首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Enrichment of soil samples for organisms able to utilize the herbicide bromoxynil (3,5-dibromo-4-hydroxybenzonitrile) as a nitrogen source yielded bacterial isolates capable of rapidly metabolizing this compound. One isolate, identified as Klebsiella pneumoniae subsp. ozaenae, could completely convert 0.05% bromoxynil to 3,5-dibromo-4-hydroxybenzoic acid and use the liberated ammonia as a sole nitrogen source. Assays of cell extracts of this organism for the ability to produce ammonia from bromoxynil revealed the presence of a nitrilase (EC 3.5.51) activity. The enzyme could not utilize 3,5-dibromo-4-hydroxybenzamide as a substrate, and no 3,5-dibromo-4-hydroxybenzamide could be detected as a product of bromoxynil transformation. Comparison of related aromatic nitriles as substrates demonstrated that the Klebsiella enzyme is highly specific for bromoxynil.  相似文献   

2.
Biological conversion of the herbicide bromoxynil (3,5-dibromo-4-hydroxybenzonitrile) was studied in a batch culture ofPseudomonas putida by using HPLC. The process had a cometabolic character and proceeded only in the presence of another, simultaneously metabolizable, carbon and energy source. The intensity of degradation correlated with the growth rate, the degradation stopping when the cosubstrate becomes exhausted or the pH value of the medium falls below 6.5. In a medium with glucose, no lag phase longer than one day was observed concerning growth, sugar and herbicide consumption and formation of metabolic herbicide derivatives (3,5-dibromo-4-hydroxybenzamide and 3,5-dibromo-4-hydroxybenzoic acid). In a medium with ribose, the initial lag of the above processes took 2 d. No formation of other degradation products was detected. Growth inhibition was proportional to the concentration of bromoxynil. Translated by Č. Novotny  相似文献   

3.
It was found in field, and laboratory experiments that of 50 ppm of the herbicide bromoxynil (3,5-dibromo-4-hydroxybenzonitrile added to grey forest soil 20-80% were still detected after three months). Bromoxynil did not influence (except for a short-termed stimulation of the number of bacteria) the amount and composition of the basic groups of soil microorganisms. In enrichment cultures of soil microorganisms metabolie products of bromoxynil decomposition (3,5-dibromo-4-hydroxybenzamide and 3,5-dibromo-4-hydroxybenzoic acid) were detected and a stimulating effect of cosubstratos on its decomposition was demonstrated. Bromoxynil concentration, aeration conditions and the presence of cosubstrates (ribose in particular) influenced the rate and degree of the decomposition process inPsevdomonas putida. In addition to the degradation products mentioned above, production of methoxylated and partially dehalogenated aromatic compounds was detected.  相似文献   

4.
A Klebsiella ozaenae nitrilase which converts the herbicide bromoxynil (3,5-dibromo-4-hydroxybenzonitrile) to 3,5-dibromo-4-hydroxybenzoic acid has been expressed at 5-10% of the total protein in Escherichia coli from a cloned K. ozaenae DNA segment and purified 10.3-fold to homogeneity. The purified polypeptide is molecular weight 37,000 in size, but the active form of the enzyme is composed of two identical subunits. The purified enzyme exhibits a pH optimum of 9.2 and a temperature optimum of 35 degrees C. The purified enzyme is also quite sensitive to thiol-specific reagents. The nitrilase is highly specific for bromoxynil as substrate with a Km of 0.31 mM and Vmax of 15 mumol of NH3 released/min/mg protein. Analysis of bromoxynil-related substrates indicates the enzyme exhibits preference for compounds containing two meta-positioned halogen atoms. Nucleotide sequence analysis of a 1,212-base pair PstI-HincII DNA segment containing the locus (bxn) encoding the bromoxynil-specific nitrilase reveals a single open reading frame encoding a polypeptide 349 amino acids in length. The predicted sequence of the purified enzyme was derived from the nucleotide sequence of the bxn gene.  相似文献   

