首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Poly(A)-specific ribonuclease (PARN) catalyzes the degradation of mRNA poly(A) tail to regulate translation efficiency and mRNA decay in higher eukaryotic cells. The full-length PARN is a multi-domain protein containing the catalytic nuclease domain, the R3H domain, the RRM domain and the C-terminal intrinsically unstructured domain (CTD). The roles of the three well-structured RNA-binding domains have been extensively studied, while little is known about CTD. In this research, the impact of CTD on PARN stability and aggregatory potency was studied by comparing the thermal inactivation and denaturation behaviors of full-length PARN with two N-terminal fragments lacking CTD. Our results showed that K+ induced additional regular secondary structures and enhanced PARN stability against heat-induced inactivation, unfolding and aggregation. CTD prevented PARN from thermal inactivation but promoted thermal aggregation to initiate at a temperature much lower than that required for inactivation and unfolding. Blue-shift of Trp fluorescence during thermal transitions suggested that heat treatment induced rearrangements of domain organizations. CTD amplified the stabilizing effect of K+, implying the roles of CTD was mainly achieved by electrostatic interactions. These results suggested that CTD might dynamically interact with the main body of the molecule and release of CTD promoted self-association via electrostatic interactions.  相似文献   

2.
Hypoxanthine-guanine phosphoribosyltransferase (HGPRT, E.C. 2.4.2.8) from Artemia cysts exhibits maximum activity at 70°C. Its thermal stability has been examined following enzymatic activity as a function of temperature. Cold-induced renaturation experiments of samples heated at increasing temperatures showed that reversibility of thermal inactivation depends on the incubation time and final temperature. Prolonged incubation of the thermoinactivated enzyme at 0°C did not afford any further increase of the catalytic activity at 37°C. The complex substrate PRPP:Mg protects HGPRT from thermal inactivation. However, incubations with hypoxanthine rendered a less thermostable enzyme at any temperature tested. The irreversible inactivation of HGPRT proceeds in two exponential steps. The analysis of the apparent rate constants for the fast and the slow phases, λ1 and λ2 as per the Lumry and Eyring model suggests the existence of more than three states in the thermal denaturation pathway of the free enzyme. In the presence of PRPP:Mg the irreversible process follows a single exponential and proceeds very slowly below 70°C. PRPP:Mg also protects the enzyme from inactivation by NEM and pCMB, suggesting that -SH groups may be in the vicinity of the active site  相似文献   

3.
J F Blazyk  D Lam 《Biochemistry》1976,15(13):2843-2848
The thermostability and proteolytic inactivation of rat liver submitochondrial particle transhydrogenase was studied in the presence of pyridine dinucleotide substrates and a variety of divalent metal and nucleotide inhibitors. Relative to the unliganded enzyme, the NADPH-enzyme complex was more thermostable and showed a twofold greater rate of tryptic inactivation, while the NADP+-enzyme complex was more thermolabile and only slightly more susceptible to tryptic inactivation. Neither NAD+ nor NADH significantly affected thermostability or proteolysis. Similar effects of these ligands were observed for the non-energy-linked and energy-linked transhydrogenase reactions, indicating that both activities are catalyzed by the same enzyme. In thermal experiments, acetyl-CoA, 2'-AMP, and NMNH stabilized, palmitoyl-CoAlabilized, and dephospho-CoA, CoA, NMN+, and 5'-AMP had little effect on enzyme stability. Tryptic inactivation was inhibited by 2'-AMP and NMN+ but was not influenced by the other nucleotide inhibitors. Divalent metal ion inhibitors (Mg2+, Ca2+, Mn2+, Ba2+, and Sr2+) stabilized transhydrogenase against thermal inactivation and promoted tryptic inactivation.  相似文献   

4.
Phycomyces blakesleeanus isocitrate lyase (EC 4.1.3.1) is in vivo reversibly inactivated by hydrogen peroxide. The purified enzyme showed reversible inactivation by an ascorbate plus Fe(2+) system under aerobic conditions. Inactivation requires hydrogen peroxide; was prevented by catalase, EDTA, Mg(2+), isocitrate, GSH, DTT, or cysteine; and was reversed by thiols. The ascorbate served as a source of hydrogen peroxide and also reduced the Fe(3+) ions produced in a "site-specific" Fenton reaction. Two redox-active cysteine residues per enzyme subunit are targets of oxidative modification; one of them is located at the catalytic site and the other at the metal regulatory site. The oxidized enzyme showed covalent and conformational changes that led to inactivation, decreased thermal stability, and also increased inactivation by trypsin. These results represent an example of redox regulation of an enzymatic activity, which may play a role as a sensor of redox cellular status.  相似文献   

