首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Zhou G  Li J  Chen Y  Zhao B  Cao Y  Duan X  Cao Y 《Bioresource technology》2009,100(1):505-508
The aim of the present study was to determine whether the radical reaction intermediates--reactive oxygen species (ROS) were formed during the laccase-catalyzed oxidation of wood fibers from Chinese fir (Cunninghamia lanceolata) and to quantify tentatively its production with electron spin resonance (ESR) spectrometry. To investigate the activation pathways triggered by laccase, ESR spin-trapping techniques using N-tert-butyl-alpha-phenylnitrone (PBN) as spin trap followed by ethyl acetate extraction were employed to identify and quantify the free radical intermediates. ROS such as the superoxide and hydroxyl radical was detected and quantified in the laccase catalyzed oxidation of wood fibers, suggesting that ROS is the main free radical intermediates for laccase reaction. Based on the findings of the presence of ROS and previous literature on the free radical reaction of laccase oxidation of wood fibers, a possible reaction mechanism involving ROS-mediated attack on the domains of lignin which is not directly accessible for the enzyme and solubilized low-molecular mass lignins which function as reactive compounds like adhesives and may cling back to the fiber surface, could accordingly describe laccase-catalyzed oxidation of Chinese fir wood fibers.  相似文献   

2.
Abstract: The mechanism of oxidation of veratryl alcohol and β-0–4 dimeric lignin models is reviewed. Veratryl alcohol radicals are intermediates in both oxidation pathways. The possible role of the veratryl alcohol radical cation as a mediator is discussed. The lignin peroxidase (LIP) redox cycle is analyzed in terms of the Marcus theory of electron transfer. Reduction of both LiP-Compound I (LiP-I) and LiP-Compound II (LiP-II) by veratryl alcohol occurs in the endergonic region of the driving force. The reduction of LiP-II has a higher reorganization energy due to the change in spin state and the accompanying conformational change in the protein. It is suggested that a reversible nucleophilic addition of a carbohydrate residue located at the entrance of the active site channel plays a key role in the LiP redox cycle. Moreover. (polymeric) hydroxysubstituted benzyl radicals may reduce LiP-II via long-range electron transfer.  相似文献   

3.
Previous investigations have shown that laccase catalyzed oxidation of lignin containing wood fibers can enhance the strength of medium density fiberboards. In the present work it was investigated if laccase treatment had any impact on the tensile strength of a high yield unbleached kraft pulp. Treatment with laccase alone had only a very little effect on the wet strength of the pulp, whereas addition of lignin rich extractives increased the wet strength after the enzyme treatment significantly. A mediated oxidation gave a similar improvement of the wet tensile strength although no lignin was added to the fiber suspension. Furthermore, it was found that a heat treatment combined with a mediated oxidation gave a higher improvement in wet tensile strength than could be accounted for by the individual treatments. No change in dry tensile strength from the laccase treatment was observed. It is suggested that the observed improvement in wet tensile strength is related to polymerization of lignin on fibers in the hand sheet and/or coupling of phenoxy radicals on lignin associated to adjacent fibers. For the different mediators studied, a correlation was found between oxygen consumption upon mediated oxidation and generation of wet strength in the pulp.  相似文献   

4.
Modification of lignin for the production of new compounded materials   总被引:26,自引:0,他引:26  
The cell walls of woody plants are compounded materials made by in situ polymerization of a polyphenolic matrix (lignin) into a web of fibers (cellulose), a process that is catalysed by polyphenoloxidases (laccases) or peroxidases. The first attempt to transform the basic strategy of this natural process for use in human craftsmanship was the ancient lacquer method. The sap of the lacquer tree (Rhus verniciflua) contains large amounts of a phenol (urushiol), a polysaccharide and the enzyme laccase. This oil-in-water emulsion solidifies in the presence of oxygen. The Chinese began using this phenomenon for the production of highly creative artwork more than 6,000 years ago. It was the first example of an isolated enzyme being used as a catalyst to create an artificial plastic compound. In order to apply this process to the production of products on an industrial scale, an inexpensive phenol must be used, which is transferred by an enzyme to active radicals that react with different components to form a compounded material. At present, the following approaches have been studied: (1) In situ polymerization of lignin for the production of particle boards. Adhesive cure is based on the oxidative polymerization of lignin using phenoloxidases (laccase) as radical donors. This lignin-based bio-adhesive can be applied under conventional pressing conditions. The resulting particle boards meet German performance standards. By this process, 80% of the petrochemical binders in the wood-composite industry can be replaced by materials from renewable resources. (2) Enzymatic copolymerization of lignin and alkenes. In the presence of organic hydroperoxides, laccase catalyses the reaction between lignin and olefins. Detailed studies on the reaction between lignin and acrylate monomers showed that chemo-enzymatic copolymerization offers the possibility to produce defined lignin-acrylate copolymers. The system allows control of the molecular weights of the products in a way that has not been possible with chemical catalysts. This is a novel attempt to enzymatically induce grafting of polymeric side chains onto the lignin backbone, and it enables the utilization of lignin as part of new engineering materials. (3) Enzymatic activation of the middle-lamella lignin of wood fibers for the production of wood composites. The incubation of wood fibers with a phenol oxidizing enzyme results in oxidative activation of the lignin crust on the fiber surface. When such fibers are pressed together, boards are obtained which meet the German standards for medium-density fiber boards (MDF). The fibers are bound together in a way that comes close to that by which wood fibers are bound together in naturally grown wood. This process will, for the first time, yield wood composites that are produced solely from naturally grown products without any addition of resins.  相似文献   