5.
An enzyme (nitrilase) that converts the herbicide bromoxynil (3,5-dibromo-4-hydroxybenzonitrile) to its metabolite 3,5-dibromo-4-hydroxybenzoic acid was shown to be plasmid encoded in the natural soil isolate Klebsiella ozaenae. The bromoxynil-specific nitrilase was expressed in Escherichia coli by direct transfer and stable maintenance in E. coli of a naturally occurring 82-kilobase K. ozaenae plasmid. Irreversible loss of the ability to metabolize bromoxynil both in E. coli and K. ozaenae was associated with the conversion of the 82-kilobase plasmid to a 68-kilobase species. In E. coli this conversion was the result of a host recA+-dependent recombinational event. A gene, designated bxn, encoding the bromoxynil-specific nitrilase was constitutively expressed in K. ozaenae and E. coli and subcloned on a 2.6-kilobase PstI DNA segment. The polarity and the location of the gene were determined by assaying hybrid constructs of the bromoxynil-specific nitrilase gene fused with the heterologous lac promoter.  相似文献   

6.
Desulfitobacterium chlororespirans has been shown to grow by coupling the oxidation of lactate to the metabolic reductive dehalogenation of ortho chlorines on polysubstituted phenols. Here, we examine the ability of D. chlororespirans to debrominate and deiodinate the polysubstituted herbicides bromoxynil (3,5-dibromo-4-hydroxybenzonitrile), ioxynil (3,5-diiodo-4-hydroxybenzonitrile), and the bromoxynil metabolite 3,5-dibromo-4-hydroxybenzoate (DBHB). Stoichiometric debromination of bromoxynil to 4-cyanophenol and DBHB to 4-hydroxybenzoate occurred. Further, bromoxynil (35 to 75 microM) and DBHB (250 to 260 microM) were used as electron acceptors for growth. Doubling times for growth (means +/- standard deviations for triplicate cultures) on bromoxynil (18.4 +/- 5.2 h) and DBHB (11.9 +/- 1.4 h), determined by rate of [14C]lactate uptake into biomass, were similar to those previously reported for this microorganism during growth on pyruvate (15.4 h). In contrast, ioxynil was not deiodinated when added alone or when added with bromoxynil; however, ioxynil dehalogenation, with stoichiometric conversion to 4-cyanophenol, was observed when the culture was amended with 3-chloro-4-hydroxybenzoate (a previously reported electron acceptor). To our knowledge, this is the first direct report of deiodination by a bacterium in the Desulfitobacterium genus and the first report of an anaerobic pure culture with the ability to transform bromoxynil or ioxynil. This research provides valuable insights into the substrate range of D. chlororespirans.  相似文献   

7.
Desulfitobacterium chlororespirans has been shown to grow by coupling the oxidation of lactate to the metabolic reductive dehalogenation of ortho chlorines on polysubstituted phenols. Here, we examine the ability of D. chlororespirans to debrominate and deiodinate the polysubstituted herbicides bromoxynil (3,5-dibromo-4-hydroxybenzonitrile), ioxynil (3,5-diiodo-4-hydroxybenzonitrile), and the bromoxynil metabolite 3,5-dibromo-4-hydroxybenzoate (DBHB). Stoichiometric debromination of bromoxynil to 4-cyanophenol and DBHB to 4-hydroxybenzoate occurred. Further, bromoxynil (35 to 75 μM) and DBHB (250 to 260 μM) were used as electron acceptors for growth. Doubling times for growth (means ± standard deviations for triplicate cultures) on bromoxynil (18.4 ± 5.2 h) and DBHB (11.9 ± 1.4 h), determined by rate of [14C]lactate uptake into biomass, were similar to those previously reported for this microorganism during growth on pyruvate (15.4 h). In contrast, ioxynil was not deiodinated when added alone or when added with bromoxynil; however, ioxynil dehalogenation, with stoichiometric conversion to 4-cyanophenol, was observed when the culture was amended with 3-chloro-4-hydroxybenzoate (a previously reported electron acceptor). To our knowledge, this is the first direct report of deiodination by a bacterium in the Desulfitobacterium genus and the first report of an anaerobic pure culture with the ability to transform bromoxynil or ioxynil. This research provides valuable insights into the substrate range of D. chlororespirans.  相似文献   

8.
In the previous paper, I reported that 3,5-dibromo-4-hydroxybenzonitrile (bromoxynil) depolarizes the plasma membrane by inhibiting the electrogenic proton pump and discussed that the inhibition is caused by cytosol acidification due to influx of protonated bromoxynil and following release of proton (Shimmen in J Plant Res 123:715–722, 2010). However, a possibility of direct inhibition of the proton pump by bromoxynil flowed into the cell could not be excluded. In the present study, the direct effect of bromoxynil on the proton pump was unequivocally excluded.  相似文献   