5.
Poly(A)-specific ribonuclease (PARN) is the only mammalian exoribonuclease characterized thus far with high specificity for degrading the mRNA poly(A) tail. PARN belongs to the RNase D family of nucleases, a family characterized by the presence of four conserved acidic amino acid residues. Here, we show by site-directed mutagenesis that these residues of human PARN, i.e. Asp(28), Glu(30), Asp(292), and Asp(382), are essential for catalysis but are not required for stabilization of the PARN x RNA substrate complex. We have used iron(II)-induced hydroxyl radical cleavage to map Fe(2+) binding sites in PARN. Two Fe(2+) binding sites were identified, and three of the conserved acidic amino acid residues were important for Fe(2+) binding at these sites. Furthermore, we show that the apparent dissociation constant ((app)K(d)) values for Fe(2+) binding at both sites were affected in PARN polypeptides in which the conserved acidic amino acid residues were substituted to alanine. This suggests that these residues coordinate divalent metal ions. We conclude that the four conserved acidic amino acids are essential residues of the PARN active site and that the active site of PARN functionally and structurally resembles the active site for 3'-exonuclease domain of Escherichia coli DNA polymerase I.  相似文献   

6.
Poly(A)-specific ribonuclease (PARN) is a highly poly(A)-specific 3'-exoribonuclease that efficiently degrades mRNA poly(A) tails. PARN belongs to the DEDD family of nucleases, and four conserved residues are essential for PARN activity, i.e. Asp-28, Glu-30, Asp-292, and Asp-382. Here we have investigated how catalytically important divalent metal ions are coordinated in the active site of PARN. Each of the conserved amino acid residues was substituted with cysteines, and it was found that all four mutants were inactive in the presence of Mg2+. However, in the presence of Mn2+, Zn2+, Co2+, or Cd2+, PARN activity was rescued from the PARN(D28C), PARN(D292C), and PARN(D382C) variants, suggesting that these three amino acids interact with catalytically essential metal ions. It was found that the shortest sufficient substrate for PARN activity was adenosine trinucleotide (A3) in the presence of Mg2+ or Cd2+. Interestingly, adenosine dinucleotide (A) was efficiently hydrolyzed in the presence of Mn2+, Zn2+, or Co2+, suggesting that the substrate length requirement for PARN can be modulated by the identity of the divalent metal ion. Finally, introduction of phosphorothioate modifications into the A substrate demonstrated that the scissile bond non-bridging phosphate oxygen in the pro-R position plays an important role during cleavage, most likely by coordinating a catalytically important divalent metal ion. Based on our data we discuss binding and coordination of divalent metal ions in the active site of PARN.  相似文献   

7.
Christova P  Cox JA  Craescu CT 《Proteins》2000,40(2):177-184
Nereis sarcoplasmic Ca(2+)-binding protein (NSCP) is a calcium buffer protein that binds Ca(2+) ions with high affinity but is also able to bind Mg(2+) ions with high positive cooperativity. We investigated the conformational and stability changes induced by the two metal ions. The thermal reversible unfolding, monitored by circular dichroism spectroscopy, shows that the thermal stability is maximum at neutral pH and increases in the order apo < Mg(2+) < Ca(2+). The stability against chemical denaturation (urea, guanidinium chloride) studied by circular dichroism or intrinsic fluorescence was found to have a similar ion dependence. To explore in more detail the structural basis of stability, we used the fluorescent probes to evaluate the hydrophobic surface exposure in the different ligation states. The apo-NSCP exhibits accessible hydrophobic surfaces, able to bind fluorescent probes, in clear contrast with denatured or Ca(2+)/Mg(2+)-bound states. Gel filtration experiments showed that, although the metal-bound NSCP has a hydrodynamic volume in agreement with the molecular mass, the volume of the apo form is considerably larger. The present results demonstrate that the apo state has many properties in common with the molten globule. The possible factors of the metal-dependent structural changes and stability are discussed.  相似文献   

