首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CD43 is an abundant cell surface sialoglycoprotein implicated in hemopoietic cell adhesion and activation. Cell stimulation through CD43 results in recruitment of different signaling proteins, including members of the Src family kinases, Syk, phospholipase Cgamma2, the adapter protein Shc, the guanine nucleotide exchange factor Vav, and activation of protein kinase C. In this study, we report that in human T lymphocytes, the zeta-chain is part of the CD43 signaling pathway. Upon CD43 engagement, the zeta-chain was tyrosine-phosphorylated, generating docking sites for tyrosine-phosphorylated zeta-associated protein of 70 kDa and Vav. In vitro kinase assays suggested that zeta-associated protein of 70 kDa could account for the kinase activity associated with the zeta-chain following CD43 engagement. Cross-linking CD43 on the surface of the Lck-deficient JCaM.1 cells failed to phosphorylate the zeta-chain and associated proteins, suggesting that Lck is a key element in the CD43 signaling pathway leading to zeta phosphorylation. CD43 engagement with beads coated with anti-CD43 mAb resulted in concentration of the zeta-chain toward the bead attachment site, but interestingly, the distribution of the T cell Ag receptor complex remained unaffected. Recruitment of the zeta-chain through CD43-mediated signals was not restricted to T lymphocytes because phosphorylation and redistribution of the zeta-chain was also observed in NK cells. Our results provide evidence that the zeta-chain functions as a scaffold molecule in the CD43 signaling pathway, favoring the recruitment and formation of downstream signaling complexes involved in the CD43-mediated cell activation of T lymphocytes and other leukocytes such as NK cells.  相似文献   

2.
CD43 (sialophorin, gpL115) is a sialoglycoprotein expressed on a wide variety of blood cells including lymphocytes, monocytes, neutrophils, and platelets. L10, an anti-CD43 mAb, has been shown to induce monocyte-dependent activation and proliferation of human T lymphocytes. We have studied the signaling mechanism involved in this activation process. Treatment of PBMC and purified populations of T cells and monocytes with L10 induced the hydrolysis of phosphoinositides with the resultant generation of the phosphoinositide-derived second messengers diacylglycerol and inositol phosphates. This was associated with the translocation of protein kinase C from cytosol to membrane fractions and an increase in free intracellular Ca2+ in treated cells. In human leukemic T cell lines, the magnitude of signaling via CD43 did not correlate with the density of the TCR/CD3 surface expression nor with the intensity of signaling via the TCR/CD3. Moreover, a mutant derived from the leukemic T cell line HPB-ALL that was severely defective in TCR/CD3 surface expression and signaling nevertheless had normal CD43 surface expression and signaling compared with the parent cell line. It is concluded that CD43 is functionally coupled to the phospholipase C/phosphoinositides signaling pathway. In human T cells, signaling via CD43 proceeds independently of TCR/CD3. The widespread expression of CD43 suggests a potentially important role for this molecule in orchestrating the activation of multiple cell types.  相似文献   

3.
CD43 is a constitutively phosphorylated 115-kDa sialoglycoprotein expressed on a variety of blood cells including lymphocytes and monocytes. L10, a mAb directed against CD43, triggers T cell activation and enhances hydrogen peroxide production in monocytes. Activation of mononuclear cells by L10 initiates phosphoinositides hydrolysis, C2+ mobilization, and protein kinase C (PKC) activation. In turn, activated PKC hyperphosphorylates CD43, suggesting a potential role for PKC in the regulation of signaling via CD43. To address this issue, we have analyzed the effect of PKC activation by the tumor promoter PMA on L10-triggered rise in intracellular free Ca2+ concentrations ([Ca2+]i). Treatment of mononuclear cells with PMA profoundly inhibited the increase in [Ca2+]i induced by L10. The inhibition of CD43-mediated signaling by PMA was due, in part, to uncoupling of CD43 from the signal-transducing G protein. This was evidenced by the comparatively modest inhibition by PMA of the increase in [Ca2+]i induced by the direct G protein activator AlF4-. PMA treatment did not affect the surface expression of CD43. However, it induced the hyperphosphorylation of CD43, the extent of which correlated with the inhibition of CD43-mediated increase in [Ca2+]i. Staurosporine, a potent inhibitor of PKC, abrogated the hyperphosphorylation of CD43 and normalized CD43-mediated signaling in PMA-treated cells. Significantly, in the absence of PMA, staurosporine enhanced the rise in [Ca2+]i triggered by L10, suggesting that engagement of CD43 by activating ligands results in feedback inhibition by PKC. It is concluded that activation of PKC inhibits signaling via CD43 by mechanisms involving phosphorylation and uncoupling of CD43 from the signal-transducing apparatus and by distal, post-receptor events.  相似文献   

