首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sulfate reduction rates were measured in waters and sediments from four antarctic lakes and an antarctic fjord basin by a radiometric technique. There was generally a linear correlation between the period of incubation and sulfate reduced; the average of the correlation coefficients was 0.76 ± 0.1. The rates at 6 °C were very low (0.0–1.1 µmol kg–1 d–1) when compared to most other marine and non-marine environments for which sulfate reduction rates have been reported. Lactate and acetate did not stimulate sulfate reduction. Temperatures of the sediments selected from the different sites varied from –0.4 to 4.5 °C and the chloride and sulfate concentrations of the sediments varied from 0.19 to 0.83 mol kg–1 and 0.04 to 41.01 mmol kg–1 respectively. Sulfate reduction rates did not correlate with the chlorosity of sediment porewaters.  相似文献   

2.
Microbial sulfate reduction in a brackish meromictic steppe lake   总被引:1,自引:0,他引:1  
Patterns of sulfate reduction were studied in water and sediments of Lake Shira, South Siberia, Russia. The lake was characterized by a high level of sulfate (91-116 mM). The concentration of hydrogen sulfide in the anoxic waters of the lake reached 0.6 mM. In summer the sulfate reduction rate in the water column, measured by radiometric technique, varied from 0.25 to 9.81 mol sulfate l-1 d-1. There were two peaks of sulfate reduction activity: just below the chemocline and near the sediment surface. Sulfate reduction rate in the profundal silts ranged from 4.1 to 90.6 mol l-1 d-1. The zone of the most active sulfate reduction was restricted to the surface sediment layers. The acceleration of sulfate reduction rate (up to 236 mol l-1 d-1) and the increase of density of viable sulfate reducers (up to 2 x 105 cells ml-1) were recorded in the littoral sediments adjacent to the mouth of the Son River and sewage discharge. It was apparently caused by the input of allochthonous organic substrates and also by a high environmental temperature. On an areal basis, sulfate reduction rate in the water was approximately 8 times higher than that in the profundal sediments. Sulfate reduction was the most important process of anaerobic oxidation of organic carbon in Lake Shira. In summer in the profundal zone of the lake, sulfate reducers were able to mineralize about 67% of the daily integrated primary production of phototrophic and chemotrophic organisms.  相似文献   

3.
We examined the influence of temperature and sulfate reduction rates onP-release from aerobic-surfaced, littoral sediments in a coolingreservoir. Annually, significant differences in P release from sediments at twosites (thermal effluent and non-effluent) were related to differenttemperature regimes, with higher rates of P release and decomposition at highertemperatures. Site-specific differences in solute fluxes were mostpronounced in late summer, when water temperatures reached40°Cat the effluent site and solute fluxes increased dramatically. The thermaleffluent site retained 65% of its annual P load, while thenon-effluent site retained 92%. Relative P release(P-release normalized to inorganic carbon fluxes; RPR) data indicatedthat lake sediments retained P selectively (relative to C) throughout the year,except at the effluent site during late summer when stored P was released inexcess of supply rates.Sulfate reduction rates were often typical of those measured in otherfreshwater lakes, but unusually high rates were measured at thethermal-effluent site especially in early fall and suggested higher DICfluxes than we measured. These high rates suggest that sulfate reduction rateswere overestimated and/or that most sulfide was recycled within the sediments.In any case, the highest sulfate reduction rates did not coincide with thehighest P release rates. Furthermore, the total reduced inorganic sulfurcontentof surficial sediments did not significantly correlate to RPR, althoughconcentrations varied widely throughout the year. Temperature was the onlyvariable examined that significantly correlated to RPR (R2 =0.53, P-value = 0.017). Coupling between temperature and sedimentP release was likely mediated through temperature effects on bioturbation andmicrobial metabolic rates.  相似文献   

