首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Structurally tachykinin-related peptides have been isolated from various invertebrate species and shown to exhibit their biological activities through a G-protein-coupled receptor (GPCR) for a tachykinin-related peptide. In this paper, we report the identification of a novel tachykinin-related peptide receptor, the urechistachykinin receptor (UTKR) from the echiuroid worm, Urechis unitinctus. The deduced UTKR precursor includes seven transmembrane domains and typical sites for mammalian tachykinin receptors and invertebrate tachykinin-related peptide receptors. A functional analysis of the UTKR expressed in Xenopus oocytes demonstrated that UTKR, like tachykinin receptors and tachykinin-related peptide receptors, activates calcium-dependent signal transduction upon binding to its endogenous ligands, urechistachykinins (Uru-TKs) I-V and VII, which were isolated as Urechis tachykinin-related peptides from the nervous tissue of the Urechis unitinctus in our previous study. UTKR responded to all Uru-TKs equivalently, showing that UTKR possesses no selective affinity with Uru-TKs. In contrast, UTKR was not activated by substance P or an Uru-TK analog containing a C-terminal Met-NH2 instead of Arg-NH2. Furthermore, the genomic analysis revealed that the UTKR gene, like mammalian tachykinin receptor genes, consists of five exons interrupted by four introns, and all the intron-inserted positions are completely compatible with those of mammalian tachykinin receptor genes. These results suggest that mammalian tachykinin receptors and invertebrate tachykinin-related peptide receptors were evolved from a common ancestral GPCR gene. This is the first identification of an invertebrate tachykinin-related peptide receptor from other species than insects and also of the genomic structure of a tachykinin-related peptide receptor gene.  相似文献   

2.
Urotensin II (UII) has been reported as the most potent known vasoconstrictor. While rat and mouse orthologs of UII precursor protein have been reported, only the tentative structures of UII peptides of these animals have been demonstrated, since prepro-UII proteins lack typical processing sites for their mature peptides. In the present study, we isolated a novel peptide, UII-related peptide (URP), from the extract of the rat brain as the sole immunoreactive substance to anti-UII antibody; the amino acid sequence of the peptide was determined as ACFWKYCV. cDNAs encoding rat, mouse, and human precursor proteins for URP were cloned and revealed that the sequences of mouse and human URP peptides are the same as that for rat URP. Prepro-URP gene is expressed in several rat tissues such as those of the thymus, spleen, testis, and spinal cord, although with lower levels than the prepro-UII gene. In the human, the prepro-URP gene is expressed comparably to prepro-UII in several tissues except the spinal cord. URP was found to bind and activate the human or rat UII receptors (GPR14) and showed a hypotensive effect when administered to anesthetized rats. These results suggest that URP is the endogenous and functional ligand for UII receptor in the rat and mouse, and possibly in the human. We also describe the preparation of specific monoclonal antibodies raised against UII peptide and the establishment of a highly sensitive enzyme immunoassay system for UII peptides.  相似文献   

3.
Melanocytes and melanoma cells are known to possess receptors for melanocyte stimulating hormone (MSH). A cDNA clone, designated 11D, has been isolated from human melanoma cells and encodes a MSH receptor. The cloned cDNA encodes a 317 amino acid protein with transmembrane topography characteristics of a G-protein-coupled receptor, but it does not show striking similarity to already published sequences of other G-protein-coupled receptors. When 11D cDNA is expressed in COS-7 cells, it binds an 125I-labelled MSH analogue (NDP-MSH) in a specific manner. The bound ligand could be displaced by melanotropic peptides, alpha-MSH, beta-MSH, gamma-MSH and ACTH (adrenocorticotropic hormone), but not by the non-melanotropic peptide, beta-endorphin. This is the first report of the cloning of the receptor gene of the melanotropin receptor family.  相似文献   

