation). Active FXII has the ability to initiate blood clotting via the intrinsic pathway of coagulation and inflammatory reactions via the kallikrein-kinin system. Here we have determined FXII-mediated bradykinin formation and clotting in plasma. Western blotting analysis with specific antibodies against various parts of the contact factors revealed that limited activation of FXII is sufficient to promote plasma kallikrein activation, resulting in the conversion of high-molecular-weight kininogen and bradykinin generation. The presence of platelets significantly promoted FXII-initiated bradykinin formation. Similarly, in vitro clotting assays revealed that platelets critically promoted FXII-driven thrombin and fibrin formation. In summary, our data suggest that FXII-initiated protease cascades may proceed on platelet surfaces, with implications for inflammation and clotting.  相似文献   

6.
The kallikrein-kinin system, along with the interlocking renin-angiotensin system, is a key regulator of vascular contractility and injury response. The principal effectors of the kallikrein-kinin system are plasma and tissue kallikreins, proteases that cleave high molecular weight kininogen to produce bradykinin. Most of the cellular actions of kallikrein (KK) are thought to be mediated by bradykinin, which acts via G protein-coupled B1 and B2 bradykinin receptors on VSMCs and endothelial cells. Here, we find that primary aortic vascular smooth muscle but not endothelial cells possess the ability to activate plasma prekallikrein. Surprisingly, exposing VSMCs to prekallikrein leads to activation of the ERK1/2 mitogen-activated protein kinase cascade via a mechanism that requires kallikrein activity but does not involve bradykinin receptors. In transfected HEK293 cells, we find that plasma kallikrein directly activates G protein-coupled protease-activated receptors (PARs) 1 and 2, which possess consensus kallikrein cleavage sites, but not PAR4. In vascular smooth muscles, KK stimulates ADAM (a disintegrin and metalloprotease) 17 activity via a PAR1/2 receptor-dependent mechanism, leading sequentially to release of the endogenous ADAM17 substrates, amphiregulin and tumor necrosis factor-α, metalloprotease-dependent transactivation of epidermal growth factor receptors, and metalloprotease and epidermal growth factor receptor-dependent ERK1/2 activation. These results suggest a novel mechanism of bradykinin-independent kallikrein action that may contribute to the regulation of vascular responses in pathophysiologic states, such as diabetes mellitus.  相似文献   

7.
Activation of the plasma kallikrein-kinin forming cascade takes place upon incubation with human umbilical vein endothelial cells. The mechanism by which initiation occurs is uncertain. Zinc-dependent binding of plasma proteins to gC1qR, cytokeratin 1, and perhaps u-PAR is requisite for activation to take place. We demonstrate here that during a 2 hour incubation time plasma deficient in either factor XII or high molecular weight kininogen (HK) fails to activate, as compared to normal plasma, but with more prolonged incubation, factor XII-deficient plasma gradually activates while HK-deficient plasma does not. Our data support both factor XII-dependent (rapid) and factor XII-independent (slow) mechanisms; the latter may require a cell-derived protease to activate prekallikrein and the presence of zinc ions and HK.  相似文献   

8.
Abstract Pleural inflammation underlies the formation of most exudative pleural effusions and the plasma kallikrein-kinin system (KKS) is known to contribute. Mesothelial cells are the predominant cell type in the pleural cavity, but their potential role in plasma KKS activation and BK production has not been studied. Bradykinin concentrations were higher in pleural fluids than the corresponding serum samples in patients with a variety of diseases. Bradykinin concentrations did not correlate with disease diagnosis, but were elevated in exudative effusions. It was demonstrated, using a range of primary and transformed mesothelial and mesothelioma cell lines, that cells assembled high molecular weight kininogen and plasma prekallikrein to liberate bradykinin, a process inhibited by novobiocin, a heat shock protein 90 (HSP90) inhibitor, cysteine, bradykinin and protamine sulphate. Of the common plasma prekallikrein activators, mesothelial cells expressed HSP90, but not prolylcarboxypeptidase or Factor XII. Calcium mobilisation was induced in some mesothelium-derived cell lines by bradykinin. Des-Arg(9)-bradykinin was inactive, indicating that mesothelial cells are responsive to bradykinin, mediated via the bradykinin receptor subtype 2. In summary, pleural mesothelial cells support the assembly and activation of the plasma KKS by a mechanism dependent on HSP90, and may contribute to KKS-mediated inflammation in pleural disease.  相似文献   