4.
5.
Trans-sialidase is a membrane-bound and shed sialidase from Trypanosoma cruzi, the protozoan parasite responsible for Chagas disease. We investigated the role of soluble trans-sialidase on host CD4+ T cell activation. Trans-sialidase activated naive CD4+ T cells in vivo. Both enzymatically active and inactive recombinant trans-sialidases costimulated CD4+ T cell activation in vitro. Costimulation resulted in increased mitogen-activated protein kinase activation, proliferation, and cytokine synthesis. Furthermore, active and inactive trans-sialidases blocked activation-induced cell death in CD4+ T cells from T. cruzi-infected mice. By flow cytometry, inactive trans-sialidase bound the highly sialylated surface Ag CD43 on host CD4+ T cells. Both costimulatory and antiapoptotic effects of trans-sialidases required CD43 signaling. These results suggest that trans-sialidase family proteins are involved in exacerbated host T lymphocyte responses observed in T. cruzi infection.  相似文献   

6.
Although numerous reports document a role for CD43 in T cell signaling, the direct participation of this molecule in cell activation has been questioned. In this study we show that CD43 ligation on human normal peripheral T cells was sufficient to induce interleukin-2, CD69, and CD40-L gene expression, without requiring signals provided by additional receptor molecules. This response was partially inhibited by cyclosporin A and staurosporine, suggesting the participation of both the Ca(2+) and the protein kinase C pathways in CD43 signaling. Consistent with the transient CD43-dependent intracellular Ca(2+) peaks reported by others, signals generated through the CD43 molecule resulted in the induction of NF-AT DNA binding activity. CD43-dependent signals resulted also in AP-1 and NFkappaB activation, probably as a result of protein kinase C involvement. AP-1 complexes bound to the AP-1 sequence contained c-Jun, and those bound to the NF-AT-AP-1 composite site contained c-Jun and Fos. NFkappaB complexes containing p65 could be found as early as 1 h after CD43 cross-linking, suggesting that CD43 participates in early events of T cell activation. The induction of the interleukin-2, CD69, and CD-40L genes and the participation of AP-1, NF-AT, and NFkappaB in the CD43-mediated signaling cascade implicate an important role for this molecule in the regulation of gene expression and cell function.  相似文献   

7.
MUC1 mucin is a receptor-like glycoprotein expressed abundantly in various cancer cell lines as well as in glandular secretory epithelial cells, including airway surface epithelial cells. The role of this cell surface mucin in the airway is not known. In an attempt to understand the signaling mechanism of MUC1 mucin, we established a stable cell line from COS-7 cells expressing a chimeric receptor consisting of the extracellular and transmembrane domains of CD8 and the cytoplasmic (CT) domain of MUC1 mucin (CD8/MUC1 cells). We previously observed that treatment of these cells with anti-CD8 antibody resulted in tyrosine phosphorylation of the CT domain of the chimera. Here we report that treatment of CD8/MUC1 cells with anti-CD8 resulted in activation of extracellular signal-regulated kinase (ERK) 2 as assessed by immunoblotting, kinase assay, and immunocytochemistry. The activation of ERK2 was completely blocked either by a dominant negative Ras mutant or in the presence of a mitogen-activated protein kinase kinase (MEK) inhibitor. We conclude that tyrosine phosphorylation of the CT domain of MUC1 mucin leads to activation of a mitogen-activated protein kinase pathway through the Ras-MEK-ERK2 pathway. Combined with the existing data by others, it is suggested that one of the roles of MUC1 mucin may be regulation of cell growth and differentiation via a common signaling pathway, namely the Grb2-Sos-Ras-MEK-ERK2 pathway.  相似文献   