4.
Mori M  Fujino M 《Peptides》2004,25(10):1815-1818
Urotensin II (UII) is a piscine neuropeptide originally isolated from the teleost urophysis. The existence of UII in mammals has been demonstrated by cloning of the mammalian orthologs of UII precursor protein genes. While rat and mouse orthologs have been reported, only the tentative structures of UII peptides of these animals have been demonstrated, since prepro-UII proteins lack the typical processing sites in the amino-terminal region of the mature peptides. A novel peptide, UII-related peptide (URP), was discovered by monitoring UII-immunoreactivity in the rat brain, and its amino acid sequence was determined to be ACFWKYCV. cDNAs encoding rat, mouse, and human precursor proteins for URP were cloned and showed that the sequences of mouse and human URP peptides are identical to that for rat URP. URP was found to bind and activate the human or rat urotensin II receptors [GPR14, UT receptor (UTR)] and showed a hypotensive effect when administrated to anesthetized rats. The prepro-URP gene is expressed in several rat tissues, although with lower levels than the prepro-UII gene and, in the human, is expressed comparably to prepro-UII in several tissues except the spinal cord. These results suggest that URP is the endogenous and functional ligand for urotensin II receptor in the rat and mouse, and possibly in the human.  相似文献   

5.
6.
Tachykinins (TKs) are the most prevalent vertebrate brain/gut peptides. In this study, we originally identified authentic TKs and their receptor from a protochordate, Ciona intestinalis. The Ciona TK (Ci-TK) precursor, like mammalian gamma-preprotachykinin A (gamma-PPTA), encodes two TKs, Ci-TK-I and -II, including the -FXGLM-NH(2) vertebrate TK consensus. Mass spectrometry of the neural extract revealed the production of both Ci-TKs. Ci-TK-I contains several Substance P (SP)-typical amino acids, whereas a Thr is exceptionally located at position 4 from the C terminus of Ci-TK-II. The Ci-TK gene encodes both Ci-TKs in the same exon, indicating no alternative generation of Ci-TKs, unlike the PPTA gene. These results suggested that the alternative splicing of the PPTA gene was established during evolution of vertebrates. The only Ci-TK receptor, Ci-TK-R, was equivalently activated by Ci-TK-I, SP, and neurokinin A at physiological concentrations, whereas Ci-TK-II showed 100-fold less potent activity, indicating that the ligand selectivity of Ci-TK-R is distinct from those of vertebrate TK receptors. Ci-TK-I, like SP, also elicited the typical contraction on the guinea pig ileum. The Ci-TK gene was expressed in neurons of the brain ganglion, small cells in the intestine, and the zone 7 in the endostyle, which corresponds to the vertebrate thyroid gland. Furthermore, the Ci-TK-R mRNA was distributed in these three tissues plus the gonad. These results showed that Ci-TKs play major roles in sexual behavior and feeding in protochordates as brain/gut peptides and endocrine/paracrine molecules. Taken together, our data revealed the biochemical and structural origins of vertebrate TKs and their receptors.  相似文献   

7.
Development and function of bombesin-like peptides and their receptors   总被引:9,自引:0,他引:9  
Amphibian bombesin and its related peptides consist a family of neuropeptides in many vertebrate species. Bombesin and two major bombesin-like peptide in mammals, gastrin-releasing peptide (GRP) and neuromedin B (NMB), have been shown to elicit various physiological effects. These include inhibition of feeding, smooth muscle contraction, exocrine and endocrine secretions, thermoregulation, blood pressure and sucrose regulations and cell growth. Receptors for GRP and NMB (GRP-R and NMB-R), as well as third subtype of bombesin-like peptide receptor (BRS-3) have been cloned. These receptors are G-protein-coupled receptors and are expressed in various brain regions and in the digestive tract. In this paper, we will summarize studies on these peptides and their receptors, with special reference to research using gene-knockout mice. These studies clearly demonstrated the role of three receptors in vivo and in vitro. We will also discuss the phylogeny of these receptors.  相似文献   

