首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
MAVID is a multiple alignment program suitable for many large genomic regions. The MAVID web server allows biomedical researchers to quickly obtain multiple alignments for genomic sequences and to subsequently analyse the alignments for conserved regions. MAVID has been successfully used for the alignment of closely related species such as primates and also for the alignment of more distant organisms such as human and fugu. The server is fast, capable of aligning hundreds of kilobases in less than a minute. The multiple alignment is used to build a phylogenetic tree for the sequences, which is subsequently used as a basis for identifying conserved regions in the alignment. The server can be accessed at http://baboon.math.berkeley.edu/mavid/.  相似文献   

2.
When investigators undertake searches of DNA databases, they normally discard large numbers of alignments that demonstrate very weak resemblances to each other, retaining only those that show statistically significant levels of resemblance. We show here that a great deal of information can be extracted from these weak alignments by examining them en masse. This is done by building three-dimensional similarity landscapes from the alignments, landscapes that reveal whether an unusual number of individually nonsignificant alignments tend to match up to a particular region of the query sequence being searched. The power of the search is increased by the use of libraries consisting entirely of introns or of exons. We show that (1) similarity landscapes with a variety of features can be generated from both intron and exon libraries, using introns or exons as query sequences; (2) the landscape features are real and not a statistical artifact; (3) well-known protein motifs used as query sequences can generate various landscape features; and (4) there is some evidence for resemblances between short regions of sequence carried by introns and exons. One possible interpretation of these results is that both introns and exons may have been built up during their evolution from short regions of sequence that as a result are now widely distributed throughout eukaryotic genomes. Such an interpretation would imply that these short regions have common ancestry. Alternatively, the wide sharing of short pieces of DNA may reflect regions with particular structural properties that have arisen through convergent evolution. The similarity-landscape approach can be used to detect such widespread structural motifs and sequence motifs in the genome that might be missed by less-global searches. It can also be used in conjunction with algorithms developed for detecting significant multiple alignments by isolating promising subsets of the databases that can be examined in more detail.Correspondence to: C. Wills  相似文献   

3.
AltAVisT: comparing alternative multiple sequence alignments   总被引:2,自引:0,他引:2  
We introduce a WWW-based tool that is able to compare two alternative multiple alignments of a given sequence set. Regions where both alignments coincide are color-coded to visualize the local agreement between the two alignments and to identify those regions that can be considered to be reliably aligned. AVAILABILITY: http://bibiserv.techfak.uni-bielefeld.de/altavist/.  相似文献   

4.
Mitochondria, besides their central role in energy metabolism, have recently been found to be involved in a number of basic processes of cell life and to contribute to the pathogenesis of many degenerative diseases. All functions of mitochondria depend on the interaction of nuclear and organellar genomes. Mitochondrial genomes have been extensively sequenced and analysed and the data collected in several specialised databases. In order to collect information on nuclear coded mitochondrial proteins we developed MitoNuc and MitoAln, two related databases containing, respectively, detailed information on sequenced nuclear genes coding for mitochondrial proteins in Metazoa and yeast, and the multiple alignments of the relevant homologous protein coding regions. MitoNuc and MitoAln retrieval through SRS at http://bio-www.ba.cnr.it:8000/srs6/ can easily allow the extraction of sequence data, subsequences defined by specific features and nucleotide or amino acid multiple alignments.  相似文献   

5.
6.
Di Giulio M 《Gene》2008,426(1-2):39-46
The paradigm of the monophyletic origin of genes is deeply rooted in us all. For instance, this stems from the observation that the possibility of obtaining a good multiple alignment using the same protein from organisms from the three domains of life (Bacteria, Archaea and Eukarya) would seem to imply that the last universal common ancestor (LUCA) must have had that protein and, therefore, the origin of that gene must necessarily be monophyletic. The hypothesis of a polyphyletic origin of genes has to explain how it was possible to evolve highly conserved regions of multiple alignments of orthologous proteins from the three domains of life when these regions clearly seem to define a monophyletic origin of genes. If mRNAs were assembled at the stage of the LUCA through the trans-splicing of pieces of RNA representing mini-genes, and the translation of these mRNAs resulted in proteins whose genes (DNA) actually only evolved much later, i.e. only after the main domains of life were established, then this would explain why multiple alignments of orthologous proteins can be obtained from the three domains of life. Therefore, this makes these multiple alignments compatible with a polyphyletic origin of genes. I have analysed many multiple alignments of orthologous proteins from the three domains of life, reaching a conclusion that seems to suggest that these alignments are also compatible with a polyphyletic origin of genes because, for instance, they contain protein motifs characterising the domains of life. These motifs, and also genes, might have evolved late on, thus making their polyphyletic origin likely.  相似文献   