8.
The glycosylphosphatidylinositol-anchored CD24 protein is a B cell differentiation Ag that is expressed on mature resting B cells but disappears upon Ag stimulation. We used Burkitt's lymphoma (BL) cells, which are thought to be related to germinal center B cells, to examine the biological effect of Ab-mediated CD24 cross-linking on human B cells and observed 1) induction of apoptosis in BL cells mediated by cross-linking of CD24; and 2) synergism between the cross-linking of CD24 and that of the B cell receptor for Ag in the effect on apoptosis induction. We also observed activation of mitogen-activated protein kinases following CD24 cross-linking, suggesting that CD24 mediates the intracellular signaling that leads to apoptosis in BL cells. Although CD24 has no cytoplasmic portion to transduce signals intracellularly, analysis of biochemically separated glycolipid-enriched membrane (GEM) fractions indicated enhanced association of CD24 and Lyn protein tyrosine kinase in GEM as well as increased Lyn kinase activity after CD24 cross-linking, suggesting that CD24 mediates intracellular signaling via a GEM-dependent mechanism. Specific microscopic cocapping of CD24 and Lyn, but not of other kinases, following CD24 cross-linking supported this idea. We further observed that apoptosis induction by cross-linking is a common feature shared by GEM-associated molecules expressed on BL cells, including GPI-anchored proteins and glycosphingolipids. CD24-mediated apoptosis in BL cells may provide a model for the cell death mechanism initiated by GEM-associated molecules, which is closely related to B cell receptor for Ag-mediated apoptosis.  相似文献   

9.
10.
11.
Cell polarization is a key feature of cell motility, driving cell migration to tissues. CD43 is an abundantly expressed molecule on the T-cell surface that shows distinct localization to the migrating T-cell uropod and the distal pole complex (DPC) opposite the immunological synapse via association with the ezrin-radixin-moesin (ERM) family of actin regulatory proteins. CD43 regulates multiple T-cell functions, including T-cell activation, proliferation, apoptosis, and migration. We recently demonstrated that CD43 regulates T-cell trafficking through a phosphorylation site at Ser-76 (S76) within its cytoplasmic tail. Using a phosphorylation-specific antibody, we now find that CD43 phosphorylation at S76 is enhanced by migration signals. We further show that CD43 phosphorylation and normal T-cell trafficking depend on CD43 association with ERM proteins. Interestingly, mutation of S76 to mimic phosphorylation enhances T-cell migration and CD43 movement to the DPC while blocking ERM association, showing that CD43 movement can occur in the absence of ERM binding. We also find that protein kinase CΘ can phosphorylate CD43. These results show that while CD43 binding to ERM proteins is crucial for S76 phosphorylation, CD43 movement and regulation of T-cell migration can occur through an ERM-independent, phosphorylation-dependent mechanism.  相似文献   

12.
13.
CD72 is a 45-kDa B cell transmembrane glycoprotein that has been shown to be important for B cell activation. However, whether CD72 ligation induces B cell activation by delivering positive signals or sequestering negative signals away from B cell receptor (BCR) signals remains unclear. Here, by comparing the late signaling events associated with the mitogen-activated protein kinase pathway, we identified many similarities and some differences between CD72 and BCR signaling. Thus, CD72 and BCR activated the extracellular signal-regulated kinase (ERK) and the c-Jun N-terminal kinase (JNK) but not p38 mitogen-activated protein kinase. Both CD72- and BCR-mediated ERK and JNK activation required protein kinase C activity, which was equally important for CD72- and BCR-induced B cell proliferation. However, CD72 induced stronger JNK activation compared with BCR. Surprisingly, the JNK activation induced by both BCR and CD72 is Btk independent. Although both CD72 and BCR induced Btk-dependent ERK activation, CD72-mediated proliferation is more resistant to blocking of ERK activity than that of BCR, as shown by the proliferation response of B cells treated with PD98059 and dibutyryl cAMP, agents that inhibit ERK activity. Most importantly, CD72 signaling compensated for defective BCR signaling in X-linked immunodeficiency B cells and partially restored the proliferation response of X-linked immunodeficiency B cells to anti-IgM ligation. These results suggest that CD72 signals B cells by inducing BCR-independent positive signaling pathways.  相似文献   