8.
Hemokinin-1 (HK-1) is a novel substance P (SP)-like peptide that is encoded by the preprotachykinin C (PPT-C) gene recently identified in mouse B cells and shown to be a potentially important regulator of B cell development (Nat. Immunol. 1 (2000) 392). We have now isolated and characterized the human and rat orthologs of PPT-C and examined activities of human and mouse HK-1 on the three tachykinin receptors, neurokinin-1-3 (NK1-3). The rat PPT-C polypeptide is highly homologous to mouse PPT-C and contains the same processing sites to generate predicted HK-1. The human PPT-C polypeptide is also homologous to mouse PPT-C, however, it contains two potential monobasic cleavage sites rather than a single dibasic cleavage site at the amino-terminal end of the predicted HK-1 peptide. Thus, human PPT-C has the potential to generate full length predicted HK-1 as well as a truncated version (HK-1(4-11)). Polymerase chain reaction analysis revealed that both human and mouse PPT-C were expressed in a variety of tissues with strong signals detected in the skin of both species and in the mouse brain. Binding and functional analysis indicated that human and mouse HK-1 peptides were nearly identical to SP in their overall activity profile on the three NK receptors with the most potent affinity for the NK1 receptor. The results indicate that PPT-C encodes another high affinity ligand of the NK1 receptor which may play an important role in mediating some of the physiological roles previously assigned to the NK1 receptor.  相似文献   

9.
The tachykinin (TK) and tachykinin-related peptide (TKRP) family represent one of the largest peptide families in the animal kingdom and exert their actions via a subfamily of structurally related G-protein-coupled receptors. In this study, we have identified a novel TKRP receptor from the Octopus heart, oct-TKRPR. oct-TKRPR includes domains and motifs typical of G-protein-coupled receptors. Xenopus oocytes that expressed oct-TKRPR, like TK and TKRP receptors, elicited an induction of membrane chloride currents coupled to the inositol phosphate/calcium pathway in response to Octopus TKRPs (oct-TKRP I-VII) with moderate ligand selectivity. Substance P and Octopus salivary gland-specific TK, oct-TK-I, completely failed to activate oct-TKRPR, whereas a Substance P analog containing a C-terminal Arg-NH2 exhibited equipotent activation of oct-TKRPs. These functional analyses prove that oct-TKRPs, but not oct-TK-I, serve as endogenous functional ligands through oct-TKRPR, although both of the family peptides were identified in a single species, and the importance of C-terminal Arg-NH2 in the specific recognition of TKRPs by TKRPR is conserved through evolutionary lineages of Octopus. Southern blotting of RT-PCR products revealed that the oct-TKRPR mRNA was widely distributed in the central and peripheral nervous systems plus several peripheral tissues. These results suggest multiple physiologic functions of oct-TKRPs as neuropeptides both in the Octopus central nervous system and in peripheral tissues. This is the first report on functional discrimination between invertebrate TKRPs and salivary gland-specific TKs.  相似文献   

10.
The structurally related orphan G-protein-coupled receptors GPR7 and GPR8 are expressed in the central nervous system, and their ligands have not been identified. Here, we report the identification of the endogenous ligand for both of these receptors. We purified the peptide ligand from porcine hypothalamus using stable Chinese hamster ovary cell lines expressing human GPR8 and cloned the cDNA encoding its precursor protein. The cDNA encodes two forms of the peptide ligand with lengths of 23 and 30 amino acid residues as mature peptides. We designated the two ligands neuropeptide W-23 (NPW23) and neuropeptide W-30 (NPW30). The amino acid sequence of NPW23 is completely identical to that of the N-terminal 23 residues of NPW30. Synthetic NPW23 and NPW30 activated and bound to both GPR7 and GPR8 at similar effective doses. Intracerebroventricular administration of NPW23 in rats increased food intake and stimulated prolactin release. These findings indicate that neuropeptide W is the endogenous ligand for both GPR7 and GPR8 and acts as a mediator of the central control of feeding and the neuroendocrine system.  相似文献   