7.
MOTIVATION: The best quality multiple sequence alignments are generally considered to derive from structural superposition. However, no previous work has studied the relative performance of profile hidden Markov models (HMMs) derived from such alignments. Therefore several alignment methods have been used to generate multiple sequence alignments from 348 structurally aligned families in the HOMSTRAD database. The performance of profile HMMs derived from the structural and sequence-based alignments has been assessed for homologue detection. RESULTS: The best alignment methods studied here correctly align nearly 80% of residues with respect to structure alignments. Alignment quality and model sensitivity are found to be dependent on average number, length, and identity of sequences in the alignment. The striking conclusion is that, although structural data may improve the quality of multiple sequence alignments, this does not add to the ability of the derived profile HMMs to find sequence homologues. SUPPLEMENTARY INFORMATION: A list of HOMSTRAD families used in this study and the corresponding Pfam families is available at http://www.sanger.ac.uk/Users/sgj/alignments/map.html Contact: sgj@sanger.ac.uk  相似文献   

8.
MOTIVATION: We introduce a novel approach to multiple alignment that is based on an algorithm for rapidly checking whether single matches are consistent with a partial multiple alignment. This leads to a sequence annealing algorithm, which is an incremental method for building multiple sequence alignments one match at a time. Our approach improves significantly on the standard progressive alignment approach to multiple alignment. RESULTS: The sequence annealing algorithm performs well on benchmark test sets of protein sequences. It is not only sensitive, but also specific, drastically reducing the number of incorrectly aligned residues in comparison to other programs. The method allows for adjustment of the sensitivity/specificity tradeoff and can be used to reliably identify homologous regions among protein sequences. AVAILABILITY: An implementation of the sequence annealing algorithm is available at http://bio.math.berkeley.edu/amap/  相似文献   

9.
MOTIVATION: Amino acid sequence alignments are widely used in the analysis of protein structure, function and evolutionary relationships. Proteins within a superfamily usually share the same fold and possess related functions. These structural and functional constraints are reflected in the alignment conservation patterns. Positions of functional and/or structural importance tend to be more conserved. Conserved positions are usually clustered in distinct motifs surrounded by sequence segments of low conservation. Poorly conserved regions might also arise from the imperfections in multiple alignment algorithms and thus indicate possible alignment errors. Quantification of conservation by attributing a conservation index to each aligned position makes motif detection more convenient. Mapping these conservation indices onto a protein spatial structure helps to visualize spatial conservation features of the molecule and to predict functionally and/or structurally important sites. Analysis of conservation indices could be a useful tool in detection of potentially misaligned regions and will aid in improvement of multiple alignments. RESULTS: We developed a program to calculate a conservation index at each position in a multiple sequence alignment using several methods. Namely, amino acid frequencies at each position are estimated and the conservation index is calculated from these frequencies. We utilize both unweighted frequencies and frequencies weighted using two different strategies. Three conceptually different approaches (entropy-based, variance-based and matrix score-based) are implemented in the algorithm to define the conservation index. Calculating conservation indices for 35522 positions in 284 alignments from SMART database we demonstrate that different methods result in highly correlated (correlation coefficient more than 0.85) conservation indices. Conservation indices show statistically significant correlation between sequentially adjacent positions i and i + j, where j < 13, and averaging of the indices over the window of three positions is optimal for motif detection. Positions with gaps display substantially lower conservation properties. We compare conservation properties of the SMART alignments or FSSP structural alignments to those of the ClustalW alignments. The results suggest that conservation indices should be a valuable tool of alignment quality assessment and might be used as an objective function for refinement of multiple alignments. AVAILABILITY: The C code of the AL2CO program and its pre-compiled versions for several platforms as well as the details of the analysis are freely available at ftp://iole.swmed.edu/pub/al2co/.  相似文献   

10.
Protein structural alignments are generally considered as 'golden standard' for the alignment at the level of amino acid residues. In this study we have compared the quality of pairwise and multiple structural alignments of about 5900 homologous proteins from 718 families of known 3-D structures. We observe shifts in the alignment of regular secondary structural elements (helices and strands) between pairwise and multiple structural alignments. The differences between pairwise and multiple structural alignments within helical and beta-strand regions often correspond to 4 and 2 residue positions respectively. Such shifts correspond approximately to "one turn" of these regular secondary structures. We have performed manual analysis explicitly on the family of protein kinases. We note shifts of one or two turns in helix-helix alignments obtained using pairwise and multiple structural alignments. Investigations on the quality of the equivalent helix-helix, strand-strand pairs in terms of their residue side-chain accessibilities have been made. Our results indicate that the quality of the pairwise alignments is comparable to that of the multiple structural alignments and, in fact, is often better. We propose that pairwise alignment of protein structures should also be used in formulation of methods for structure prediction and evolutionary analysis.  相似文献   