14.
4-1BB is a costimulatory member of the TNFR family, expressed on activated CD4(+) and CD8(+) T cells. Previous results showed that 4-1BB-mediated T cell costimulation is CD28-independent and involves recruitment of TNFR-associated factor 2 (TRAF2) and activation of the stress-activated protein kinase cascade. Here we describe a role for the p38 mitogen-activated protein kinase (MAPK) pathway in 4-1BB signaling. Aggregation of 4-1BB alone induces p38 activation in a T cell hybridoma, whereas, in normal T cells, p38 MAPK is activated synergistically by immobilized anti-CD3 plus immobilized 4-1BB ligand. 4-1BB-induced p38 MAPK activation is inhibited by the p38-specific inhibitor SB203580 in both a T cell hybridoma and in murine T cells. T cells from TRAF2 dominant-negative mice are impaired in 4-1BB-mediated p38 MAPK activation. A link between TRAF2 and the p38 cascade is provided by the MAPK kinase kinase, apoptosis-signal-regulating kinase 1. A T cell hybrid transfected with a kinase-dead apoptosis-signal-regulating kinase 1 fails to activate p38 MAPK in response to 4-1BB signaling. To assess the role of p38 activation in an immune response, T cells were stimulated in an MLR in the presence of SB203580. In a primary MLR, SB203580 blocked IL-2, IFN-gamma, and IL-4 secretion whether the costimulatory signal was delivered via 4-1BB or CD28. In contrast, following differentiation into Th1 or Th2 cells, p38 inhibition blocked IL-2 and IFN-gamma without affecting IL-4 secretion. Nevertheless, IL-4 secretion by Th2 cells remained costimulation-dependent. Thus, critical T cell signaling events diverge following Th1 vs Th2 differentiation.  相似文献   

15.
The protein tyrosine kinase ZAP-70 plays a pivotal role involved in signal transduction through the T cell receptor and CD2. Defects in ZAP-70 result in severe combined immunodeficiency. We report that Herpesvirus saimiri, which does not code for a ZAP-70 homologue, can replace this tyrosine kinase. H. saimiri is an oncogenic virus that transforms human T cells to stable growth based on mutual CD2-mediated activation. Although CD2-mediated proliferation of ZAP-70-deficient uninfected T cells was absent, we could establish H. saimiri-transformed T cell lines from two unrelated patients presenting with ZAP-70 deficiencies. In these cell lines, CD2 and CD3 activation were restored in terms of [Ca(2+)](i), MAPK activation, cytokine production, and proliferation. Activation-induced tyrosine phosphorylation of zeta remained defective. The transformed cells expressed very high levels of the ZAP-70-related kinase Syk. This increased expression was not observed in the primary T cells from the patients and was not due to the transformation by the virus because transformed cell lines established from control T cells did not present this particularity. In conclusion, wild type H. saimiri can restore CD2- and CD3-mediated activation in signaling-deficient human T cells. It extends our understanding of interactions between the oncogenic H. saimiri and the infected host cells.  相似文献   

16.
The protein-tyrosine phosphatase CD45 is expressed on all monocytic cells, but its function in these cells is not well defined. Here we report that CD45 negatively regulates monocyte differentiation by inhibiting phorbol 12-myristate 13-acetate (PMA)-dependent activation of protein kinase C (PKC) delta. We found that antisense reduction of CD45 in U937 monocytic cells (CD45as cells) increased by 100% the ability of PMA to enlarge cell size, increase cell cytoplasmic process width and length, and induce surface expression of CD11b. In addition, reduction in CD45 expression caused the duration of peak PMA-induced MEK and extracellular signal-regulated kinase (ERK) 1/2 activity to increase from 5 min to 30 min while leading to a 4-fold increase in PMA-dependent PKCdelta activation. Importantly, PMA-dependent tyrosine phosphorylation of PKCdelta was also increased 4-fold in CD45as cells. Finally, inhibitors of MEK (PD98059) and PKCdelta (rottlerin) completely blocked PMA-induced monocytic cell differentiation. Taken together, these data indicate that CD45 inhibits PMA-dependent PKCdelta activation by impeding PMA-dependent PKCdelta tyrosine phosphorylation. Furthermore, this blunting of PKCdelta activation leads to an inhibition of PKCdelta-dependent activation of ERK1/2 and ERK1/2-dependent monocyte differentiation. These findings suggest that CD45 is a critical regulator of monocytic cell development.  相似文献   