9.
Forty-five relatives of 4 families with hereditary angioneurotic edema (HANE) were studied. Twenty-five, including 11 asymptomatic kindreds with the disposition, showed typical changes in complement system compatible with HANE. Follow-up study of HANE patients showed that, even in remission period, complement, coagulation and fibrinolytic systems can be activated. During edema attacks, moderate haemoconcentration and neutrophilia were encountered and kallikrein-kinin system was found to be also activated. Replacement therapy with C 1-inhibitor preparation for an edema attack revealed that clinical improvement paralleled the increase in blood levels of high molecular weight kininogen. Thus, HANE attack is considered to be elicited in kindreds with the hereditary disposition by activation of plasma protease systems, particularly by that of kallikrein-kinin system. On the other hand, exogenous triggers that can initiate activation of the protease systems can be classified into 2, neuro-humoral (sympathetic nerve response) and physico-chemical, categories. Hence, the edema attack of kindreds with the hereditary disposition can at least be modified by the biosynthesis of plasma factors and the individual susceptibility to the liberated catecholamines. These two different reaction processes are considered to be linked by the release of plasminogen activator and/or Hageman factor activating enzyme.  相似文献   

10.
Human plasma kallikrein was isolated from a plasma fraction related to Cohn fraction IV4 by affinity- and Sephadex G-150 chromotography yielding a material with 17.3 TAME-U/A280 unit. The preparation was characterized by immunological and enzymatic methods. Complex formation with alpha2-macroglobulin, C1-inactivator and aprotinin was demonstrated by immunoelectrophoresis. The bradykinin release from high-molecular weight kininogen and its inhibition by antibodies to kallikrein, AT III and AT III-heparin complex were measured using a biological test system (rat uterus). Time dependent inactivation of kallikrein by AT III, and AT III-heparin complex was shown by means of a synthetic kallikrein substrate: Bz-Pro-Phe-Arg-pNan. The same substrate was used to measure the activation of prekallikrein in plasma by kaolin and F XII a. Antibodies raised against kallikrein were shown to inhibit the reaction specifically. A quantitative determination of plasma prekallikrein by electroimmunodiffusion according to Laurell was developed: the plasma concentration in normal individuals was found to be 1.8 - 2.2 TAME-U/ml related to kallikrein activity; this corresponds approximately to 9 - 11 mg antigen/100 ml plasma.  相似文献   

11.
Factor XI binds to high affinity sites on the surface of stimulated platelets where it is efficiently activated by thrombin. Here, we provide evidence that the factor XI binding site on platelets is in the glycoprotein (GP) Ibalpha subunit of the GP Ib-IX-V complex as follows. 1) Bernard-Soulier platelets, lacking the complex, are deficient in factor XI binding; 2) two GP Ibalpha ligands, SZ-2 (a monoclonal antibody) and bovine von Willebrand factor, inhibit factor XI binding to platelets; 3) by surface plasmon resonance, factor XI bound specifically to glycocalicin (the extracellular domain of GP Ibalpha) in Zn(2+)-dependent fashion (K(d)( app) approximately 52 nm). We then investigated whether glycocalicin could promote factor XI activation by thrombin, another GP Ibalpha ligand. In the presence of high molecular weight kininogen (45 nm), Zn(2+) and Ca(2+) ions, thrombin activated factor XI in the presence of glycocalicin at rates comparable with those seen in the presence of dextran sulfate (1 microg/ml). With higher high molecular weight kininogen concentrations (360 nm), the rate of thrombin-catalyzed factor XI activation in the presence of glycocalicin was comparable with that on activated platelets. Thus, factor XI binds to the GP Ib-IX-V complex, promoting its activation by thrombin.  相似文献   