11.
The Pfam Protein Families Database   总被引:17,自引:0,他引:17       下载免费PDF全文
Pfam is a large collection of protein multiple sequence alignments and profile hidden Markov models. Pfam is available on the World Wide Web in the UK at http://www.sanger.ac.uk/Software/Pfam/, in Sweden at http://www.cgb.ki.se/Pfam/, in France at http://pfam.jouy.inra.fr/ and in the US at http://pfam.wustl.edu/. The latest version (6.6) of Pfam contains 3071 families, which match 69% of proteins in SWISS-PROT 39 and TrEMBL 14. Structural data, where available, have been utilised to ensure that Pfam families correspond with structural domains, and to improve domain-based annotation. Predictions of non-domain regions are now also included. In addition to secondary structure, Pfam multiple sequence alignments now contain active site residue mark-up. New search tools, including taxonomy search and domain query, greatly add to the functionality and usability of the Pfam resource.  相似文献   

12.
For applications such as comparative modelling one major issue is the reliability of sequence alignments. Reliable regions in alignments can be predicted using sub-optimal alignments of the same pair of sequences. Here we show that reliable regions in alignments can also be predicted from multiple sequence profile information alone.Alignments were created for a set of remotely related pairs of proteins using five different test methods. Structural alignments were used to assess the quality of the alignments and the aligned positions were scored using information from the observed frequencies of amino acid residues in sequence profiles pre-generated for each template structure. High-scoring regions of these profile-derived alignment scores were a good predictor of reliably aligned regions.These profile-derived alignment scores are easy to obtain and are applicable to any alignment method. They can be used to detect those regions of alignments that are reliably aligned and to help predict the quality of an alignment. For those residues within secondary structure elements, the regions predicted as reliably aligned agreed with the structural alignments for between 92% and 97.4% of the residues. In loop regions just under 92% of the residues predicted to be reliable agreed with the structural alignments. The percentage of residues predicted as reliable ranged from 32.1% for helix residues to 52.8% for strand residues.This information could also be used to help predict conserved binding sites from sequence alignments. Residues in the template that were identified as binding sites, that aligned to an identical amino acid residue and where the sequence alignment agreed with the structural alignment were in highly conserved, high scoring regions over 80% of the time. This suggests that many binding sites that are present in both target and template sequences are in sequence-conserved regions and that there is the possibility of translating reliability to binding site prediction.  相似文献   

13.
A computer software package called 'FasParser' was developed for manipulating sequence data.It can be used on personal computers to perform series of analyses,including counting and viewing differences between two sequences at both DNA and codon levels,identifying overlapping regions between two alignments,sorting of sequences according to their IDs or lengths,concatenating sequences of multiple loci for a particular set of samples,translating nucleotide sequences to amino acids,and constructing alignments in several different formats,as well as some extracting and filtrating of data for a particular FASTA file.Majority of these functions can be run in a batch mode,which is very useful for analyzing large data sets.This package can be used by a broad audience,and is designed for researchers that do not have programming experience in sequence analyses.The GUI version of FasParser can be downloaded from https://github.com/Sun-Yanbo/FasParser,free of charge.  相似文献   

14.
MOTIVATION: Membrane-bound proteins are a special class of proteins. The regions that insert into the cell-membrane have a profoundly different hydrophobicity pattern compared with soluble proteins. Multiple alignment techniques use scoring schemes tailored for sequences of soluble proteins and are therefore in principle not optimal to align membrane-bound proteins. RESULTS: Transmembrane (TM) regions in protein sequences can be reliably recognized using state-of-the-art sequence prediction techniques. Furthermore, membrane-specific scoring matrices are available. We have developed a new alignment method, called PRALINETM, which integrates these two features to enhance multiple sequence alignment. We tested our algorithm on the TM alignment benchmark set by Bahr et al. (2001), and showed that the quality of TM alignments can be significantly improved compared with the quality produced by a standard multiple alignment technique. The results clearly indicate that the incorporation of these new elements into current state-of-the-art alignment methods is crucial for optimizing the alignment of TM proteins. AVAILABILITY: A webserver is available at http://www.ibi.vu.nl/programs/pralinewww.  相似文献   

