首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A method which allows direct cloning of intracellular substrates for receptor tyrosine kinases (RTKs) was developed. By applying this technique to the study of the epidermal growth factor receptor (EGFR) signaling pathway, we have isolated a cDNA, designated eps8, which predicts a approximately 92 kDa protein containing an SH3 domain. Eps8 also contains a putative nuclear targeting sequence. Antibodies specific to the eps8 gene product recognize a protein of M(r) 97 kDa and a minor 68 kDa component, which are closely related, as demonstrated by V8 proteolytic mapping. The product of the eps8 gene is tyrosine-phosphorylated in vivo following EGF stimulation of intact cells and associates with the EGFR, despite the lack of a functional SH2 domain. Several other RTKs are also able to phosphorylate p97eps8. Thus, the eps8 gene product represents a novel substrate for RTKs. Adoptive expression of the eps8 cDNA in fibroblastic or hematopoietic target cells expressing the EGFR resulted in increased mitogenic response to EGF, implicating the eps8 gene product in the control of mitogenic signals.  相似文献   

2.
eps8, a recently identified tyrosine kinase substrate, has been shown to augment epidermal growth factor (EGF) responsiveness, implicating it in EGF receptor (EGFR)-mediated mitogenic signaling. We investigated the status of eps8 phosphorylation in normal and transformed cells and the role of eps8 in transformation. In NIH 3T3 cells overexpressing EGFR (NIH-EGFR), eps8 becomes rapidly phosphorylated upon EGF stimulation. At receptor-saturating doses of EGF, approximately 30% of the eps8 pool is tyrosine phosphorylated. Under physiological conditions of activation (i.e., at low receptor occupancy), corresponding to the 50% effective dose of EGF for mitogenesis, approximately 3 to 4% of the eps8 contains phosphotyrosine. In human tumor cell lines, we detected constitutive tyrosine phosphorylation of eps8, with a stoichiometry (approximately 5%) similar to that associated with potent mitogenic response in NIH-EGFR cells. Overexpression of eps8 was able to transform NIH 3T3 cells under limiting conditions of activation of the EGFR pathway. Concomitant tyrosine phosphorylation of eps8 and shc, but not of rasGAP, phospholipase C-gamma, and eps15, was frequently detected in tumor cells. This suggested that eps8 and shc might be part of a pathway which is preferentially selected in some tumors. Cooperation between these two transducers was further indicated by the finding of their in vivo association. This association was, at least in part, dependent on recognition of shc by the SH3 domain of eps8. Our results indicate that eps8 is physiologically part of the EGFR-activated signaling and that its alterations can contribute to the malignant phenotype.  相似文献   

3.
Eps15 is a substrate for the tyrosine kinase of the epidermal growth factor receptor (EGFR) and is characterized by the presence of a novel protein:protein interaction domain, the EH domain. Eps15 also stably binds the clathrin adaptor protein complex AP-2. Previous work demonstrated an essential role for eps15 in receptor-mediated endocytosis. In this study we show that, upon activation of the EGFR kinase, eps15 undergoes dramatic relocalization consisting of 1) initial relocalization to the plasma membrane and 2) subsequent colocalization with the EGFR in various intracellular compartments of the endocytic pathway, with the notable exclusion of coated vesicles. Relocalization of eps15 is independent of its binding to the EGFR or of binding of the receptor to AP-2. Furthermore, eps15 appears to undergo tyrosine phosphorylation both at the plasma membrane and in a nocodazole-sensitive compartment, suggesting sustained phosphorylation in endocytic compartments. Our results are consistent with a model in which eps15 undergoes cycles of association:dissociation with membranes and suggest multiple roles for this protein in the endocytic pathway.  相似文献   

4.
Epidermal growth factor (EGF) binding to its receptor causes rapid phosphorylation of the clathrin heavy chain at tyrosine 1477, which lies in a domain controlling clathrin assembly. EGF-mediated clathrin phosphorylation is followed by clathrin redistribution to the cell periphery and is the product of downstream activation of SRC kinase by EGF receptor (EGFR) signaling. In cells lacking SRC kinase, or cells treated with a specific SRC family kinase inhibitor, EGF stimulation of clathrin phosphorylation and redistribution does not occur, and EGF endocytosis is delayed. These observations demonstrate a role for SRC kinase in modification and recruitment of clathrin during ligand-induced EGFR endocytosis and thereby define a novel effector mechanism for regulation of endocytosis by receptor signaling.  相似文献   