12.
Our recent investigations have postulated a human umbilical vein endothelial cell (HUVEC)-associated prekallikrein activator (PKA). When prekallikrein (PK) assembles on high molecular weight kininogen on HUVEC, PK is activated to kallikrein. PKA was found in the 15,800 x g pellet of HUVEC lysates using an assay that measures PK activation only when bound to high molecular weight kininogen linked to microtiter plates. Sequential DEAE, wheat germ lectin affinity, and hydroxyapatite chromatography resulted in four protein bands on SDS-PAGE. One protein in the 73-kDa band was identified by amino acid sequencing as prolylcarboxypeptidase (PRCP). On gel filtration, PKA activity was a single homogenous peak identical in migration to the 73-kDa immunoblot of PRCP. Anti-PRCP inhibits PKA activity and PK activation on HUVEC. Purified PKA was blocked by diisopropyl fluorophosphate (1 mm), phenylmethylsulfonyl fluoride (3 mm), leupeptin (100 microm), antipain (IC(50) = 2 microm), HgCl(2) (IC(50) = 500 microm), Z-Pro-Pro-aldehyde-dimethyl acetate (IC(50) = 1 microm), and corn trypsin inhibitor (IC(50) = 40 nm). PKA did not correct the coagulant defect in factor XII deficient plasma, was purified from HUVEC cultured in factor XII-deficient serum, was not detected by antibody to factor XII, did not activate FXI, and was not inhibited by a neutralizing antibody to FXII. Angiotensin II (IC(50) = 2 microm) or bradykinin (IC(50) = 100 microm), but not angiotensin II-(1-7) or bradykinin(1-5), and the prolyl oligopeptidase inhibitor Fmoc-Ala-Pyr-CN (IC(50) = 50 nm) also blocked purified PKA activation of PK. The K(m) of PK activation by PRCP is 6.7 nm. PRCP antigen is present on the membrane of fixed but not permeabilized HUVEC. PRCP appears to be a HUVEC-associated PK activator.  相似文献   

13.
Factor XII (FXII) is a protease that is mainly produced in the liver and circulates in plasma as a single chain zymogen. Following contact with negatively charged surfaces, FXII is converted into the two-chain active form, FXIIa. FXIIa initiates the intrinsic blood coagulation pathway via activation of factor XI. Furthermore, it converts plasma prekallikrein to kallikrein (PK), which reciprocally activates FXII and liberates bradykinin from high molecular weight kininogen. In addition, FXIIa initiates fibrinolysis via PK-mediated urokinase activation and activates the classical complement pathway. Even though the main function of FXII seems to relate to the activation of the intrinsic coagulation pathway and the kallikrein-kinin system, a growing body of evidence suggests that FXII may also directly regulate cellular responses. In this regard, it has been found that FXII/FXIIa induces the expression of inflammatory mediators, promotes cell proliferation, and enhances the migration of neutrophils and lung fibroblasts. In addition, it has been reported that genetic ablation of FXII protects against neuroinflammation, reduces the formation of atherosclerotic lesions in Apoe−/− mice, improves wound healing, and inhibits postnatal angiogenesis. Although the aforementioned effects can be partially explained by the downstream products of FXII activation, the ability of FXII/FXIIa to directly regulate cellular responses has recently emerged as an alternative hypothesis. These direct cellular reactions to FXII/FXIIa will be discussed in the review.  相似文献   

14.
Cardiovascular disease is the number one cause of death in the United States. Vascular smooth muscle cells (VSMC) are an important constituent of the vessel wall that can bring about pathological changes leading to vascular disease. Depending on the environment, the function of VSMC can deviate profoundly from its normal contractile role. Despite advances in research, the underlying mechanisms that activate VSMC toward vascular disease are poorly understood. For the first time, we have observed that factor XII and high-molecular-weight kininogen, constituents of the blood plasma, can bind to VSMC in a Zn2+-dependent manner. In the presence of prekallikrein, this assembly of factor XII and high-molecular-weight kininogen on VSMC leads to the activation of prekallikrein to kallikrein with a rapid formation of bradykinin. The amount of bradykinin in the culture medium then decreases, presumably because of the presence of a kininase activity. p44/42 mitogen-activated protein kinase is rapidly phosphorylated in response to in situ-generated or in vitro-added bradykinin and is inhibited by bradykinin antagonist HOE-140. Binding of factor XII to VSMC also results in a concentration-dependent phosphorylation of p44/42 mitogen-activated protein kinase. This early mitogenic signal, which is also implicated in atherogenesis, may change the metabolic and proliferative activity of VSMC, which are key steps in the progression of atherosclerosis.  相似文献   