17.
The proline-rich tyrosine kinase 2, Pyk2, is a focal adhesion related kinase expressed in T cells that is tyrosine phosphorylated and activated by integrin, chemokine or T cell receptor stimulation. Ligation of the cell adhesion molecule CD44 also induces Pyk2 phosphorylation and T cell spreading, and this is negatively regulated by the protein tyrosine phosphatase CD45. Here, we identify the activation requirements for Pyk2 and demonstrate its requirement for CD44-mediated elongated T cell spreading. Upon CD44-mediated cell spreading, Pyk2 was recruited to CD44 clusters in both CD45+ and CD45 T cells, yet was more strongly phosphorylated in T cells lacking CD45. In these cells, Pyk2 phosphorylation was dependent on Src family kinase activity and required actin polymerisation, phosphatidylinositol-3 kinase and phospholipase C activity as well as extracellular calcium. Inhibition of any of these events prevented Pyk2 phosphorylation and T cell spreading. Transfection of a truncated form of Pyk2 lacking the kinase domain, PRNK, inhibited CD44-mediated cell spreading, demonstrating an important role for Pyk2. However, inhibition of microtubule turnover by Taxol prevented elongated T cell spreading but did not affect Pyk2 phosphorylation, indicating that microtubule reorganisation is downstream, or independent, of Pyk2 phosphorylation. Together this demonstrates that multiple factors are required for CD44-induced Pyk2 activation, which plays a critical role in CD44-mediated elongated T cell spreading.  相似文献   

18.
19.
CD45 is a major membrane protein tyrosine phosphatase (PTP) expressed in T cells where it regulates the activity of Lck, a Src family kinase important for T cell receptor-mediated activation. PTPalpha is a more widely expressed transmembrane PTP that has been shown to regulate the Src family kinases, Src and Fyn, and is also present in T cells. Here, PTPalpha was phosphorylated at Tyr-789 in CD45(-) T cells but not in CD45(+) T cells suggesting that CD45 could regulate the phosphorylation of PTPalpha at this site. Furthermore, CD45 could directly dephosphorylate PTPalpha in vitro. Expression of PTPalpha and PTPalpha-Y789F in T cells revealed that the mutant had a reduced ability to decrease Fyn and Cbp phosphorylation, to regulate the kinase activity of Fyn, and to restore T cell receptor-induced signaling events when compared with PTPalpha. Conversely, this mutant had an increased ability to prevent Pyk2 phosphorylation and CD44-mediated cell spreading when compared with PTPalpha. These data demonstrate distinct activities of PTPalpha and PTPalpha-Y789F in T cells and identify CD45 as a regulator of PTPalpha phosphorylation at tyrosine 789 in T cells.  相似文献   

20.
Adult and neonatal immunocompetent cells exhibit important functional distinctions, including differences in cytokine production and susceptibility to tolerance induction. We have investigated the molecular features that characterize the immune response of cord blood-derived T lymphocytes compared with that of adult T lymphocytes. Our findings demonstrate that phospholipase C (PLC) isozymes, which play a pivotal role in the control of protein kinase C activation and Ca2+ mobilization, are differently expressed in cord and adult T lymphocytes. PLCbeta1 and delta1 are expressed at higher levels in cord T cells, while PLCbeta2 and gamma1 expression is higher in adult T lymphocytes. PLCdelta2 and gamma2 appear to be equally expressed in both cell types. In addition, a functional defect in PLC activation via CD3 ligation or pervanadate treatment, stimuli that activate tyrosine kinases, was observed in cord blood T cells, whereas treatment with aluminum tetrafluoride (AlF4-), a G protein activator, demonstrated a similar degree of PLC activation in cord and adult T cells. The impaired PLC activation of cord blood-derived T cells was associated with a a very low expression of the Src kinase, Lck, along with a reduced level of ZAP70. No mitogenic response to CD3 ligation was observed in cord T cells. However, no signaling defect was apparent downstream of PLC activation, as demonstrated by the mitogenic response of cord T cells to the pharmacologic activation of protein kinase C and Ca2+ by treatment with PMA and ionomycin. Thus, neonatal cord blood-derived T cells show a signaling immaturity associated with inadequate PLCgamma activation and decreased Lck expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号