首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Bell LR  Stone S  Yochem J  Shaw JE  Herman RK 《Genetics》2006,173(3):1275-1286
The Caenorhabditis elegans genes dyf-6, daf-10, and osm-1 are among the set of genes that affect chemotaxis and the ability of certain sensory neurons to take up fluorescent dyes from the environment. Some genes in this category are known to be required for intraflagellar transport (IFT), which is the bidirectional movement of raft-like particles along the axonemes of cilia and flagella. The cloning of dyf-6, daf-10, and osm-1 are described here. The daf-10 and osm-1 gene products resemble each other and contain WD and WAA repeats. DYF-6, the product of a complex locus, lacks known motifs, but orthologs are present in flies and mammals. Phenotypic analysis of dyf-6 mutants expressing an OSM-6::GFP reporter indicates that the cilia of the amphid and phasmid dendritic endings are foreshortened. Consistent with genetic mosaic analysis, which indicates that dyf-6 functions in neurons of the amphid sensilla, DYF-6::GFP is expressed in amphid and phasmid neurons. Movement of DYF-6::GFP within the ciliated endings of the neurons indicates that DYF-6 is involved in IFT. In addition, IFT can be observed in dauer larvae.  相似文献   

2.
The relationship between oxidative stress and longevity is a matter of concern in various organisms. We isolated mutants resistant to paraquat from nematode Caenorhabditis elegans. One mutant named mev-4 was long-lived and showed cross-resistance to heat and Dyf phenotype (defective in dye filling). Genetic and sequence analysis revealed that mev-4 had a nonsense mutation on the che-11 gene, homologues of which are involved in formation of cilia and flagella in other organisms. The paraquat resistance was commonly observed in various Dyf mutants and did not depend on the daf-16 gene, whereas the extension of life span did depend on it. Expression of antioxidant enzyme genes seemed normal. These results suggest that chemosensory neurons are a target of oxidative stress and influence longevity dependent on the daf-16 signaling in C. elegans.  相似文献   

3.
J. J. Vowels  J. H. Thomas 《Genetics》1994,138(2):303-316
Phenotypic analysis of the daf-11 and daf-21 mutants of Caenorhabditis elegans suggests that they have defects in components shared by processes analogous to vertebrate taste and olfaction. daf-11 and daf-21 mutations were previously shown to cause inappropriate response to the dauer-inducing pheromone. By mutational analysis and by disabling specific chemosensory sensilla with a laser, we show that neurons in the amphid sensilla are required for this pheromone response. Using behavioral assays, we find that daf-11 and daf-21 mutants are not defective in avoidance of certain non-volatile repellents, but are defective in taxis to non-volatile attractants. In addition, both mutants are defective in taxis to volatile attractants detected primarily by the amphid neuron AWC, but respond normally to volatile attractants detected primarily by AWA. We propose that daf-11 and daf-21 mediate sensory transduction for both volatile and non-volatile compounds in specific amphid neurons.  相似文献   

4.
Ethosuximide is a medication used to treat seizure disorders in humans, and we previously demonstrated that ethosuximide can delay age-related changes and extend the lifespan of the nematode Caenorhabditis elegans. The mechanism of action of ethosuximide in lifespan extension is unknown, and elucidating how ethosuximide functions is important for defining endogenous processes that influence lifespan and for exploring the potential of ethosuximide as a therapeutic for age-related diseases. To identify genes that mediate the activity of ethosuximide, we conducted a genetic screen and identified mutations in two genes, che-3 and osm-3, that cause resistance to ethosuximide-mediated toxicity. Mutations in che-3 and osm-3 cause defects in overlapping sets of chemosensory neurons, resulting in defective chemosensation and an extended lifespan. These findings suggest that ethosuximide extends lifespan by inhibiting the function of specific chemosensory neurons. This model is supported by the observation that ethosuximide-treated animals displayed numerous phenotypic similarities with mutants that have chemosensory defects, indicating that ethosuximide inhibits chemosensory function. Furthermore, ethosuximide extends lifespan by inhibiting chemosensation, since the long-lived osm-3 mutants were resistant to the lifespan extension caused by ethosuximide. These studies demonstrate a novel mechanism of action for a lifespan-extending drug and indicate that sensory perception has a critical role in controlling lifespan. Sensory perception also influences the lifespan of Drosophila, suggesting that sensory perception has an evolutionarily conserved role in lifespan control. These studies highlight the potential of ethosuximide and related drugs that modulate sensory perception to extend lifespan in diverse animals.  相似文献   