15.
Plasma kallikrein kinin system (KKS) activation along with its cellular receptors expression are increased after injury and in patients with septic shock, hypotensive bacteremia and rhesus monkey infected with Salmonella typhimurium. KKS signaling cascade is activated by activated factor XII (FXIIa, Hageman factor)- and prolylcarboxypeptidase (PRCP)-dependent pathways on endothelial cells. Among the many entities that comprise the KKS, high molecular weight kininogen (HK), a bradykinin precursor, is critical in the assembly and activation of this system. HK is primarily expressed in the liver and secreted into the bloodstream. The activation of the KKS influences the permeability of the endothelium by liberating bradykinin (BK) from HK. BK is a potent inflammatory peptide which stimulates constitutive bradykinin B2 and inducible B1 receptors to release nitric oxide and prostacyclin. Regardless of the triggers, PK can only be activated on HK bound to the artificial negatively charged or to cell membrane surfaces. Since LPS has a negatively charged moiety and the ability to induce inflammatory responses in human, we determined the interaction between LPS and HK. HKH19 (HK cell binding site) and heparin inhibited LPS binding to HK with IC50s of 15 nM and 20 μg/ml, respectively. C1-inhibitor and N-acetylglucosamine glycan inhibited LPS binding to HK with IC50s of about 10 μg/ml and 10 mM, respectively. This novel study underscores the implication of HK in infection. We propose that HKH19, heparin, and C1-inhibitor present therapeutic potential for the treatment of sepsis and hypotensive bacteremia.  相似文献   

16.
We studied the characteristics of two monoclonal antibodies (mAbs), F1 and F3, against human coagulation factor XII (Hageman factor). Experiments with trypsin-digested 125I-factor XII revealed that the epitope for mAb F1 is located in the NH2-terminal Mr 40,100 portion of factor XII, whereas that for mAb F3 resides in the COOH-terminal Mr 30,000 portion of this protein. Factor XII in fresh plasma (single-chain factor XII) bound approximately 190 times less to mAb F1 than factor XII in dextran sulfate-activated plasma (cleaved factor XII). However, no difference in accessibility of the epitope for mAb F1 was observed between cleaved and single-chain factor XII when bound to glass. mAb F3 appeared to bind to both single-chain and cleaved factor XII in plasma as well as when bound to glass. Neither mAb F1, nor F3 affected the amidolytic activity of factor XIIa, whereas both mAb F1 and F3 inhibited factor XII-coagulant activity to about 15 and 70%, respectively, at a molar ratio of mAb to factor XII of 20 to 1. mAb F1, as well as F(ab')2 and F(ab') fragments of this antibody induced activation of the contact system in plasma, as reflected by the generation of factor XIIa. C1 inhibitor and kallikrein. C1 inhibitor complexes. Activation was induced neither upon incubation with mAb F3, nor with that of control mAbs. mAb F1-induced contact activation required the presence of factor XII, prekallikrein, and high molecular weight kininogen and, in contrast to activation by negatively charged surfaces, was not inhibited by the presence of Polybrene. Based on these results we propose that a conformational change in factor XII is a key event in the activation process of this molecule. This conformational change can be induced by binding of factor XII to a surface as well as by proteolytic cleavage. As mAb F1 can also induce this conformational change, this antibody may provide a unique tool in studies of the activation of factor XII.  相似文献   

17.
The kininogens, high molecular weight kininogen (HK) and low molecular weight kininogen (LK), are multifunctional, single-gene products that contain bradykinin and identical amino-terminal heavy chains. Studies were performed to determine if LK would bind directly to platelets. 125I-LK specifically bound to gel-filtered platelets in the presence of 50 microM Zn2+. HK effectively competed with 125I-LK for the same binding site (Ki = 27 +/- 9 nM, n = 5). Similarly, the Ki for LK inhibition of 125I-LK binding was 12 +/- 1 nM (n = 3). Albumin, fibrinogen, factor XIII, and kallikrein did not inhibit 125I-LK binding to unstimulated platelets. 125I-LK (66 kDa) was not cleaved upon binding to platelets. The binding of 125I-LK to unstimulated platelets was found to be fully reversible by the addition of a 50 molar excess of unlabeled LK at both 10 and 20 min. LK binding to platelets was saturable with an apparent Kd of 27 +/- 2 nM (mean +/- S.E., n = 9) and 647 +/- 147 binding sites/platelet. Both LK and HK at plasma concentrations inhibited thrombin-induced platelet aggregation. LK and HK at about 5% of plasma concentration also inhibited thrombin-induced secretion of both stirred and unstirred platelets. Both kininogens were found to be noncompetitive inhibitors of proteolytically active thrombin binding to platelets. The kininogens did not inhibit D-phenylalanyl-prolyl-arginine chloromethyl ketone-treated thrombin from binding to platelets. These studies indicated that both kininogens have a region on their heavy chain which allows them to bind to platelets. Further, kininogen binding by its heavy chain modulates thrombin activation of platelets since it prevents proteolytically active thrombin from binding to its receptor.  相似文献   