4.
The possibilities for the treatment of low‐temperature mine waste waters have not been widely studied. The amenability of low‐temperature sulfate reduction for mine waste water treatment at 9°C was studied in a bench‐scale fluidized‐bed bioreactor (FBR). Formate was used as the electron and carbon source. The first influent for the FBR was acidic, synthetic waste water containing iron, nutrients, and sulfate, followed by diluted barren bioleaching solution (DBBS). The average sulfate reduction rates were 8 mmol L?1 day?1 and 6 mmol L?1 day?1 with synthetic waste water and DBBS, respectively. The corresponding specific activities were 2.4 and 1.6 mmol SO g VSS?1 day?1, respectively. The composition of the microbial community and the active species of the FBR was analyzed by extracting the DNA and RNA, followed by PCR‐DGGE with the universal bacterial 16S rRNA gene primers and dsrB‐primers specific for sulfate‐reducing bacteria. The FBR microbial community was simple and stable and the dominant and active species belonged to the genus Desulfomicrobium. In summary, long‐term operation of a low‐temperature bioreactor resulted in enrichment of formate‐utilizing, psychrotolerant mesophilic sulfate reducing bacteria. Biotechnol. Bioeng. 2009; 104: 740–751 © 2009 Wiley Periodicals, Inc.  相似文献   

5.
Sulfate reduction and pore water solutes related to sulfur cycling and anaerobic processes (short chain fatty acids (SCFA), SO4 2–, TCO2, NH4 +, dissolved sulfides (H2S) and CH4) were examined during one year at a marine fish farm. Mineralization of fish farm waste products was rapid in this non-bioturbated, organic rich sediment. Stimulation of sulfate reduction rates (SRR) occurred primarily in the surface layers where the organic matter was deposited. Acetate was the most important (<99%) of the measured SCFA attaining high concentrations during summer months (up to 4.7 mM). The acetate profiles exhibited distinct seasonal cycles, where periods with high concentrations in the pore waters were found coincident with a high pool of particulate organic matter in the surface sediments and a low activity of the sulfate reducing bacteria (early spring and late summer). Periods with low acetate pools occurred when sulfate reduction rates were high in early summer and in winter were pools of particulate organic matter were decreasing. Methane production was observed concurrent with sulfate reduction in the microbial active surface layers in late summer. Subsurface peaks of SO4 2–, TCO2, NH4 + and H2S were evident in July and August due to rapid mineralization in these surface layers. With decreasing autumn water temperatures mineralization rates declined and subsurface peaks of these solutes disappeared. A strong relationship was found between pore water TCO2, and NH4 +. Ratios between TCO2, and NH4 + were low compared to a control site, attaining minimum values in mid-summer. This indicated rapid nitrogen mineralization of nitrogen rich labile substrates in the fish farm sediment during the entire season.  相似文献   

6.
To clarify the anaerobic microbial interactions in the process of carbon mineralization in marine eutrophic environments, the microbial sulfate reduction and methane production rates were examined in coastal marine sediments of Ise Bay, Japan, in autumn 1990. Sulfate reduction rates (51–210 nmol ml−1 day−1 at 24°C) were much higher than the methane production ones (<1.78 nmol ml−1 day−1) in the surface sediments (top 2 cm) at the six stations surveyed (water depth: 10.7–23.3 m). Substrates for sulfate-reducing bacteria (SRB) were estimated after the addition of a specific inhibitor for SRB (20 mmol l−1 molybdate) into the sediment slurry, from the substrate accumulation rates. In the presence of the inhibitor, sulfate reduction was completely stopped and volatile fatty acids (mainly acetate) were accumulated, although hydrogen was not. Methane production occurred markedly accompanied by consumption of the accumulated acetate from the third day after the addition of molybdate. The maximum rate of methane production was 1.2–1.9 μmol ml−1 day−1, which was similar to those in highly polluted freshwater sediments such as the Tama River, Tokyo, Japan. These results show that acetate is a common major substrate for sulfate reduction and methane production, and SRB competitively inhibit potential acetoclastic methanogenesis in coastal sediments. Methanogens may potentially inhabit the sediments at low levels of population density and activity.  相似文献   