15.
16.
Protein structural alignments are generally considered as ‘golden standard’ for the alignment at the level of amino acid residues. In this study we have compared the quality of pairwise and multiple structural alignments of about 5900 homologous proteins from 718 families of known 3-D structures. We observe shifts in the alignment of regular secondary structural elements (helices and strands) between pairwise and multiple structural alignments. The differences between pairwise and multiple structural alignments within helical and β-strand regions often correspond to 4 and 2 residue positions respectively. Such shifts correspond approximately to “one turn” of these regular secondary structures. We have performed manual analysis explicitly on the family of protein kinases. We note shifts of one or two turns in helix-helix alignments obtained using pairwise and multiple structural alignments. Investigations on the quality of the equivalent helix-helix, strand-strand pairs in terms of their residue side-chain accessibilities have been made. Our results indicate that the quality of the pairwise alignments is comparable to that of the multiple structural alignments and, in fact, is often better. We propose that pairwise alignment of protein structures should also be used in formulation of methods for structure prediction and evolutionary analysis.  相似文献   

17.
Alignment of RNA base pairing probability matrices   总被引:6,自引:0,他引:6  
MOTIVATION: Many classes of functional RNA molecules are characterized by highly conserved secondary structures but little detectable sequence similarity. Reliable multiple alignments can therefore be constructed only when the shared structural features are taken into account. Since multiple alignments are used as input for many subsequent methods of data analysis, structure-based alignments are an indispensable necessity in RNA bioinformatics. RESULTS: We present here a method to compute pairwise and progressive multiple alignments from the direct comparison of base pairing probability matrices. Instead of attempting to solve the folding and the alignment problem simultaneously as in the classical Sankoff's algorithm, we use McCaskill's approach to compute base pairing probability matrices which effectively incorporate the information on the energetics of each sequences. A novel, simplified variant of Sankoff's algorithms can then be employed to extract the maximum-weight common secondary structure and an associated alignment. AVAILABILITY: The programs pmcomp and pmmulti described in this contribution are implemented in Perl and can be downloaded together with the example datasets from http://www.tbi.univie.ac.at/RNA/PMcomp/. A web server is available at http://rna.tbi.univie.ac.at/cgi-bin/pmcgi.pl  相似文献   

18.
Rfam is a collection of multiple sequence alignments and covariance models representing non-coding RNA families. Rfam is available on the web in the UK at http://www.sanger.ac.uk/Software/Rfam/ and in the US at http://rfam.wustl.edu/. These websites allow the user to search a query sequence against a library of covariance models, and view multiple sequence alignments and family annotation. The database can also be downloaded in flatfile form and searched locally using the INFERNAL package (http://infernal.wustl.edu/). The first release of Rfam (1.0) contains 25 families, which annotate over 50 000 non-coding RNA genes in the taxonomic divisions of the EMBL nucleotide database.  相似文献   

19.
ABSTRACT: BACKGROUND: Multiple structure alignments have received increasing attention in recent years as an alternative to multiple sequence alignments. Although multiple structure alignment algorithms can potentially be applied to a number of problems, they have primarily been used for protein core identification. A method that is capable of solving a variety of problems using structure comparison is still absent. Here we introduce a program msTALI for aligning multiple protein structures. Our algorithm uses several informative features to guide its alignments: torsion angles, backbone Calpha atom positions, secondary structure, residue type, surface accessibility, and properties of nearby atoms. The algorithm allows the user to weight the types of information used to generate the alignment, which expands its utility to a wide variety of problems. RESULTS: msTALI exhibits competitive results on 824 families from the Homstrad and SABmark databases when compared to Matt and Mustang. We also demonstrate success at building a database of protein cores using 341 randomly selected CATH domains and highlight the contribution of msTALI compared to the CATH classifications. Finally, we present an example applying msTALI to the problem of detecting hinges in a protein undergoing rigid-body motion. CONCLUSIONS: msTALI is an effective algorithm for multiple structure alignment. In addition to its performance on standard comparison databases, it utilizes clear, informative features, allowing further customization for domain-specific applications. The C++ source code for msTALI is available for Linux on the web at http://ifestos.cse.sc.edu/mstali.  相似文献   

20.
SUMMARY: In the segment-by-segment approach to sequence alignment, pairwise and multiple alignments are generated by comparing gap-free segments of the sequences under study. This method is particularly efficient in detecting local homologies, and it has been used to identify functional regions in large genomic sequences. Herein, an algorithm is outlined that calculates optimal pairwise segment-by-segment alignments in essentially linear space. AVAILABILTIY: The program is available at the Bielefeld Bioinformatics Server (BiBiServ) at http://bibiserv.techfak. uni-bielefeld.de/dialign/  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号