5.
Various lignin model compounds of the O-arylpropane type were oxidized with purified lignin peroxidase from the white-rot fungus Phanerochaete chrysosporium, and oxidation products were identified by gas-chromatography/mass-spectroscopy procedures. Our results are in accord with the theory that lignin peroxidase catalyzes one-electron oxidations of its substrates with formation of cation radicals, and that these radicals undergo degradative reactions that are predictable from a knowledge of cation radical and oxygen chemistry. Cation radicals formed from O-arylpropane model compounds appeared to undergo the following types of degradative transformations: addition of water to ring-centered radicals, followed by proton loss yielding quinones and alcohols; nucleophilic attack by hydroxy functions on propanoid moieties giving cyclic ketals as intermediates which decompose to yield side chain migration products; transfer of the charge of a radical from a ring to the associated alkyl moiety through an ether bond, with loss of a proton from the latter, forming a new carbon-centered radical. The new alkyl-centered radicals apparently were able to abduct dioxygen to form peroxyl radicals which decomposed giving a variety of oxidation products and probably superoxide anion. Specific examples of the above transformations are presented, and their relevance to lignin degradation is discussed.  相似文献   

6.
During laccase-catalyzed oxidation of beech wood fibers in an aqueous suspension, phenoxy radicals were detected in steady-state concentrations by electron-spin resonance (ESR) spectrometry of the suspension liquid, suggesting that colloidal lignin functions as a mediator between laccase and the fiber lignin matrix. Phenoxy radicals were observed directly, whereas ESR spin-trapping techniques gave no evidence for reduced oxygen species, such as the superoxide or hydroxyl radical. A reaction mechanism involving parallel direct oxidation of the lignin on fiber surfaces and a phenol/phenoxy cyclic mediator process in the suspension liquid could accordingly describe laccase-catalyzed oxidation of beech wood fibers. Cytochrome c assays for detection of superoxide in systems involving lignin oxidized by oxidoreductases should be used with caution, as cytochrome c may be reduced by species other than superoxide. Received: 24 March 1997 / Received revision: 27 May 1997 / Accepted: 1 June 1997  相似文献   

7.
One-electron oxidation activity, as measured by ethylene generation from 2-keto-4-thiomethylbutyric acid, phenol oxidase activity, and the generation of hydroxyl radical were examined in cultures of the lignin-degrading white-rot basidiomycete fungus, Trametes (Coriolus) versicolor. The activity levels of specific lignin-degrading enzymes and cellulases, as well as the rate of wood degradation, also were examined. The fungus secreted a low-molecular-weight substance (M(r) 1000-5000) that catalyzed a redox reaction between molecular oxygen and an electron donor, to produce the hydroxyl radical via hydrogen peroxide. During wood decay, T. versicolor also produced significant amounts of laccase and lignin peroxidase, carboxymethyl cellulase, and Avicelase. The roles of the hydroxyl radical, phenol oxidases, and cellulases in wood degradation by white-rot fungi are discussed. That the hydroxyl radical produced by the low-molecular-weight substance secreted by T. versicolor results in new phenolic substructures on the lignin polymer, making it susceptible to attack by laccase or manganese peroxidase is suggested.  相似文献   