7.
Sulfate reduction and sulfide accumulation were examined in fine-grained sediments from rapidly accreting abandoned channels and mussel culture areas in the Eastern Scheldt, which covered 4 and 5% of the total surface area, respectively.Reduction rates were measured in batch experiments in which the SO4 2– depletion was measured during anoxic incubation. The reduction rates in summer varied between 14–68 mmol SO4 2– m–2 day–1 and were related to the sedimentation rate. In the most rapidly accreting channels, SO4 2– was exhausted below 15–50 cm and methanogenesis became the terminal process of organic carbon oxidationOne-dimensional modelling of sulfate profiles in mussel banks indicated that the subsurface influx of SO4 2– was almost of the same order as the diffusive flux at the sediment-seawater interface, during the initial stages of the mussel bank accretion. The energy dissipation of waves and tidal currents on the mussel bank surface increased the apparent sediment diffusivity up to 3-fold, especially in the winterThe results indicate that acid volatile sulfide (AVS) was the major, in-situ reduced, sulfur compound in the sediment. The sulfidation of easily extractable iron was nearly complete. Pyrite concentrations (40–80 M S cm–3) were as high as the AVS concentrations, but there was apparently no in-situ transformation of AVS into pyrite. The detrital pyrite originated from eroding marine sediments elsewhere  相似文献   

8.
Sulfate reduction and sediment metabolism in Tomales Bay,California   总被引:3,自引:1,他引:2  
Sulfate reduction rates (SRR) in subtidal sediments of Tomales Bay, California, were variable by sediment type, season and depth. Higher rates were measured in near-surface muds during summer (up to 45 nmol cm-3 h-1), with lower rates in sandy sediments, in winter and deeper in the sediment. Calculations of annual, average SRR throughout the upper 20 cm of muddy subtidal sediments (about 30 mmol S m-2 d-1) were much larger than previously reported net estimates of SRR derived from both benthic alkalinity flux measurements and bay wide, budget stoichiometry (3.5 and 2.6 mmol m-2 d-1, respectively), indicating that most reduced sulfur in these upper, well-mixed sediments is re-oxidized. A portion of the net alkalinity flux across the sediment surface may be derived from sulfate reduction in deeper sediments, estimated from sulfate depletion profiles at 1.5 mmol m-2 d-1. A small net flux of CO2 measured in benthic chambers despite a large SRR suggests that sediment sinks for CO2 must also exist (e.g., benthic microalgae).  相似文献   

9.
A vast number of lakes developed in the abandoned opencast lignite mines of Lusatia (East Germany) contain acidic waters (mmolSm–2a). Potential Fe(III) reduction measured by the accumulation of Fe(II) during anoxic incubation yielded similar rates in both types of sediments, however, the responses towards the supplementation of Fe(III) and organic carbon were different. Sulfate reduction rates estimated with 35S-radiotracer were much lower in the slightly acidic sediment than in the pH-neutral sediment (156 v.s. 738mmolSO4 2–m–2a–1). However, sulfate reduction rates were increased by the addition of organic carbon. Severe limitation of sulfate-reducing bacteria under acidic conditions was also reflected by low most probable numbers (MPN). High MPN of acidophilic iron- and sulfur-oxidizing bacteria in acidic sediments indicated a high reoxidation potential. The results show that potentials for reductive processes are present in acidic sediments and that these are determined mainly by the availability of oxidants and organic matter.  相似文献   