5.
Sensory organs are often composed of neuronal sensory endings accommodated in a lumen formed by ensheathing epithelia or glia. Here we show that lumen formation in the C. elegans amphid sensory organ requires the gene daf-6. daf-6 encodes a Patched-related protein that localizes to the luminal surfaces of the amphid channel and other C. elegans tubes. While daf-6 mutants display only amphid lumen defects, animals defective for both daf-6 and the Dispatched gene che-14 exhibit defects in all tubular structures that express daf-6. Furthermore, DAF-6 protein is mislocalized, and lumen morphogenesis is abnormal, in mutants with defective sensory neuron endings. We propose that amphid lumen morphogenesis is coordinated by neuron-derived cues and a DAF-6/CHE-14 system that regulates vesicle dynamics during tubulogenesis.  相似文献   

6.
Mutation in the Caenorhabditis elegans gene osm-6 was previously shown to result in defects in the ultrastructure of sensory cilia and defects in chemosensory and mechanosensory behaviors. We have cloned osm-6 by transposon tagging and transformation rescue and have identified molecular lesions associated with five osm-6 mutations. The osm-6 gene encodes a protein that is 40% identical in amino acid sequence to a predicted mammalian protein of unknown function. We fused osm-6 with the gene for green fluorescent protein (GFP); the fusion gene rescued the osm-6 mutant phenotype and showed accumulation of GFP in ciliated sensory neurons exclusively. The OSM-6::GFP protein was localized to cytoplasm, including processes and dendritic endings where sensory cilia are situated. Mutations in other genes known to cause ciliary defects led to changes in the appearance of OSM-6::GFP in dendritic endings or, in the case of daf-19, reduced OSM-6::GFP accumulation. We conclude from an analysis of genetic mosaics that osm-6 acts cell autonomously in affecting cilium structure.  相似文献   

7.
Caenorhabditis elegans daf-11 and daf-21 mutants share defects in specific chemosensory responses mediated by several classes of sensory neurons, indicating that these two genes have closely related functions in an assortment of chemosensory pathways. We report that daf-11 encodes one of a large family of C. elegans transmembrane guanylyl cyclases (TM-GCs). The cyclic GMP analogue 8-bromo-cGMP rescues a sensory defect in both daf-11 and daf-21 mutants, supporting a role for DAF-11 guanylyl cyclase activity in this process and further suggesting that daf-21 acts at a similar step. daf-11::gfp fusions are expressed in five identified pairs of chemosensory neurons in a pattern consistent with most daf-11 mutant phenotypes. We also show that daf-21 encodes the heat-shock protein 90 (Hsp90), a chaperone with numerous specific protein targets. We show that the viable chemosensory-deficient daf-21 mutation is an unusual allele resulting from a single amino acid substitution and that the daf-21 null phenotype is early larval lethality. These results demonstrate that cGMP is a prominent second messenger in C. elegans chemosensory transduction and suggest a previously unknown role for Hsp90 in regulating cGMP levels.  相似文献   

8.
Bacaj T  Lu Y  Shaham S 《Genetics》2008,178(2):989-1002
Sensory neuron cilia are evolutionarily conserved dendritic appendages that convert environmental stimuli into neuronal activity. Although several cilia components are known, the functions of many remain uncharacterized. Furthermore, the basis of morphological and functional differences between cilia remains largely unexplored. To understand the molecular basis of cilia morphogenesis and function, we studied the Caenorhabditis elegans mutants che-12 and dyf-11. These mutants fail to concentrate lipophilic dyes from their surroundings in sensory neurons and are chemotaxis defective. In che-12 mutants, sensory neuron cilia lack distal segments, while in dyf-11 animals, medial and distal segments are absent. CHE-12 and DYF-11 are conserved ciliary proteins that function cell-autonomously and are continuously required for maintenance of cilium morphology and function. CHE-12, composed primarily of HEAT repeats, may not be part of the intraflagellar transport (IFT) complex and is not required for the localization of some IFT components. DYF-11 undergoes IFT-like movement and may function at an early stage of IFT-B particle assembly. Intriguingly, while DYF-11 is expressed in all C. elegans ciliated neurons, CHE-12 expression is restricted to some amphid sensory neurons, suggesting a specific role in these neurons. Our results provide insight into general and neuron-specific aspects of cilium development and function.  相似文献   