8.
Copper peroxydisulfate has been shown to mimic "ligninases" in the oxidative degradation of Dihydroanisoin, Veratrylglycerol-beta-guaiacyl ether and veratryl alcohol. A unified mechanism leads to predictable degradative pathways. These are initiated by single-electron oxidation of aromatic substrates to aryl cation radicals as common intermediates to both the enzymic and biomimetic reactions. Our preliminary results show that simple complexes can facilitate the oxidative degradation of lignin model compounds.  相似文献   

9.
Veratrylchitosan, a polysaccharide-supported lignin model compound, has been synthesised by covalently attaching 3-(3,4-dimethoxybenzyloxy)propionic acid to the polysaccharide chitosan through an amide linkage. When this polymer was used as a substrate in the oxidation promoted by lignin peroxidase (LiP), significant decomposition of the lignin model resulted in the formation of veratraldehyde. The oxidation mechanism involves an initial transfer of one electron from chitosan to the active species of LiP (LiP I) followed by C(alpha)-H deprotonation of an aromatic cation radical. A benzylic radical is then formed which is further oxidised to a benzyl cation. Reaction with water and hydrolysis of the hemiacetal then lead to veratraldehyde formation. An increase in the yields of the oxidation product is observed in the presence of the mediator 2-chloro-1,4-dimethoxybenzene, thus indicating that a more efficient degradation results from the transfer of an electron from the polymer to the radical cation of the mediator.  相似文献   

10.
In this paper the oxidation of milled wood lignin (MWL), catalysed by three enzymes, i.e. laccase, tyrosinase and horseradish peroxidase (HRP) was studied. The oxidation was followed by measuring the consumption of O2 during laccase and tyrosinase treatment and of H2O2 during HRP treatment. Both laccase and HRP were found to oxidise lignin effectively, whereas the effect of tyrosinase was negligible. The changes in MWL molecular-weight distributions caused in the reactions were analysed by gel permeation chromatography. Both laccase and HRP treatments were found to polymerise MWL. Peroxidase treatment was found to decrease the amount of phenolic hydroxyls in MWL, whereas no such effect could be detected in the laccase-treated sample. Both laccase and HRP treatments were, however, found to increase the amount of conjugated structures in MWL. The formation of phenoxy radicals during the treatments was studied by electron paramagnetic resonance spectroscopy. Phenoxy radicals were detected in both laccase and HRP-treated samples. The amount of the formed phenoxy radicals was found to be essentially constant during the detected time (i.e. 20–120 min after the addition of enzyme).  相似文献   

11.
Activation of fibres by radical formation is the first step when aiming at oxidative coupling of new functional groups on the fibre bound lignin. In this work, factors affecting the amount of phenoxy radicals created to unbleached TMP, CTMP, softwood kraft and hardwood kraft pulp fibres in the laccase catalysed oxidation were determined by EPR. Laccase was able to catalyse the oxidation of all the pulps studied. The reactivity of the pulp was found to be affected by both the physical accessibility of lignin in the fibres and the chemistry of the surface lignin accessible to laccase. Laccase dosage, use of extra oxygen in the laccase catalysed radicalization reaction, treatment time and also the amount and type of low-molecular weight compounds (LMWC) present in the pulp were all found to contribute to the radical content of pulp fibres measured after the enzymatic reaction. It could not been excluded that two types of reactions take place during the radical formation in fibres. Within the fibre matrix there may be both fibre material bound and soluble lignin fragments differing with respect to accessibility, molecular weight or chemical structure which can be radicalized at various rates, and the formed radicals may also undergo cross-coupling reactions reducing the amount of the total radicals.  相似文献   

12.
Abstract: In this review properties of cellobiose:quinone oxidoreductase (CBQ) and cellobiose oxidase (CbO) are presented and their possible involvement in lignin and cellulose degradation is discussed. Although these enzymes are produced by many different fungi, their importance for wood-degrading fungi is the topic here. CBQ is a FAD enzyme, while CbO also contains a heine group of the cytochrome b type. Protease activity is reported to convert CbO to CBQ. During oxidation of cellobiose (emanating from cellulose) to cellobiono-l,5-lactone, both enzymes reduce quinones produced by laccase and peroxidase during lignin degradation to the corresponding phenols. Many phenoxy and cation radicals are also reduced. Quinone reduction is more rapid than oxygen reduction, although oxygen is slowly reduced to superoxide and/or hydrogen peroxide. Thus, a more appropriate name for CbO is cellobiose dehydrogenase. CbO also reduces Fe(III) and together with hydrogen peroxide produced by the enzyme Fenton's reagent may be formed, resulting in hydroxyl radical production. This radical can degrade both lignin and cellulose, possibly indicating that cellobiose oxidase has a central role in degradation of wood by wood-degrading fungi.  相似文献   