10.
Sulfur is an important element in the metabolism of salt marshes and subtidal, coastal marine sediments because of its role as an electron acceptor, carrier, and donor. Sulfate is the major electron acceptor for respiration in anoxic marine sediments. Anoxic respiration becomes increasingly important in sediments as total respiration increases, and so sulfate reduction accounts for a higher percentage of total sediment respiration in sediments where total respiration is greater. Thus, sulfate accounts for 25% of total sediment respiration in nearshore sediments (200 m water depth or less) where total respiration rates are 0.1 to 0.3gCm–1 day–1 , for 50% to 70% in nearshore sediments with higher rates of total respiration (0.3 to 3gCm–2 day–1), and for 70% to 90% in salt marsh sediments where total sediment respiration rates are 2.5 to 5.5gcm–2 day–1 .During sulfate reduction, large amounts of energy from the respired organic matter are conserved in inorganic reduced sulfur compounds such as soluble sulfides, thiosulfate, elemental sulfur, iron monosulfides, and pyrite. Only a small percentage of the reduced sulfur formed during sulfate reduction is accreted in marine sediments and salt marshes. When these reduced sulfur compounds are oxidized, energy is released. Chemolithoautotrophic bacteria which catalyze these oxidations can use the energy of oxidation with efficiencies (the ratio of energy fixed in organic biomass to energy released in sulfur oxidation) of up to 21–37% to fix CO2 and produce new organic biomass.Chemolithoautotrophic bacterial production may represent a significant new formation of organic matter in some marine sediments. In some sediments, chemolithoautotrophic bacterial production may even equal or exceed organoheterotrophic bacterial production. The combined cycle of anaerobic decomposition through sulfate reduction, energy conservation as reduced sulfur compounds; and chemolithoautotrophic production of new organic carbon serves to take relatively low-quality organic matter from throughout the sediments and concentrate the energy as living biomass in a discrete zone near the sediment surface where it can be readily grazed by animals.Contribution from a symposium on the role of sulfur in ecosystem processes held August 10, 1983, at the annual meeting of the A.I.B.S., Grand Forks, ND; Myron Mitchell, convenor.  相似文献   

11.
Indirect photometric chromatography and microdistillation enabled a simultaneous measurement of sulfate depletion and sulfide production in the top 3 cm of freshwater sediments to be made. The simultaneous measurement of sulfate depletion and sulfide production rates provided added insight into microbial sulfur metabolism. The lower sulfate reduction rates, as derived from the production of acid-volatile 35S2− only, were explained by a conversion of this pool to an undistillable fraction under acidic conditions during incubation. A mathematical model was applied to calculate sulfate reduction from sulfate gradients at the sediment-water interface. To avoid disturbance of these gradients, the sample volume was reduced to 0.2 g (wet weight) of sediment. Sulfate diffusion coefficients in the model were determined (Ds = 0.3 × 10−5 cm2 s−1 at 6°C). The results of the model were compared with those of radioactive sulfate turnover experiments by assessing the actual turnover rate constants (2 to 5 day−1) and pool sizes of sulfate at different sediment depths.  相似文献   

12.
The research performed in August 2004 within the framework of the Russian-American Long-term Census of the Arctic (RUSALCA) resulted in the first data concerning the rates of the key microbial processes in the water column and bottom sediments of the Bering strait and the Chukchi Sea. The total bacterial counts in the water column varied from 30 × 103 cells ml?1 in the northern and eastern parts to 245 × 103 cells ml?1 in the southern part. The methane content in the water column of the Chukchi sea varied from 8 nmol CH4l?1 in the eastern part of the sea to 31 nmol CH4l?1 in the northern part of the Herald Canyon. Microbial activity occurred in the upper 0–3 cm of the bottom sediments; the methane formation rate varied from 0.25 to 16 nmol CH4dm?3 day?1. The rates of methane oxidation varied from 1.61 to 14.7 nmol CH4dm?3 day?1. The rates of sulfate reduction varied from 1.35 to 16.2 μmol SO 4 2? dm?1 day?1. The rate of methane formation in the sediments increased with depth, while sulfate reduction rates decreased (less than 1 μmol SO 4 2? dm?3 day?1). These high concentrations of biogenic elements and high rates of microbial processes in the upper sediment layers suggest a specific type of trophic chain in the Chukchi Sea. The approximate calculated balance of methane emission from the water column into the atmosphere is from 5.4 to 57.3 μmol CH4m?2 day?1.  相似文献   