11.
Substance P (SP) interacts with the neurokinin-1 (NK-1) G-protein-coupled receptor, which has been cloned in several species. In the present study, the domains of the NK-1 receptor involved in the binding of SP and SP-(7-11) C-terminal fragment have been analyzed using two peptide analogs containing the photoreactive amino acid para-benzoylphenylalanine ((p-Bz)Phe) in position 8 of their sequence. This study was carried out with [BAPA-Lys(6),(p-Bz)Phe(8),Pro(9),Met(O(2))(11)]SP-(7-11) and [BAPA(0),(p-Bz)Phe(8)]SP on both rat and human NK-1 receptors expressed in CHO cells. Combined trypsin and endo-GluC enzymatic complete digestions and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis led to the identification of the same domain of covalent interaction, (173)TMPSR(177), for the two photoactivatable peptides. Further digestion of this fragment with carboxypeptidase Y led to the identification of (173)TMP(175) in the second extracellular loop (E2) of the NK-1 receptor as the site of covalent attachment. Models of the conformation of this E2 loop in the human NK-1 receptor were generated using two different strategies, one based on homology with bovine rhodopsin and the other based on the solution conformation preferences of a synthetic peptide corresponding to the E2 loop.  相似文献   

12.
A cDNA clone encoding a novel putative G-protein-coupled receptor was isolated from a rat brain cDNA library using a PCR-amplified cDNA fragment as a hybridization probe. The 3,615-bp-long nucleotide sequence predicts a single open reading frame of 1,173 bp coding for 391 amino acids, giving a calculated molecular weight of 42.75 kD. The amino acid sequence shares features common to many other receptors, including the seven membrane-spanning hydrophobic regions and putative asparagine-linked glycosylation and phosphorylation sites. Northern blot analysis reveals that a corresponding approximately 3.7-kb mRNA is expressed in specific brain regions such as hypothalamus, cortex, hippocampus, and thalamus but not in other organs analyzed. Although the ligand for this receptor has not yet been identified, it shares some similarities with the vascular type-1 angiotensin II receptor, the vasoactive intestinal peptide (VIP) receptor, and the chemotactic receptors for human C5a anaphylatoxin and the formyl peptide fMet-Leu-Phe.  相似文献   

13.
Haemostatic proteinases may appear in brain tissue after injury and under inflammation as a result of the blood-brain barrier disruption. Serine proteinases regulate cell functions through G-protein-coupled transmembrane protease-activated receptors (PARs). Proteinases cleave only one peptide bond of receptor exodomain, which results in the formation of a new N-terminus (“tethered ligand”) that can specifically interact with the second extracellular loop of the receptor and activate it. Two types of receptors (EPCR and PAR1) are necessary for the cytoprotective effect of activated protein C (APC) on endothelial cells and neurons. APC activates PAR-1 and controls gene expression of proinflammatory and proapoptotic factors. APC exerts a protective effect in stressed neurons and hypoxic brain endothelium, modulates the activity of endothelial cell genes involved in apoptosis, and stabilizes the endothelial barrier. We suppose that the peptides analogous to the PAR1 tethered ligand released by APC may have a neuroprotective effect similar to that of APC. We have simulated ischemic brain damage using a model of glutamate excitotoxicity on the primary culture of neonatal rat hippocampal neurons. It was shown that NPNDKYEPF-amide (peptide 9) and NPNDKYEPFWE (peptide 11) more effectively reduced the level of apoptosis during neuronal excitotoxicity in comparison with APC, while the influence of these peptides on the number of living and necrotic cells was analogous to that of APC. The findings suggest that the protective effect of the peptides analogous to the PAR1 tethered ligand is comparable to the protective effect of APC under glutamate excitotoxicity. Investigation of the mechanisms of PAR1 agonist peptides action and development of their shortened versions with high neuroprotective activity may be a relevant approach to the search of novel neuroprotective drugs for treating neurodegenerative diseases and strokes.  相似文献   