9.
Cai T  Chen L  Xu J  Cai S 《Current microbiology》2011,63(2):218-225
Bromoxynil octanoate (BOO), the most widespread herbicide applied to maize, is potentially toxic to both animals and humans. In this article, a highly effective BOO-degrading bacterial strain, XB2, was isolated from the soil of a herbicide factory. The strain was identified as an Acinetobacter sp. based on its 16S rRNA gene sequence analysis, morphological, physiological, and biochemical properties. This strain could use BOO as its sole carbon source and could degrade 100?mg?l(-1) BOO to non-detectable levels in 72?h (h). The optimal pH and temperature for strain XB2's growth and degradation of BOO in MSM are 7.0 and 30°C, respectively. We propose the following pathway of BOO degradation by strain XB2: the first step is the scission of the ester bond to form bromoxynil, bromoxynil then transformed to 3,5-dibromo-4-hydroxybenzoic acid?due to the hydrolysis of nitriles, and debromination finally results in the formation of 3-bromo-4-hydroxybenzoic acid. Inoculating BOO-treated soil samples with strain XB2 resulted in a higher rate of BOO degradation than in non-inoculated soil, regardless of whether the soil had previously been sterilized.  相似文献   

10.
The herbicide bromoxynil (3,5-dibromo-4-hydroxybenzonitrile) was tested on mitochondria from etiolated pea (Pisum sativum L. cv Alaska) stems. This compound when used at micromolar concentrations ([almost equal to]20 [mu]M) inhibited malate- and succinate-dependent respiration by intact mitochondria but not oxidation of exogenously added NADH. Bromoxynil did not affect the activities of the succinic and the internal NADH dehydrogenases. Analyses of the effects induced by this herbicide on the membrane potential, [delta]pH, matrix Ca2+ movements, and dicarboxylate transport demonstrated that bromoxynil is likely to act as an inhibitor of the dicarboxylate carrier. In addition, bromoxynil caused a mild membrane uncoupling at concentrations [greater than or equal to]20 [mu]M. No effect on the ATPase activity was observed.  相似文献   

11.
The aim of this work was to determine the ability of rhodococci to transform 3,5-dichloro-4-hydroxybenzonitrile (chloroxynil), 3,5-dibromo-4-hydroxybenzonitrile (bromoxynil), 3,5-diiodo-4-hydroxybenzonitrile (ioxynil) and 2,6-dichlorobenzonitrile (dichlobenil); to identify the products and determine their acute toxicities. Rhodococcus erythropolis A4 and Rhodococcus rhodochrous PA-34 converted benzonitrile herbicides into amides, but only the former strain was able to hydrolyze 2,6-dichlorobenzamide into 2,6-dichlorobenzoic acid, and produced also more of the carboxylic acids from the other herbicides compared to strain PA-34. Transformation of nitriles into amides decreased acute toxicities for chloroxynil and dichlobenil, but increased them for bromoxynil and ioxynil. The amides inhibited root growth in Lactuca sativa less than the nitriles but more than the acids. The conversion of the nitrile group may be the first step in the mineralization of benzonitrile herbicides but cannot be itself considered to be a detoxification.  相似文献   

12.
Bromoxynil, 3,5-dibromo-4-hydroxybenzonitrile, is a commonly used herbicide and is also used as a tool to trigger rapid cell death in basic botany. However, the primary effect inducing cell death is not known. Bromoxynil inhibited the cytoplasmic streaming and killed cells in Chara corallina when it was applied in the acidic external medium. At higher pH, bromoxynil was inert even at high concentrations. It was speculated that bromoxynil in the protonated form enters the cell and acidifies the cytosol by releasing H+. Experiments using analogues of bromoxynil supported this possibility. Acidification of the cytosol by bromoxynil was confirmed by experiments using pollen tubes. Based on the acidity of the apoplast, the herbicide action of bromoxynil in higher plants was discussed.  相似文献   