13.
This study was undertaken to determine the rates and controls ofanaerobic respiration reactions coupled to organic matter mineralization as afunction of space and time along a transect from a bioturbated creekbank to themidmarsh in Georgia saltmarsh sediments. Sulfate reduction rates (SRR) weremeasured at 3 sites during 5 sampling periods throughout the growth season. Thesites differed according to hydrologic regime and the abundance of dominantplants and macrofauna. SRR and pore water / solid phase geochemistry showedevidence of enhanced sediment oxidation at sites exposed to intensebioturbation. Iron(III) reduction rates (FeRR) were directly determined insaltmarsh sediments for the first time, and in agreement with measured SRR,higher rates were observed at the bioturbated, unvegetated creekbank (BUC) andbioturbated, vegetated levee (BVL) sites in comparison to a vegetated mid-marsh(MM) site. An unexpected result was the fact that SRR varied nearly as muchbetween sites (2–3 x) as it did with temperature or season (3–4 x).The BVL site, vegetated by the tall form of Spartinaalterniflora, always exhibited the highest SRR and carbon oxidationrates (> 4000 nmol cm–3 d–1) with high activity levels extending deep ( 50 cm)into the sediment, while the MM site, dominated by the short form ofSpartina, always exhibited the lowest SRR which werelocalized to the top 15 cm of sediment. SRR and FeRR at BUC wereintermediate between those measured at the BVL and MM. Acetate was the mostabundant microbial fermentation product (concentrations up to > 1mM) in marsh porewaters, and its distribution reflectedrespirationactivity. Chemical exchange, caused by bioturbation, appeared to be the primarycontrol explaining trends in rates of sulfate and Fe(III) reduction withmacrophytes and carbon source acting as secondary controls.  相似文献   

14.
Total S concentration in the top 35 cm of Big Run Bog peat averaged 9.7 mol·g — wet mass–1 (123 mol·g dry mass–1). Of that total, an average of 80.8% was carbon bonded S, 10.4% was ester sulfate S, 4.5% was FeS2­S, 2.7% was FeS­S, 1.2% was elemental S, and 0.4% was SO4 2–­S. In peat collected in March 1986, injected with35S­SO4 2– and incubated at 4 °C, mean rates of dissimilatory sulfate reduction (formation of H2S + S0 + FeS + FeS2), carbon bonded S formation, and ester sulfate S formation averaged 3.22, 0.53, and 0.36 nmol·g wet mass–1·h–1, respectively. Measured rates of sulfide oxidation were comparable to rates of sulfate reduction. Although dissolved SO4 2– concentrations in Big Run Bog interstitial water (< 200 µM) are low enough to theoretically limit sulfate reducing bacteria, rates of sulfate reduction integrated throughout the top 30–35 cm of peat of 9 and 34 mmol·m–2·d–1 (at 4 °C are greater than or comparable to rates in coastal marine sediments. We suggest that sulfate reduction was supported by a rapid turnover of the dissolved SO4 2– pool (average turnover time of 1.1 days). Although over 90% of the total S in Big Run Bog peat was organic S, cycling of S was dominated by fluxes through the inorganic S pools.  相似文献   