14.
Sugo T  Mori M 《Peptides》2008,29(5):809-812
Urotensin II (UII), which was originally isolated from the teleost urophysis, was identified as an endogenous ligand for orphan G protein-coupled receptor 14 (GPR14). The structure of mammalian UII was confirmed by isolation from spinal cord in porcine, or was easily predicted from the sequence of prepro-UII in human. For rat and mouse, however, only the tentative sequences of UII peptides have been demonstrated because the typical processing sites are absent from the amino-terminal region of the mature peptides. Isolation of UII-like immunoreactivity in rat brain revealed the presence of a novel peptide, designated urotensin II-related peptide (URP). URP binds and activates the human and rat urotensin II receptors (GPR14) and has a hypotensive effect when administrated to anesthetized rats. Based on the DNA sequences of the cloned prepro-URP gene, the amino acid sequences of mature URP for mouse and human are identical to that for rat URP. These results suggest that URP is the endogenous and functional ligand for urotensin II receptor in the rat and mouse, and possibly in the human.  相似文献   

15.
The human relaxin family comprises seven peptide hormones with various biological functions mediated through interactions with G-protein-coupled receptors. Interestingly, among the hitherto characterized receptors there is no absolute selectivity toward their primary ligand. The most striking example of this is the relaxin family ancestor, relaxin-3, which is an agonist for three of the four currently known relaxin receptors: GPCR135, GPCR142, and LGR7. Relaxin-3 and its endogenous receptor GPCR135 are both expressed predominantly in the brain and have been linked to regulation of stress and feeding. However, to fully understand the role of relaxin-3 in neurological signaling, the development of selective GPCR135 agonists and antagonists for in vivo studies is crucial. Recent reports have demonstrated that such selective ligands can be achieved by making chimeric peptides comprising the relaxin-3 B-chain combined with the INSL5 A-chain. To obtain structural insights into the consequences of combining A- and B-chains from different relaxins we have determined the NMR solution structure of a human relaxin-3/INSL5 chimeric peptide. The structure reveals that the INSL5 A-chain adopts a conformation similar to the relaxin-3 A-chain, and thus has the ability to structurally support a native-like conformation of the relaxin-3 B-chain. These findings suggest that the decrease in activity at the LGR7 receptor seen for this peptide is a result of the removal of a secondary LGR7 binding site present in the relaxin-3 A-chain, rather than conformational changes in the primary B-chain receptor binding site.  相似文献   

16.
The prolactin-releasing peptide receptor and its bioactive RF-amide peptide (PrRP20) have been investigated to explore the ligand binding mode of peptide G-protein-coupled receptors (GPCRs). By receptor mutagenesis, we identified the conserved aspartate in the upper transmembrane helix 6 (Asp(6.59)) of the receptor as the first position that directly interacts with arginine 19 of the ligand (Arg(19)). Replacement of Asp(6.59) with Arg(19) of PrRP20 led to D6.59R, which turned out to be a constitutively active receptor mutant (CAM). This suggests that the mutated residue at the top of transmembrane helix 6 mimics Arg(19) by interacting with additional binding partners in the receptor. Next, we generated an initial comparative model of this CAM because no ligand docking was required, and we selected the next set of receptor mutants to find the engaged partners of the binding pocket. In an iterative process, we identified two acidic residues and two hydrophobic residues that form the peptide ligand binding pocket. As all residues are localized on top or in the upper part of the transmembrane domains, we clearly can show that the extracellular surface of the receptor is sufficient for full signal transduction for prolactin-releasing peptide, rather than a deep, membrane-embedded binding pocket. This contributes to the knowledge of the binding of peptide ligands to GPCRs and might facilitate the development of GPCR ligands, but it also provides new targeting of CAMs involved in hereditary diseases.  相似文献   