13.
The radicalization of unbleached lignocellulosic fibers obtained from thermomechanical (TMP) and chemothermomechanical (CTMP) pulps was performed in heterogeneous phase by reaction with dioxygen in the presence of N,N'-ethylenebis(salicylideneiminato)cobalt(II), [Co(salen)], as catalyst. Phenoxy cobalt radicals immobilized in fibers were observed by electron paramagnetic resonance (EPR) spectroscopy; their amount depends on the fiber swelling induced by reaction medium. The absolute concentration of such radicals in fibers, about 10(16) spin/g, reaches values 10 times higher than that of phenoxy radicals formed in similar oxidative reactions catalyzed by laccase. The generation of phenoxy cobalt radicals in fibers was related to structural changes of lignin units, detected by mono- and bidimensional nuclear magnetic resonance ((13)C NMR and 2D-HSQC) investigations, and to morphological modifications in fibers observed by scanning electron microscopy (SEM).  相似文献   

14.
An approach aiming at improving paper properties is to use laccase to copolymerize low-molecular weight phenols with the pulp before papermaking. The addition of methyl syringate (MS) gave a twice wet tensile index of unbleached kraft pulp with laccase treatment but had little effect on the dry tensile index and substantially decreased the brightness of pulp. The radical concentration in laccase-treated fibers increased up to 2.5 times of that in control sample after 60 min. The radical concentration in laccase/MS-treated fibers increased up to 20 times of that in control sample within 2 min, and a highest radical concentration (increased by near 65 times) was obtained after 40 min. A strong agglutination of large-area fibers in handsheet was observed after laccase/MS treatment. The surface lignin coverage of the laccase-treated fibers increased from 54.96% (control) to 59.36%, while that of the laccase/MS-treated fibers increased only up to 55.22%. It is suggested that the graft of MS on fiber and degradation of surface lignin occurred simultaneously. The addition of MS can enhance the activation of fibers and extend the enzymatic oxidation of lignin within the cell wall. An increased bonding area of fibers resulting from interaction of laccase, MS and fibers via radical-coupling reaction maybe account for the significantly improved wet strength of pulp.  相似文献   

15.
Lignin is one of the most abundant biopolymers, and it has a complex racemic structure. It may be formed by a radical polymerization initiated by redox enzymes, but much remains unknown about the process, such as how molecules as large as enzymes can generate the compact structure of the lignified plant cell wall. We have synthesized lignin oligomers according to a new concept, in which peroxidase is never in direct contact with the lignin monomers coniferaldehyde and coniferyl alcohol. Instead, manganese oxalate worked as a diffusible redox shuttle, first being oxidized from Mn(II) to Mn(III) by a peroxidase and then being reduced to Mn(II) by a simultaneous oxidation of the lignin monomers to radicals that formed covalent linkages of the lignin type. Furthermore, a high molecular mass polymer was generated by oxidation of coniferyl alcohol by Mn(III) acetate in a dioxane and water mixture. This polymer was very similar to natural spruce wood lignin, according to its NMR spectrum. The possible involvement of a redox shuttle/peroxidase system in lignin biosynthesis is discussed.  相似文献   

16.
Oxidative treatments of wood pulp lignin by one-electron-abstracting enzymatic or chemical systems result in modification phenomena which are not fully described in terms of those known from lignin model compound studies. The generation of, e.g., long-lived radicals necessitates nondestructive spectroscopic analysis of the lignin polymer for a proper characterization of these. The present work exposes a complexity of spectroscopic modification phenomena, which has not previously been realized. This is achieved by a laccase-mediator system, where the mediator is an aromatic low-molecular-weight compound, which mediates the electron abstraction between the lignin and the enzyme laccase. It is demonstrated that the modification generated exhibits qualitatively different temporal phases. The mechanisms are partly explained in terms of Marcus electron transfer theory, and it is suggested that these may play a role in the in vivo synthesis and degradation of lignin.  相似文献   