15.
Lake Kinneret, Israel, is a warm (13–30°C) monomictic lake that stratifies in April and turns over in December. Between January and June each year, a heavy bloom (up to 250 g wet weight n–2 2) of the dinoflagellate Peridinium gatunense dominates the phytoplankton biomass. In early summer, the bloom collapses, and the sinking Peridinium biomass serves as a trigger for intense sulfate-reduction activity throughout the hypolimnion and within the sediments. The availability of organic matter and sulfate was high shortly after the bloom crash and the beginning of stratification and was lowest in December before overturn. Sulfate-reduction rates at three different sites in the lake were studied. In the sediments, the rates varied seasonally and among stations from 5 to 1600 nmol SO4 –2 reduced cm–3 day–1, with respect to the distance from the Jordan River, depth, organic content, and stratification period. During years of low lake water levels, intense sulfate reduction occurred in the hypolimnion, resulting in anoxia and high concentrations of H2S (>400 m). In years with high water levels, early bloom, and delayed stratification, higher rates of sulfate reduction were recorded in the sediments, probably as a result of a greater fraction of the primary production (organic matter) reaching the bottom. Correspondence to: O. Hadas.  相似文献   

16.
We investigated the effects of sulfate concentration on sulfate reduction and net S storage in lake sediments using34S as a tracer. The water overlying intact sediment cores from the hypolimnion of Mares Pond, MA, was replaced with two Na2 34SO4 solutions at either ambient (70 M) or elevated (260 M) sulfate concentrations. The 34S of the added sulfate was 4974 . Over two months, the net sulfate reduction rate in the ambient sulfate treatment was zero, while the net rate for the high sulfate treatment was 140 moles/m2/d. The water overlying the cores was kept under oxic conditions and the sediment received no fresh carbon inputs, thus the net rate reported may underestimate the in situ rate. Gross sulfate reduction rates calculated by isotope dilution were approximately 350 moles/m2/d for both treatments. While the calculation of gross sulfate reduction rates in intact sediment cores can be complicated by differential diffusion of34S and32S, isotopic fractionation, and the possible formation of ester sulfates, we believe these effects to be small. The results suggest that sulfate reduction is not strongly sulfate-limited in Mares Pond. The difference in net sulfate reduction rates between treatments resulted from a decrease in sulfide oxidation and suggests the importance of reoxidation in controlling net S storage in lake sediments. In both treatments the CRS and organic S fractions were measurably labelled in34S. Below the sediment surface, the CRS fraction was the more heavily labelled storage product for reduced sulfides.  相似文献   

17.
Thermophilic sulfate and sulfite reduction was studied in lab-scale Expanded Granular Sludge Bed (EGSB) reactors operated at 65°C and pH 7.5 with methanol as the sole carbon and energy source for the sulfate- and sulfite-reducing bacteria. At a hydraulic retention time (HRT) of 10 h, maximum sulfite and sulfate elimination rates of 5.5 gSO3 2- L-1 day-1 (100 % elimination) and 5.7 gSO4 2- -1 day-1 (55% elimination) were achieved, resulting in an effluent sulfide concentration of approximately 1800 mgS L-1. Sulfate elimination was limited by the sulfide concentration, as stripping of H2S from the reactor with nitrogen gas was found to increase the sulfate elimination rate to 9.9 gSO4 2- L-1 day-1 (100 % elimination). At a HRT of 3 h, maximum achievable sulfite and sulfate elimination rates were even 18 gSO3 2- L-1 day-1 (100% elimination) and 11 gSO4 2- L-1 day-1(50% elimination). At a HRT of 3 h, the elimination rate was limited by the biomass retention of the system. 5.5 ± 1.8% of the consumed methanol was converted to acetate, which was not further degraded by sulfate reducing bacteria present in the sludge. The acetotrophic activity of the sludge could not be stimulated by cultivating the sludge for 30 days under methanol-limiting conditions. Omitting cobalt as trace element from the influent resulted in a lower acetate production rate, but it also led to a lower sulfate reduction rate. Sulfate degradation in the reactor could be described by zeroth order kinetics down to a threshold concentration of 0.05 g L-1, while methanol degradation followed Michaelis-Menten kinetics with a Km of 0.037 gCOD L-1.  相似文献   