8.
Conditions were developed in the absence of Ca(2+) for purification, delipidation, and long term stabilization of octaethylene glycol monododecyl ether (C(12)E(8))-solubilized sarcoplasmic reticulum Ca(2+)-ATPase with tightly bound Mg(2+) and F(-), an analog for the phosphoenzyme intermediate without bound Ca(2+). The Ca(2+)-ATPase activity to monitor denaturation was assessed after treatment with 20 mm Ca(2+) to release tightly bound Mg(2+)/F(-). The purification and delipidation was successfully achieved with Reactive Red-agarose affinity chromatography. The solubilized Mg(2+)/F(-)-bound Ca(2+)-ATPase was very rapidly denatured at pH 8, but was perfectly stabilized at pH 6 against denaturation for over 20 days at 4 degrees C even without exogenously added phospholipid and at a high C(12)E(8)/enzyme weight ratio (10:1). The activity was not restored unless the enzyme was treated with 20 mm Ca(2+), showing that tightly bound Mg(2+)/F(-) was not released during the long term incubation. The perfect stability was attained with or without 0.1 mm dithiothreitol, but inactivation occurred with a half-life of 10 days in the presence of 1 mm dithiothreitol, possibly due to reduction of a specific disulfide bond(s). The remarkable stability is likely conferred by intimate gathering of cytoplasmic domains of Ca(2+)-ATPase molecule induced by tight binding of Mg(2+)/F(-). The present study thus reveals an essential property of the Mg(2+)/F(-)/Ca(2+)-ATPase complex, which will likely provide clues to understanding structure of the Ca(2+)-released form of phosphoenzyme intermediate at an atomic level.  相似文献   

9.
Branson JP  Attwood PV 《Biochemistry》2000,39(25):7480-7491
The effects of Mg(2+) concentration on the kinetics of both ATP cleavage and carboxyenzyme formation in the approach to steady state of the biotin carboxylation reaction of pyruvate carboxylase have been studied. It was found that the enzyme underwent dilution inactivation at low Mg(2+) concentrations and that this occurred at higher enzyme concentrations than had been previously observed. At 10 mM Mg(2+), dilution inactivation was prevented and activation of the enzyme also occurred. When the enzyme was mixed with an ATP solution to initiate the carboxylation reaction, dilution inactivation was reversed and further enzyme activation was induced to a final level that was dependent on Mg(2+) concentration. With the exception of the reaction at 10 mM Mg(2+) in the presence of acetyl CoA, the experimental data could be adequately described as first-order exponential approaches to steady state. At 10 mM Mg(2+) in the presence of acetyl CoA, both ATP cleavage and carboxyenzyme formation data were best described as a biexponential process, in which there was little ATP turnover at steady state. Modeling studies have been performed which produced simulated data that were similar to the experimental data, using a reaction scheme modified from one proposed previously [Legge, G. B., et al. (1996) Biochemistry 35, 3849-3856]. These studies indicate that the major foci of action of Mg(2+) are in the decarboxylation of the enzyme-carboxybiotin complex, the return of the biotin to the site of the biotin carboxylation reaction, and the coupling of ATP cleavage to biotin carboxylation.  相似文献   

10.
Membrane bound cardiac adenylyl cyclase was shown to undergo a spontaneous and irreversible thermal inactivation with a t1/2 of approximately 10 min. The loss of activity could not be explained by the action of endogenous proteases. Repeated freeze-thaw of membrane preparations resulted in a much increased rate of thermal inactivation (t1/2 = approx. 2 min). ATP, adenylimidodiphosphate, ADP, and PPi protected the enzyme from thermal inactivation with dissociation constants (Kd) of 193, 5.04, 84.4, and 6.3 microM, respectively. 5'-AMP and cyclic AMP were ineffective as protectors at concentrations as high as 3 mM. Activators of adenylyl cyclase such as Mn2+, forskolin, 5-guanylylimidodiphosphate, and NaF and 9 mM Mg2+ protected against thermal inactivation with Kd of 16.8 microM, 8.81 microM, 0.23 microM and 1.04 mM, respectively. Mg2+ alone was without effect. Thermal inactivation was first order under all conditions tested. Arrhenius plots of the rate constants for inactivation vs temperature were linear. The increased stability of ligand bound adenylyl cyclase was shown to be associated with an increased free energy of activation (delta G 0). These data provide evidence for the existence of two distinct conformations of cardiac adenylyl cyclase based on different susceptibilities to thermal inactivation. These enzyme conformations, termed E1 and E2, may be important reaction intermediates. The thermal stability of E1 was highly influenced by the enzyme's membrane lipid environment. The formation of E2 from E1 was enhanced by interaction with substrate, PPi, activators of adenylyl cyclase, and by interaction with dissociated stimulatory guanine nucleotide binding protein-alpha beta gamma heterotrimers.  相似文献   