9.
To elucidate the mechanism of sensory cilium formation, we analyzed mutants in the Caenorhabditis elegans che-2 gene. These mutants have extremely short cilia with an abnormal posterior projection, and show defects in behaviors that are mediated by ciliated sensory neurons. The che-2 gene encodes a new member of the WD40 protein family, suggesting that it acts in protein-protein interaction. Analysis of mutation sites showed that both the amino-terminal WD40 repeats and the carboxyl-terminal non-WD40 domain are necessary for the CHE-2 function. CHE-2-tagged green fluorescent protein is localized at the cilia of almost all the ciliated sensory neurons. Expression of che-2 in a subset of sensory neurons of a che-2 mutant by using a heterologous promoter resulted in restoration of the functions and cilium morphology of only the che-2-expressing neurons. Thus, che-2 acts cell-autonomously. This technique can be used in the future for determining the function of each type of che-2-expressing sensory neuron. Using green fluorescent protein, we found that the extension of cilia in wild-type animals took place at the late embryonic stage, whereas the cilia of che-2 mutant animals remained always short during development. Hence, the abnormal posterior projection is due to the inability of cilia to extend, rather than degeneration of cilia once correctly formed. Expression of che-2 in a che-2 mutant under a heat shock promoter showed that the extension of cilia, surprisingly, can occur even at the adult stage, and that such cilia can function apparently normally in behavior.  相似文献   

10.
Nematodes change their surface compositions in response to environmental signals, which may allow them to survive attacks from microbial pathogens or host immune systems. In the free-living species Caenorhabditis elegans, wild-type worms are induced to display an L1 (first larval stage) surface epitope at later larval stages when grown on an extract of spent culture medium (Inducible Larval Display or ILD). Before this study, it was not known whether ILD was regulated by the well-characterized, neurologically based chemical senses of C. elegans, which mediate other behavioural and developmental responses to environmental signals such as chemotaxis and formation of the facultatively arrested dauer larva stage. We show here that ILD requires the activities of three genes that are essential for the function of the C. elegans chemosensory neurons. ILD was abolished in chemotaxis-defective che-3, osm-3 and tax-4 mutants. In contrast, chemotaxis-defective mutants altered in a different gene, srf-6, show constitutive display of the L1 epitope on all four larval stages. The ILD-defective che-3, osm-3 and tax-4 mutations blocked the constitutive larval display of an srf-6 mutant. Combining srf-6 and certain dauer-constitutive mutations in double mutants enhanced constitutive dauer formation, consistent with the idea that srf-6 acts in parallel with specific components of the dauer formation pathway. These results taken together are consistent with the hypothesis that ILD is triggered by environmental signals detected by the nematode's chemosensory neurons.  相似文献   

11.
The endings of sensory receptor cells often lie within specialized compartments formed by glial cells. The main sensory organ of Caenorhabditis elegans, the amphid, provides a powerful setting for studying glial compartment morphogenesis. Our previous studies showed that amphid compartment size is controlled by opposing activities of the Nemo-like kinase LIT-1, which promotes compartment expansion, and the Patched-related protein DAF-6, which restricts compartment growth. From a genetic screen for mutations able to suppress the bloated sensory compartments of daf-6 mutants, we identified an allele of the sorting nexin gene snx-1. SNX-1 protein is a component of the retromer, a protein complex that facilitates recycling of transmembrane proteins from the endosome to the Golgi network. We find that snx-1 functions cell autonomously within glia to promote sensory compartment growth, and that SNX-1 protein is enriched near the surface of the sensory compartment. snx-1 interacts genetically with lit-1 and another regulator of compartment size, the Dispatched-related gene che-14. Mutations in snx-3 and vps-29, also retromer genes, can suppress daf-6 defects. Surprisingly, however, remaining retromer components seem not to be involved. Our results suggest that a novel assembly of retromer components is important for determining sensory compartment dimensions.  相似文献   