17.
Dumont Y  Chabot JG  Quirion R 《Peptides》2004,25(3):365-391
Over the past 20 years, receptor autoradiography has proven most useful to provide clues as to the role of various families of peptides expressed in the brain. Early on, we used this method to investigate the possible roles of various brain peptides. Natriuretic peptide (NP), neuropeptide Y (NPY) and calcitonin (CT) peptide families are widely distributed in the peripheral and central nervous system and induced multiple biological effects by activating plasma membrane receptor proteins. The NP family includes atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP) and C-type natriuretic peptide (CNP). The NPY family is composed of at least three peptides NPY, peptide YY (PYY) and the pancreatic polypeptides (PPs). The CT family includes CT, calcitonin gene-related peptide (CGRP), amylin (AMY), adrenomedullin (AM) and two newly isolated peptides, intermedin and calcitonin receptor-stimulating peptide (CRSP). Using quantitative receptor autoradiography as well as selective agonists and antagonists for each peptide family, in vivo and in vitro assays revealed complex pharmacological responses and radioligand binding profile. The existence of heterogeneous populations of NP, NPY and CT/CGRP receptors has been confirmed by cloning. Three NP receptors have been cloned. One is a single-transmembrane clearance receptor (NPR-C) while the other two known as CG-A (or NPR-A) and CG-B (or NPR-B) are coupled to guanylate cyclase. Five NPY receptors have been cloned designated as Y(1), Y(2), Y(4), Y(5) and y(6). All NPY receptors belong to the seven-transmembrane G-protein coupled receptors family (GPCRs; subfamily type I). CGRP, AMY and AM receptors are complexes which include a GPCR (the CT receptor or CTR and calcitonin receptor-like receptor or CRLR) and a single-transmembrane domain protein known as receptor-activity-modifying-proteins (RAMPs) as well as an intracellular protein named receptor-component-protein (RCP). We review here tools that are currently available in order to target each NP, NPY and CT/CGRP receptor subtype and establish their respective pathophysiological relevance.  相似文献   

18.
D Regoli  F Nantel 《Biopolymers》1991,31(6):777-783
The neurokinins are a group of naturally occurring peptides with the common C-terminal sequence Phe-X-Gly-Leu-Met.NH2. They include substance P (SP), neurokinin A (NKA), and neurokinin B (NKB). SP and NKA are coded on the same gene, the PPT-A, while NKB is coded on a separate gene, the PPT-B. Neurokinins are present in the central nervous system and in peripheral organs where they exert various actions. They act on three receptors--NK-1, NK-2, and NK-3--characterized through pharmacological, biochemical, and histochemical studies. Selective agonists for each neurokinin receptor were developed and evaluated on isolated smooth muscle preparations containing only one neurokinin receptor type. All three neurokinin receptors were cloned and expressed in Xenopus oocytes. Relative affinities of those receptors to neurokinins are the same as in their respective smooth muscle preparation. Finally, the mechanism of action of SP on histamine release from rat peritoneal mast cell has been studied and a direct activation of G proteins by peptides with basic amino acids is proposed as a working hypothesis.  相似文献   

19.
By using degenerate oligonucleotide primers deduced from the conserved regions of the mammalian somatostatin receptors, a novel G-protein-coupled receptor from Drosophila melanogaster has been isolated exhibiting structural similarities to mammalian somatostatin/galanin/opioid receptors. To identify the bioactive ligand, a 'reverse physiology' strategy was used whereby orphan Drosophila receptor-expressing frog oocytes were screened against potential ligands. Agonistic activity was electrophysiologically recorded as inward potassium currents mediated through co-expressed G-protein-gated inwardly rectifying potassium channels (GIRK). Using this approach a novel peptide was purified from Drosophila head extracts. Mass spectrometry revealed an octapeptide of 925 Da with a sequence Ser-Arg-Pro-Tyr-Ser-Phe-Gly-Leu-NH(2) reminiscent of insect allatostatin peptides known to control diverse functions such as juvenile hormone synthesis during metamorphosis or visceral muscle contractions. Picomolar concentrations of the synthesized octapeptide activated the cognate receptor response mediated through GIRK1, indicating that we have isolated the 394-amino-acid Drosophila allatostatin receptor which is coupled to the Gi/Go class of G proteins.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号