11.
Poly(A)-specific ribonuclease (PARN) is a cap-interacting and poly(A)-specific 3'-exoribonuclease that efficiently degrades mRNA poly(A) tails. Based on the enzyme's preference for its natural substrates, we examined the role of purine nucleotides as potent effectors of human PARN activity. We found that all purine nucleotides tested can reduce poly(A) degradation by PARN. Detailed kinetic analysis revealed that RTP nucleotides behave as non-competitive inhibitors while RDP and RMP exhibit competitive inhibition. Mg(2 + ) which is a catalytically important mediator of PARN activity can release inhibition of RTP and RDP but not RMP. Although many strategies have been proposed for the regulation of PARN activity, very little is known about the modulation of PARN activity by small molecule effectors, such as nucleotides. Our data imply that PARN activity can be modulated by purine nucleotides in vitro, providing an additional simple regulatory mechanism.  相似文献   

12.
The effect of ligands (glucose, ATP and Mg2+) and zwitterionic micellesof lysophosphatidylcholine (LPC) or N-hexadecyl-N,N-dimethyl-3-ammoniumpropanesulfonate (HPS) in the yeast hexokinase (HK) stability was studied at35°C. The thermal inactivation kinetics followed one-exponentialdecay. The effect of ligands on protecting the enzyme against inactivationfollowed the order: glucose>glucose/Mg2+>ATP/Mg2+Mg2+bufferonly. Both LPC and HPS micelles increased the enzyme stability only whenthe incubation medium contained glucose or glucose/Mg2+,suggesting that the protein conformation is a key prerequisite for theenzyme-micelle interaction to take place. This enzyme-micelle interactionresulted in an increased catalytic efficiency (with a decrease in Km forATP and increase in Vmax as well as in changes on the tertiary (intrinsicfluorescence) structure of the yeast hexokinase.  相似文献   

13.
NADP-isocitrate dehydrogenase [isocitrate:NADP(sup+) oxidoreductase (decarboxylating); EC 1.1.1.42] was purified from Cephalosporium acremonium as a single species. The enzyme is a dimer of 140 kDa with identical subunits of 75 kDa. The existence of a monomer-dimer equilibrium is apparent as revealed by an enzyme dilution approach. The chelate complex of the tribasic form of isocitrate and Mg(sup2+) is the true substrate. The V(infmax) depends on a basic form of an ionizable group of the enzyme-substrate complex with a pK(infes) (pK of the enzyme-substrate complex) of 6.9 and a (Delta)H(infion) (activation enthalpy) of -2 (plusmn) 0.4 kcal mol(sup-1) (ca. 8 (plusmn) 2 kJ mol(sup-1)). The enzyme showed maximum activity at 60(deg)C, an unusually high temperature for a nonthermophilic fungus. The thermodynamic parameters for isocitrate oxidative decarboxylation and for the binding of isocitrate and NADP(sup+) were calculated. We analyzed the kinetic thermal stability of the enzyme at pH 6.5 and 7.6. It was inactivated above 40(deg)C following a first-order kinetics. The presence of 12 mM Mg(sup2+) plus 10 mM dl-isocitrate led to 100% protection of enzyme activity against inactivation at 60(deg)C for 120 min. Removal of either or both compounds led to activity loss. A greater stabilizing role for Mg(sup2+) was seen at pH 6.5 than at pH 7.6, whereas the stabilizing effect of isocitrate was not dependent on pH.  相似文献   