18.
Sulfate reduction by a syntrophic propionate-oxidizing bacterium   总被引:3,自引:0,他引:3  
The syntrophic propionate-oxidizing bacterium MPOB was able to grow in the absence of methanogens by coupling the oxidation of propionate to the reduction of sulfate. Growth on propionate plus sulfate was very slow (=0.024 day–1). An average growth yield was found of 1.5 g (dry weight) per mol of propionate. MPOB grew even slower than other sulfate-reducing syntrophic propionate-oxidizing bacteria. The growth rates and yields of strict sulfate-reducing bacteria (Desulfobulbus sp.) grown on propionate plus sulfate are considerably higher.  相似文献   

19.
Inorganic sulfur turnover was examined in oligohaline (salinity < 2 g kg-1) Chesapeake Bay sediments during the summer. Cores incubated for < 3 hr exhibited higher sulfate reduction (SR) rates (13–58 mmol m-2 d-1) than those incubated for 3–8 hr (3–8 mmol m-2 d-1). SR rates (determined with35SO 4 2- ) increased with depth over the top few cm to a maximum at 5 cm, just beneath the boundary between brown and black sediment. SR rates decreased below 5 cm, probably due to sulfate limitation (sulfate < 25 μM). Kinetic experiments yielded an apparent half-saturating sulfate concentration (Ks) of 34 μM, ≈ 20-fold lower than that determined for sediments from the mesohaline region of the estuary. Sulfate loss from water overlying intact cores, predicted on the basis of measured SR rates, was not observed over a 28-hr incubation period. Reduction of35SO 4 2- during diffusion experiments with intact core segments from 0–4 and 5–9 cm horizons was less than predicted by non-steady state diagenetic models based on35SO 4 2- reduction in whole core injection experiments. The results indicate that net sulfate flux into sediments was an order of magnitude lower than the gross sulfur turnover rate. Solid phase reduced inorganic sulfur concentrations were only 2–3 times less than those in sediments from the mesohaline region of the Bay, despite the fact that oligohaline bottom water sulfate concentrations were 10-fold lower. Our results demonstrate the potential for rapid SR in low salinity estuarine sediments, which are inhabited by sulfate-reducing bacteria with a high affinity for sulfate, and in which sulfide oxidation processes replenish the pore water sulfate pool on a time scale of hours.  相似文献   

20.
Methane production and sulfate reduction in two Appalachian peatlands   总被引:9,自引:7,他引:2  
Anaerobic carbon mineralization was evaluated over a 1-year period in two Sphagnum-dominated peatlands, Big Run Bog, West Virginia, and Buckle's Bog, Maryland. In the top 35 cm of peat, mean rates of methane production, anaerobic carbon dioxide production, and sulfate reduction at Big Run Bog were 63,406 and 146 mol L-1 d-1, respectively, and at Buckle's Bog were 18, 486 and 104 mol L-1 d-1. Annual anaerobic carbon mineralization to methane and carbon dioxide at Big Run Bog and Buckle's Bog was 52.8 and 57.2 mol m-2, respectively. Rates of methane production were similar to rates reported for other freshwater peatlands, but methane production accounted for only 11.7 and 2.8%, respectively, of the total anaerobic carbon mineralization at these two sites. Carbon dioxide production, resulting substantially from sulfate reduction, dominated anaerobic carbon mineralization. Considerable sulfate reduction despite low instantaneous dissolved sulfate concentrations (typically < 300 mol L-1 of substrate) was apparently fueled by oxidation and rapid turnover of the reduced inorganic sulfur pool.The coincidence of high sulfate inputs to the Big Run Bog and Buckle's Bog watersheds through acid precipitation with the unexpected importance of sulfate reduction leads us to suggest a new hypothesis: peatlands not receiving high sulfate loading should exhibit low rates of anaerobic decomposition, and a predominance of methane production over sulfate reduction; however, if such peatlands become subjected to high rates of sulfur deposition, sulfate reduction may be enhanced as an anaerobic mineralization pathway with attendant effects on carbon balance and peat accumulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号