17.
Catalytic mechanisms and regulation of lignin peroxidase.   总被引:3,自引:0,他引:3  
Lignin peroxidase (LiP) is a fungal haemoprotein similar to the lignin-synthesizing plant peroxidases, but it has a higher oxidation potential and oxidizes dimethoxylated aromatic compounds to radical cations. It catalyses the degradation of lignin models but in vitro the outcome is net lignin polymerization. LiP oxidizes veratryl alcohol to radical cations which are proposed to act by charge transfer to mediate in the oxidation of lignin. Phenolic compounds are, however, preferentially oxidized, but transiently inactivate the enzyme. Analysis of the catalytic cycle of LiP shows that in the presence of veratryl alcohol the steady-state turnover intermediate is Compound II. We propose that veratryl alcohol is oxidized by the enzyme intermediate Compound I to a radical cation which now participates in charge-transfer reactions with either veratryl alcohol or another reductant, when present. Reduction of Compound II to native state may involve a radical product of veratryl alcohol or radical product of charge transfer. Phenoxy radicals, by contrast, cannot engage in charge-transfer reactions and reaction of Compound II with H2O2 ensues to form the peroxidatically inactive intermediate, Compound III. Regulation of LiP activity by phenolic compounds suggests feedback control, since many of the products of lignin degradation are phenolic. Such control would lower the concentration of phenolics relative to oxygen and favour degradative ring-opening reactions.  相似文献   

18.
Laccase catalysed oxidation of syringyl and guaiacyl subunits of lignin and their modification with an aromatic amine, p-aminobenzoic acid (PABA) were investigated. Laccase from Galerina sp. HC1 isolated earlier by us was used as the main catalyst, and Trametes versicolor laccase was used for comparison. Among the syringyl compounds, syringic acid and syringaldehyde were oxidised to 2,6-dimethoxy-1,4-benzoquinone, and in the presence of PABA yielded a cross-coupling imine product. The reaction with methyl syringol resulted in several products whose structures were determined. The possible oxidative coupling pathways were proposed for the formation of the identified products. Oxidation of syringol and the guaiacyl compounds resulted mainly in homooligomers by free radical mechanism, with a negligible tendency of reaction with the nucleophilic group of PABA. Similar treatment of Eucalyptus Kraft lignin, which is rich in syringyl moieties, showed the presence of identical products obtained with syringic acid and syringaldehyde.  相似文献   

19.
Biodegradation and bioconversion of extracted alkali lignin was performed under varying concentrations of carbon and nitrogen sources, by two potential Ascomycetes ligninolytic fungus isolated from soil. Fungus, F10 was identified as Aspergillus flavus, while APF4 as Emericella nidulans based upon closed similarity with their morphology and high homology in 18S rRNA gene sequences. The alkali lignin degradation was checked in term of disappearance of lignin content and colority. Selected fungus, degraded 19–41.6% of alkali lignin (0.25%, w/v) within 21 days of incubation and reduced the colority up to 14.4–21%. The activity of ligninolytic enzymes was periodically checked. During alkali lignin degradation manganese peroxidase (13.31?U/ml), lignin peroxidase (13.73?U/ml) and laccase (0.05?U/ml) activities were observed (at highest level). The alkali lignin degradation products and functional group changes in degraded lignin were analysed through gas chromatography-mass spectroscopy (GC-MS) and solid state 13C-NMR spectroscopy, respectively. The functional group modifications in alkali lignin moiety, alter its biochemical property, thus fungal mediated modified alkali lignin was further tested for reactive free radical scavenging potential with respect to hydroxyl, nitric oxide and superoxide radicals. Results demonstrate that the alkali lignin undergo degradation in studied nutritional conditions (high-carbon low nitrogen) and consequently increase its free radical scavenging activity up to 1–18%.  相似文献   

20.
The aromatic polymer lignin can be modified through promotion of oxidative coupling between phenolic groups on lignin and various phenols. The reaction is initiated by an oxidation of both components, e.g., by using the oxidoreductases laccase or peroxidase. Coupling between phenolic monomers and lignin has previously been studied by the use of radio-labeled phenols. In this study, incorporation of water-soluble phenols into kraft lignin, using laccase as catalyst, was investigated. Several phenols with carboxylic or sulfonic acid groups were used as markers for the incorporation. The modified lignin was isolated and the amount of phenol incorporated was characterized by means of titration, quantitative 1H-NMR, and quantitative 31P-NMR after modification with 2-chloro-4,4,5,5-tetramethyl-1,2,3-dioxaphospholane. Only a few of the phenols studied were found to be incorporated into lignin. When the phenol guaiacol sulfonate was incorporated into kraft lignin, the lignin became water-soluble at pH 2.4 and a low ionic strength due to the introduction of sulfonic acid groups. The content of sulfonic acid groups in the product was 0.5-0.6 mmol/g lignin. A lower amount of 4-hydroxyphenylacetic acid was incorporated under similar conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号