14.
15.
In studying transketolase (TK) from Saccharomyces cerevisiae, the majority of researchers use as cofactors Mg(2+) and thiamine diphosphate (ThDP) (by analogy with other ThDP-dependent enzymes), whereas the active site of native holoTK is known to contain only Ca(2+). Experiments in which Mg(2+) was substituted for Ca(2+) demonstrated that the kinetic properties of TK varied with the bivalent cation cofactor. This led to the assumption that TK species obtained by reconstitution from apoTK and ThDP in the presence of Ca(2+) or Mg(2+), respectively, adopt different conformations. Kinetic study of the H103A mutant yeast transketolase. FEBS Letters 567, 270-274]. Analysis of far-UV circular dichroism (CD) spectra and of data, obtained using methods of thermal denaturing, differential scanning calorimetry (DSC) and tryptophan fluorescence spectroscopy, corroborated this assumption. Indeed, the ratios of secondary structure elements in the molecule of apoTK, recorded in the presence of Ca(2+) or Mg(2+), respectively, turned out to be different. The two forms of the holoenzyme, obtained by reconstitution from apoTK and ThDP in the presence of Ca(2+) or Mg(2+), respectively, also differed in stability: the holoenzyme was more stable in the presence of Ca(2+) than Mg(2+).  相似文献   

16.
1. When complete hydrolysis of glycerophosphlipids and sphingomyelin in the outer membrane leaflet is brought about by treatment of intact red blood cells with phospholipase A2 and sphingomyelinase C, the (Ca2+ + Mg2+)-ATPase activity is not affected. 2. Complete hydrolysis of sphingomyelin, by treatment of leaky ghosts with spingomyelinase C, does not lead to an inactivation of the (Ca2+ + Mg2+)-ATPase. 3. Treatment of ghosts with phospholipase A2 (from either procine pancreas of Naja naja venom), under conditions causing an essentially complete hydrolysis of the total glycerophospholipid fraction of the membrane, results in inactivation of the (Ca2+ + Mg2+)-ATPase by some 80--85%. The residual activity is lost when the produced lyso-compounds (and fatty acids) are removed by subsequent treatment of the ghosts with bovine serum albumin. 4. The degree of inactivation of the (Ca2+ + Mg2+)-ATPase, caused by treatment of ghosts with phospholipase C, is directly proportional to the percentage by which the glycerophospholipid fraction in the inner membrane layer is degraded. 5. After essentially complete inactivation of the (Ca2+ + Mg2+)-ATPase by treatment of ghosts with phospholipase C from Bacillus cereus, the enzyme is reactivated by the addition of any of the glycerophospholipids, phosphatidylserine, phosphatidylcholine, phosphatidylethanolamine or lysophosphatidylcholine, but not by addition of sphingomyeline, free fatty acids or the detergent Triton X-100. 6. It is concluded that only the glycerophospholipids in the human erythrocyte membrane are involved in the maintenance of the (Ca2+ + Mg2+)-ATPase activity, and in particular that fraction of these phospholipids located in the inner half of the membrane.  相似文献   

17.
Rat liver plasma membranes contain (Ca2+-Mg2+)-ATPase sensitive to inhibition by both glucagon and Mg2+. We have previously shown that Mg2+ inhibition is mediated by a 30,000-dalton inhibitor, originally identified as a membrane-bound protein. In fact, this inhibitor is also present in the 100,000 X g supernatant of the total liver homogenate. Its purification was achieved from this fraction by a combination of ammonium sulfate washing, gel filtration, and cationic exchange chromatography. N-Ethylmaleimide (NEM) treatment caused the inactivation of the purified inhibitor, which suggested that this protein possesses at least one NEM-sensitive sulfhydryl group essential for its activity. Treatment of the liver plasma membranes with NEM resulted in a 2- and 5-fold decrease in the affinity of the (Ca2+-Mg2+)-ATPase for glucagon and Mg2+, respectively, while the basal enzyme activity remained unchanged. This effect of NEM was concentration-, pH-, and time-dependent, optimal conditions being obtained by a 60-min treatment of plasma membranes with 50 mM NEM, at pH 7 and at 4 degrees C. The presence of 0.5 mM Mg2+ during NEM treatment of the plasma membranes prevented NEM inactivation. Reconstitution experiments showed that addition of the purified inhibitor to NEM-treated plasma membranes restored the inhibitions of the (Ca2+-Mg2+)-ATPase by both magnesium and glucagon. It is proposed that the (Ca2+-Mg2+)-ATPase inhibitor not only confers its sensitivity of the liver (Ca2+-Mg2+)-ATPase to Mg2+, but also mediates the inhibition of this system by glucagon.  相似文献   