13.
The soil actinobacteria Rhodococcus rhodochrous PA-34, Rhodococcus sp. NDB 1165 and Nocardia globerula NHB-2 grown in the presence of isobutyronitrile exhibited nitrilase activities towards benzonitrile (approx. 1.1–1.9 U mg?1 dry cell weight). The resting cell suspensions eliminated benzonitrile and the benzonitrile analogues chloroxynil (3,5-dichloro-4-hydroxybenzonitrile), bromoxynil (3,5-dibromo-4-hydroxybenzonitrile) and ioxynil (3,5-diiodo-4-hydroxybenzonitrile) (0.5 mM each) from reaction mixtures at 30°C and pH 8.0. The products were isolated and identified as the corresponding substituted benzoic acids. The reaction rates decreased in the order benzonitrile ? chloroxynil > bromoxynil > ioxynil in all strains. Depending on the strain, 92–100, 70–90 and 30–51% of chloroxynil, bromoxynil and ioxynil, respectively, was hydrolyzed after 5 h. After a 20-h incubation, almost full conversion of chloroxynil and bromoxynil was observed in all strains, while only about 60% of the added ioxynil was converted into carboxylic acid. The product of ioxynil was not metabolized any further, and those of the other two herbicides very slowly. None of the nitrilase-producing strains hydrolyzed dichlobenil (2,6-dichlorobenzonitrile). 3,5-Dibromo-4-hydroxybenzoic acid exhibited less inhibitory effect than bromoxynil both on luminescent bacteria and germinating seeds of Lactuca sativa. 3,5-Diiodo-4-hydroxybenzoic acid only exhibited lower toxicity than ioxynil in the latter test.  相似文献   

14.
We have isolated a temperature-sensitive mutant of Klebsiella aerogenes unable to grow aerobically at 42 C in standard glucose minimal medium containing 0.03 M ammonium sulfate as a source of nitrogen. This strain, MK810, will grow at this temperature in significantly lower concentrations of ammonia (1 mM) or when ammonia is replaced by a growth rate-limiting source of nitrogen such as histidine or glutamate. A detailed physiological characterization and preliminary biochemical tests support the contention that the mutant has an altered alpha-ketoglutarate dehydrogenase that at the restrictive condition fails to manufacture sufficient succinyl-coenzyme A. We explain the ammonia sensitivity by the dual role of alpha-ketoglutarate as substrate for the formation of succinyl-coenzyme A and glutamate. A defect in the enzyme necessary for the production of succinyl-coenzyme A makes ammonia an overly effective competitor for alpha-ketoglutarate.  相似文献   

15.
Kim J  Raushel FM 《Biochemistry》2004,43(18):5334-5340
Carbamoyl phosphate synthetase (CPS) from Escherichia coli consists of a small subunit (approximately 42 kDa) and a large subunit (approximately 118 kDa) and catalyzes the biosynthesis of carbamoyl phosphate from MgATP, bicarbonate, and glutamine. The enzyme is able to utilize external ammonia as an alternative nitrogen source when glutamine is absent. CPS contains an internal molecular tunnel, which has been proposed to facilitate the translocation of reaction intermediates from one active site to another. Ammonia, the product from the hydrolysis of glutamine in the small subunit, is apparently transported to the next active site in the large subunit of CPS over a distance of about 45 A. The ammonia tunnel that connects these two active sites provides a direct path for the guided diffusion of ammonia and protection from protonation. Molecular damage to the ammonia tunnel was conducted in an attempt to induce leakage of ammonia directly to the protein exterior by the creation of a perforation in the tunnel wall. A hole in the tunnel wall was made by mutation of integral amino acid residues with alanine residues. The triple mutant alphaP360A/alphaH361A/betaR265A was unable to utilize glutamine for the synthesis of carbamoyl phosphate. However, the mutant enzyme retained full catalytic activity when external ammonia was used as the nitrogen source. The synchronization of the partial reactions occurring at the three active sites observed with the wild-type CPS was seriously disrupted with the mutant enzyme when glutamine was used as a nitrogen source. Overall, the catalytic constants of the mutant were consistent with the model where the channeling of ammonia has been disrupted due to the leakage from the ammonia tunnel to the protein exterior.  相似文献   