12.
In C. elegans development, unfavorable growth conditions lead a larva to an arrested and enduring form called a dauer. To elucidate components upstream of DAF-7/TGF-beta in this control pathway, we isolated a mutant that was defective in daf-7 promoter::gfp reporter expression and showed an arrested (dauer-constitutive) phenotype. It has a new mutation in the daf-11 gene encoding a transmembrane guanylyl cyclase. We show that daf-11 gene and a related gene daf-21 act upstream of daf-7, and cilium-related genes che-2 and che-3 are placed between daf-11 and daf-7, in the genetic pathway controlling dauer formation. Expression of daf-11 cDNA by cell specific promoters suggests that daf-11 acts cell autonomously in ASI chemosensory neurons for daf-7 expression.  相似文献   

13.
The nervous system is composed of cells including neurons and glia. It has been believed that the former cells play central roles in various neural functions while the latter ones have only supportive functions for neurons. However, recent findings suggest that glial cells actively participate in neural activities, and the cooperation between neurons and glia is important for nervous system functions. In Caenorhabditis elegans, amphid sensory organs in the head also consist of sensory neurons and glia-like support cells (amphid socket and amphid sheath cells). Ciliary endings of some sensory neurons exposed to the environment detect various chemicals, molecules and signals, and the cilia of some neurons can also take up fluorescent dyes such as DiI. Here, we show that the amphid sheath glia are also stained with DiI and that its uptake by the amphid sheath cells correlates with DiI-filling of sensory neurons, suggesting that the amphid sheath glia might interact with sensory neurons. Furthermore, the localization of the amphid sheath cell reporter F52E1.2SP::YFP is abnormal in che-2 mutants, which have defective cilia. These findings imply that sensory neurons might affect amphid sheath glia functions in the amphid sensory organ of C. elegans.  相似文献   

14.
15.
In harsh conditions, Caenorhabditis elegans arrests development to enter a non-aging, resistant diapause state called the dauer larva. Olfactory sensation modulates the TGF-β and insulin signaling pathways to control this developmental decision. Four mutant alleles of daf-25 (abnormal DAuer Formation) were isolated from screens for mutants exhibiting constitutive dauer formation and found to be defective in olfaction. The daf-25 dauer phenotype is suppressed by daf-10/IFT122 mutations (which disrupt ciliogenesis), but not by daf-6/PTCHD3 mutations (which prevent environmental exposure of sensory cilia), implying that DAF-25 functions in the cilia themselves. daf-25 encodes the C. elegans ortholog of mammalian Ankmy2, a MYND domain protein of unknown function. Disruption of DAF-25, which localizes to sensory cilia, produces no apparent cilia structure anomalies, as determined by light and electron microscopy. Hinting at its potential function, the dauer phenotype, epistatic order, and expression profile of daf-25 are similar to daf-11, which encodes a cilium-localized guanylyl cyclase. Indeed, we demonstrate that DAF-25 is required for proper DAF-11 ciliary localization. Furthermore, the functional interaction is evolutionarily conserved, as mouse Ankmy2 interacts with guanylyl cyclase GC1 from ciliary photoreceptors. The interaction may be specific because daf-25 mutants have normally-localized OSM-9/TRPV4, TAX-4/CNGA1, CHE-2/IFT80, CHE-11/IFT140, CHE-13/IFT57, BBS-8, OSM-5/IFT88, and XBX-1/D2LIC in the cilia. Intraflagellar transport (IFT) (required to build cilia) is not defective in daf-25 mutants, although the ciliary localization of DAF-25 itself is influenced in che-11 mutants, which are defective in retrograde IFT. In summary, we have discovered a novel ciliary protein that plays an important role in cGMP signaling by localizing a guanylyl cyclase to the sensory organelle.  相似文献   