18.
Thermal inactivation and unfolding of the dimeric arginine kinase (AK) from sea cucumber Stichopus japonicus was investigated. The activation energy was calculated to be 388 kJ/mol. Based on the analysis of the denaturation course at 58 degrees C, a model is suggested for the thermal unfolding of this dimeric AK. In addition, the effect of free Mg(2+) and the potential biological significance on the thermal unfolding of dimeric AK is discussed.  相似文献   

19.
Magnesium levels in cardiac myocytes change in cardiovascular diseases. Intracellular free magnesium (Mg(i)) inhibits L-type Ca(2+) currents through Ca(V)1.2 channels in cardiac myocytes, but the mechanism of this effect is unknown. We hypothesized that Mg(i) acts through the COOH-terminal EF-hand of Ca(V)1.2. EF-hand mutants were engineered to have either decreased (D1546A/N/S/K) or increased (K1543D and K1539D) Mg(2+) affinity. In whole-cell patch clamp experiments, increased Mg(i) reduced both Ba(2+) and Ca(2+) currents conducted by wild type (WT) Ca(V)1.2 channels expressed in tsA-201 cells with similar affinity. Exposure of WT Ca(V)1.2 to lower Mg(i) (0.26 mM) increased the amplitudes of Ba(2+) currents 2.6 +/- 0.4-fold without effects on the voltage dependence of activation and inactivation. In contrast, increasing Mg(i) to 2.4 or 7.2 mM reduced current amplitude to 0.5 +/- 0.1 and 0.26 +/- 0.05 of the control level at 0.8 mM Mg(i). The effects of Mg(i) on peak Ba(2+) currents were approximately fit by a single binding site model with an apparent K(d) of 0.65 mM. The apparent K(d) for this effect of Mg(i) was shifted approximately 3.3- to 16.5-fold to higher concentration in D1546A/N/S mutants, with only small effects on the voltage dependence of activation and inactivation. Moreover, mutant D1546K was insensitive to Mg(i) up to 7.2 mM. In contrast to these results, peak Ba(2+) currents through the K1543D mutant were inhibited by lower concentrations of Mg(i) compared with WT, consistent with approximately fourfold reduction in apparent K(d) for Mg(i), and inhibition of mutant K1539D by Mg(i) was also increased comparably. In addition to these effects, voltage-dependent inactivation of K1543D and K1539D was incomplete at positive membrane potentials when Mg(i) was reduced to 0.26 or 0.1 mM, respectively. These results support a novel mechanism linking the COOH-terminal EF-hand with modulation of Ca(V)1.2 channels by Mg(i). Our findings expand the repertoire of modulatory interactions taking place at the COOH terminus of Ca(V)1.2 channels, and reveal a potentially important role of Mg(i) binding to the COOH-terminal EF-hand in regulating Ca(2+) influx in physiological and pathophysiological states.  相似文献   

20.
1. The 3'-ribosyl ester of ATP with 2-nitro-4-azidophenyl propionic acid has been prepared and its ability to act as a photoaffinity label of (Na+ + K+)-ATPase has been tested. 2. In the dark 3'-O-[3-(2-nitro-4-azidophenyl)-propionyl]adenosine triphosphate (N3-ATP) is a substrate of (Na+ + K+)-ATPase and a competitive inhibitor of ATP hydrolysis. 3. Upon irradiation by ultraviolet light, N3-ATP photolabels the high-affinity ATP-binding site and is covalently attached to the alpha-subunit and an approximately 12000-Mr component. 4. Photolabeling of the alpha-subunit by N3-ATP irreversibly inactivates (Na+ + K+)-ATPase. 5. Photoinactivation is strictly Mg2+-dependent. Na+ enhances the inactivation. ATP or ADP and K+ protect the enzyme against inactivation. 6. Mg2+, in concentrations required for photoinactivation, protects (Na+ + K+)-ATPase against inactivation by tryptic digestion under controlled conditions. 7. It is assumed that a conformational change of the ATP-binding site of (Na+ + K+)-ATPase occurs upon binding of Mg2+ to a low-affinity site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号