16.
Klebsiella oxytoca, isolated from cyanide-containing wastewater, was able to utilize many nitriles as sole source of nitrogen. The major objective of this study was to explore the ability of K. oxytoca to utilize some nitriles and then further evaluate the pathways of transformation of cyanide compounds by K. oxytoca. Results from this study indicate that succinonitrile and valeronitrile were the most optimal sources of nitrogen for the growth of K. oxytoca. The biodegradation of acetonitrile proceeded with the formation of acetamide followed by acetic acid. The production of ammonia was also detected in this biodegradation experiment. Similar results were observed in the propionitrile biodegradation experiments. Collectively, this study suggests that the breakdown of acetonitrile or propionitrile by this bacterium was via a two-step enzymatic hydrolysis with amides as the intermediates and organic acids plus with ammonia as the end products.  相似文献   

17.
In a previous paper, we proposed that the primary action of the herbicide bromoxynil (BX; 3,5-dibromo-4-hydroxybenzonitrile) is cytosol acidification, based on the fact that bromoxynil induced the inhibition of cytoplasmic streaming and cell death of Chara corallina in acidic external medium (Morimoto and Shimmen in J Plant Res 121:227–233, 2008). In the present study, electrophysiological analysis of the BX effect was carried out in internodal cells of C. corallina. Upon addition of BX, a large and rapid pH-dependent depolarization was induced, supporting our hypothesis. Ioxynil, which belongs to the same group as bromoxynil, also induced a large and rapid membrane depolarization in a pH-dependent manner. On the other hand, four herbicides belonging to other groups of herbicides did not induce such a membrane depolarization. Thus, BX has a unique cellular effect. The decrease in the electro-chemical potential gradient for H+ across the plasma membrane appears to result in inhibition of cell growth and disturbance of intracellular homeostasis in the presence of BX.  相似文献   

18.
Utilization of arginine by Klebsiella aerogenes.   总被引:9,自引:9,他引:0       下载免费PDF全文
Klebsiella aerogenes utilized arginine as the sole source of carbon or nitrogen for growth. Arginine was degraded to 2-ketoglutarate and not to succinate, since a citrate synthaseless mutant grows on arginine as the only nitrogen source. When glucose was the energy source, all four nitrogen atoms of arginine were utilized. Three of them apparently did not pass through ammonia but were transferred by transamination, since a mutant unable to produce glutamate by glutamate synthase or glutamate dehydrogenase utilized three of four nitrogen atoms of arginine. Urea was not involved as intermediate, since a unreaseless mutant did not accumulate urea and grew on arginine as efficiently as the wild-type strain. Ornithine appeared to be an intermediate, because cells grown either on glucose and arginine or arginine alone could convert arginine in the presence of hydroxylamine to ornithine. This indicates that an amidinotransferase is the initiating enzyme of arginine breakdown. In addition, the cells contained a transaminase specific for ornithine. In contrast to the hydroxylamine-dependent reaction, this activity could be demonstrated in extracts. The arginine-utilizing system (aut) is apparently controlled like the enzymes responsible for the degradation of histidine (hut) through induction, catabolite repression, and activation by glutamine synthetase.  相似文献   

19.
Tie2 kinase, an enzyme that supports angiogenesis essential for tumor growth and survival, was selected as a target in a search for naturally occurring inhibitors of potential utility for antitumor therapy. Two polybrominated diphenyl ethers, 3,5-dibromo-2-(2',4'-dibromophenoxy)phenol (1) and 4,6-dibromo-2-(2',4'-dibromophenoxy)phenol (2) were isolated from an extract prepared from Dysidea sp. after bioassay-guided fractionation.  相似文献   

20.
Summary A cyanide-degrading pseudomonad was isolated by selective enrichment in a chemostat inoculated with coke-plant activated sludge and maintained at a dilution rate of 0.042/h for 60 days with a feed of 10 mg/l cyanide. The isolate, a facultative methylotroph capable of growth on methanol and methylamine, degraded cyanide to formate and ammonia; it could utilize the released ammonia as a nitrogen source but did not further metabolize formate under the experimental conditions employed. Both cyanide-degrading enzyme activity and respiratory resistance to cyanide were inducible and were enhanced by repeated exposure to the compound. Cell-free extracts stoichiometrically converted cyanide to formate and ammonia in a reaction that did not require oxygen. Enzyme activity, lost upon dialysis, was restored by less than equimolar ratios of NAD(P)H or ascorbate to cyanide, indicating that the reductants did not function directly as co-enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号