18.
FXII     
The plasma protein FXII (Hageman factor) has been shown to be linked with the plasma defence systems of coagulation, fibrinolysis, kallikrein-kinin and complement. It can be activated by surface contact activation and in solution. Surface contact activation is a complex phenomenon involving negatively charged surfaces, FXII, high molecular weight kininogen and plasma kallikrein. Fluid-phase activation can be effected by a variety of serine proteases. In both types of activation the FXII zymogen is converted to active enzymes. FXII levels in plasma are low or undetectable in both inherited deficiencies and in a variety of clinical conditions. FXII levels can also be elevated in some clinical conditions. Although discovered as a clotting protein FXII appears to play an important role in the kallikrein-kinin and fibrinolytic systems and also has effects on cells. Recent studies suggest that therapeutic blockade of activation of FXII can be of benefit in certain clinical conditions.  相似文献   

19.
The aim of the present study was to investigate whether pharmacological enhancement of the renal kallikrein-kinin system using the vasopeptidase inhibitor omapatrilat plays a direct role in modulating the fibrotic responses of human mesangial cells to injury. Treatment with 40 micromol/L omapatrilat was able to reduce macrophage-conditioned medium (MPCM)-induced fibronectin levels without affecting mRNA expression. MPCM injury also suppressed kallikrein and low molecular weight kininogen mRNA. Omapatrilat was able to attenuate this suppression. Bradykinin levels in contrast were increased by MPCM and treatment with omapatrilat further augmented levels. Co-incubation with the bradykinin B2 receptor antagonist HOE 140 attenuated the omapatrilat-induced lowering of fibronectin. Moreover, inhibition of cGMP release had a similar effect. Paradoxically, RT-PCR and Southern blotting demonstrated that bradykinin B2 receptor mRNA levels were down regulated in response to omapatrilat. Western blotting supported this data. Supernatant levels of tissue plasminogen activator (tPA), a product of bradykinin stimulation, were decreased by omapatrilat while cell associated tPA levels were increased. Matrix metalloproteinase-9 (MMP-9) mRNA expression was up regulated by omapatrilat treatment, although no difference in active zymogen levels was observed. In conclusion enhancement of kallikrein-kinin system appears to play a direct role in promoting anti-fibrotic responses in MPCM-injured human mesangial cells.  相似文献   

20.
The activation of Factor XII and prekallikrein by polysaccharide sulfates and sulfatides in the presence of high-molecular-weight (HMW) kininogen was studied, and compared with the kaolin-mediated activation reaction. Among a variety of artificially-sulfated polysaccharides and native polysaccharide sulfates, amylose sulfate (M.W.= 380,000 and sulfur content, 19.1%) and sulfatide were found to have the most efficient ability to trigger the activation of prekallikrein by Factor XII. The effects of these two kinds of negatively-charged surfaces on the following three activation reactions were compared; the activation of prekallikrein by Factor XII (reaction 1), the activation of Factor XII by kallikrein (reaction 2) and the activation of prekallikrein by Factor XIIa (reaction 3). All three reactions mediated by the selected surfaces were strongly accelerated by HMW kininogen and its derivatives, kinin-free protein and fragment 1.2-linked light chain, like the kaolin-mediated activation. However, this accelerating effect of HMW kininogen on the amylose sulfate- and sulfatide-mediated activations (reaction 1) was diminished after treatment with fluorescein iso-thiocyanate, whereas the effect on the kaolin-mediated activation was not influenced by fluorescein-labeling. In addition, reaction 2 mediated by amylose sulfate and sulfatide was extremely slow even in the presence of HMW kininogen, and the results also differed from those with kaolin. The sulfatide-mediated activation of reaction 1 was not inhibited by fragment 1.2 (His-rich fragment), which is released from HMW kininogen by the action of kallikrein, and is known to be a potent inhibitor of the kaolin-dependent activation. These results indicate that the mechanisms responsible for surface activation triggered by soluble amylose sulfate, sulfatide micelles and kaolin differ from each other as regards the molecular interaction with the contact factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号