16.
Mutations in the Caenorhabditis elegans gene mec-8 were previously shown to cause defects in mechanosensation and in the structure and dye filling of certain chemosensory neurons. Using noncomplementation screens, we have identified eight new mec-8 alleles and a deficiency that uncovers the locus. Strong mec-8 mutants exhibit an incompletely penetrant cold-sensitive embryonic and larval arrest, which we have correlated with defects in the attachment of body muscle to the hypodermis and cuticle. Mutations in mec-8 strongly enhance the mutant phenotype of unc-52(viable) mutations; double mutants exhibit an unconditional arrest and paralysis at the twofold stage of embryonic elongation, a phenotype characteristic of lethal alleles of unc-52, a gene previously shown to encode a homolog of the core protein of heparan sulfate proteogylcan, found in basement membrane, and to be involved in the anchorage of myofilament lattice to the muscle cell membrane. We have identified and characterized four extragenic recessive suppressors of a mec-8; unc-52(viable) synthetic lethality. The suppressors, which define the genes smu-1 and smu-2, can weakly suppress all mec-8 mutant phenes. They also suppress the muscular dystrophy conferred by an unc-52(viable) mutation.  相似文献   

17.
18.
Chemosensation in the nervous system of the nematode Caenorhabditis elegans depends on sensory cilia, whose assembly and maintenance requires the transport of components such as axonemal proteins and signal transduction machinery to their site of incorporation into ciliary structures. Members of the heteromeric kinesin family of microtubule motors are prime candidates for playing key roles in these transport events. Here we describe the molecular characterization and partial purification of two heteromeric kinesin complexes from C. elegans, heterotrimeric CeKinesin-II and dimeric CeOsm-3. Transgenic worms expressing green fluorescent protein driven by endogenous heteromeric kinesin promoters reveal that both CeKinesin-II and CeOsm-3 are expressed in amphid, inner labial, and phasmid chemosensory neurons. Additionally, immunolocalization experiments on fixed worms show an intense concentration of CeKinesin-II and CeOsm-3 polypeptides in the ciliated endings of these chemosensory neurons and a punctate localization pattern in the corresponding cell bodies and dendrites. These results, together with the phenotypes of known mutants in the pathway of sensory ciliary assembly, suggest that CeKinesin-II and CeOsm-3 drive the transport of ciliary components required for sequential steps in the assembly of chemosensory cilia.  相似文献   

19.
The heterotrimeric motor protein, kinesin-II, and its presumptive cargo, can be observed moving anterogradely at 0.7 microm/s by intraflagellar transport (IFT) within sensory cilia of chemosensory neurons of living Caenorhabditis elegans, using a fluorescence microscope-based transport assay (Orozco, J.T., K.P. Wedaman, D. Signor, H. Brown, L. Rose, and J.M. Scholey. 1999. Nature. 398:674). Here, we report that kinesin-II, and two of its presumptive cargo molecules, OSM-1 and OSM-6, all move at approximately 1.1 microm/s in the retrograde direction along cilia and dendrites, which is consistent with the hypothesis that these proteins are retrieved from the distal endings of the cilia by a retrograde transport pathway that moves them along cilia and then dendrites, back to the neuronal cell body. To test the hypothesis that the minus end-directed microtubule motor protein, cytoplasmic dynein, drives this retrograde transport pathway, we visualized movement of kinesin-II and its cargo along dendrites and cilia in a che-3 cytoplasmic dynein mutant background, and observed an inhibition of retrograde transport in cilia but not in dendrites. In contrast, anterograde IFT proceeds normally in che-3 mutants. Thus, we propose that the class DHC1b cytoplasmic dynein, CHE-3, is specifically responsible for the retrograde transport of the anterograde motor, kinesin-II, and its cargo within sensory cilia, but not within dendrites.  相似文献   

20.
Eight pairs of chemosensory neurons in Caenorhabditis elegans take up fluorescein dyes entering through the chemosensory organs. These are amphid neurons ADF, ASH, ASI, ASJ, ASK, and ADL and phasmid neurons PHA and PHB. When filled with dye, the processes and cell bodies of these neurons can be examined in live animals by fluorescence microscopy. Using this technique, we have identified five genes, unc-33, unc-44, unc-51, unc-76, and unc-106, that affect the growth of the amphid and phasmid axons. These genes were found to affect the axons of the mechanosensory PDE neurons as well. The unc-33 mutation specifically affects neuronal microtubules. Sensory dendrites in this mutant have a superabundance of microtubules. Moreover, many of these microtubules are abnormal in diameter, and some form hooks or multiple tubules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号