5.
Little is known about lung carcinoma epidermal growth factor (EGF) kinase pathway signaling within the context of the tissue microenvironment. We quantitatively profiled the phosphorylation and abundance of signal pathway proteins relevant to the EGF receptor within laser capture microdissected untreated, human non-small cell lung cancer (NSCLC) (n = 25) of known epidermal growth factor receptor (EGFR) tyrosine kinase domain mutation status. We measured six phosphorylation sites on EGFR to evaluate whether EGFR mutation status in vivo was associated with the coordinated phosphorylation of specific multiple phosphorylation sites on the EGFR and downstream proteins. Reverse phase protein array quantitation of NSCLC revealed simultaneous increased phosphorylation of EGFR residues Tyr-1148 (p < 0.044) and Tyr-1068 (p < 0.026) and decreased phosphorylation of EGFR Tyr-1045 (p < 0.002), HER2 Tyr-1248 (p < 0.015), IRS-1 Ser-612 (p < 0.001), and SMAD Ser-465/467 (p < 0.011) across all classes of mutated EGFR patient samples compared with wild type. To explore which subset of correlations was influenced by ligand induction versus an intrinsic phenotype of the EGFR mutants, we profiled the time course of 115 cellular signal proteins for EGF ligand-stimulated (three dosages) NSCLC mutant and wild type cultured cell lines. EGFR mutant cell lines (H1975 L858R) displayed a pattern of EGFR Tyr-1045 and HER2 Tyr-1248 phosphorylation similar to that found in tissue. Persistence of phosphorylation for AKT Ser-473 following ligand stimulation was found for the mutant. These data suggest that a higher proportion of the EGFR mutant carcinoma cells may exhibit activation of the phosphatidylinositol 3-kinase/protein kinase B (AKT)/mammalian target of rapamycin (MTOR) pathway through Tyr-1148 and Tyr-1068 and suppression of IRS-1 Ser-612, altered heterodimerization with ERBB2, reduced response to transforming growth factor beta suppression, and reduced ubiquitination/degradation of the EGFR through EGFR Tyr-1045, thus providing a survival advantage. This is the first comparison of multiple, site-specific phosphoproteins with the EGFR tyrosine kinase domain mutation status in vivo.  相似文献   

6.
Keratinocyte growth factor receptor (KGFR) is a receptor tyrosine kinase expressed on epithelial cells. Following ligand binding, KGFR is rapidly activated and internalized by clathrin-mediated endocytosis. Among the possible receptor substrates which could be involved in the regulation of KGFR endocytosis and down-modulation, we analyzed here the eps15 protein in view of the proposed general role of eps15 in regulating clathrin-mediated endocytosis as well as that of eps15 tyrosine phosphorylation in the control of regulated endocytosis. Immunoprecipitation and Western blot analysis showed that activated KGFR was not able to phosphorylate eps15, suggesting that eps15 is not a receptor substrate. Double immunofluorescence and confocal microscopy revealed that activated KGFR, differently from epidermal growth factor receptor (EGFR), did not induce recruitment of eps15 to the cell plasma membrane. Microinjection of a monoclonal antibody directed against the C-terminal DPF domain which contains the AP2 binding region of eps15 led to inhibition of both pathways of receptor-mediated endocytosis, the EGFR ligand-induced endocytosis and the transferrin constitutive endocytosis, but did not appear to block the KGFR ligand-induced internalization. Taken together our results indicate that the clathrin-mediated uptake of KGFR is not mediated by eps15.  相似文献   

7.
The Gab1 protein is tyrosine phosphorylated in response to various growth factors and serves as a docking protein that recruits a number of downstream signaling proteins, including phosphatidylinositol 3-kinase (PI-3 kinase). To determine the role of Gab1 in signaling via the epidermal growth factor (EGF) receptor (EGFR) we tested the ability of Gab1 to associate with and modulate signaling by this receptor. We show that Gab1 associates with the EGFR in vivo and in vitro via pTyr sites 1068 and 1086 in the carboxy-terminal tail of the receptor and that overexpression of Gab1 potentiates EGF-induced activation of the mitogen-activated protein kinase and Jun kinase signaling pathways. A mutant of Gab1 unable to bind the p85 subunit of PI-3 kinase is defective in potentiating EGFR signaling, confirming a role for PI-3 kinase as a downstream effector of Gab1. Inhibition of PI-3 kinase by a dominant-interfering mutant of p85 or by Wortmannin treatment similarly impairs Gab1-induced enhancement of signaling via the EGFR. The PH domain of Gab1 was shown to bind specifically to phosphatidylinositol 3,4,5-triphosphate [PtdIns(3,4,5)P3], a product of PI-3 kinase, and is required for activation of Gab1-mediated enhancement of EGFR signaling. Moreover, the PH domain mediates Gab1 translocation to the plasma membrane in response to EGF and is required for efficient tyrosine phosphorylation of Gab1 upon EGF stimulation. In addition, overexpression of Gab1 PH domain blocks Gab1 potentiation of EGFR signaling. Finally, expression of the gene for the lipid phosphatase PTEN, which dephosphorylates PtdIns(3,4, 5)P3, inhibits EGF signaling and translocation of Gab1 to the plasma membrane. These results reveal a novel positive feedback loop, modulated by PTEN, in which PI-3 kinase functions as both an upstream regulator and a downstream effector of Gab1 in signaling via the EGFR.  相似文献   

8.
Receptor tyrosine kinases of the epidermal growth factor (EGF) receptor family regulate essential cellular functions such as proliferation, survival, migration, and differentiation but also play central roles in the etiology and progression of tumors. We have identified short peptide sequences from a random peptide library integrated into the thioredoxin scaffold protein, which specifically bind to the intracellular domain of the EGF receptor (EGFR). These molecules have the potential to selectively inhibit specific aspects of EGF receptor signaling and might become valuable as anticancer agents. Intracellular expression of the aptamer encoding gene construct KDI1 or introduction of bacterially expressed KDI1 via a protein transduction domain into EGFR-expressing cells results in KDI1.EGF receptor complex formation, a slower proliferation, and reduced soft agar colony formation. Aptamer KDI1 did not summarily block the EGF receptor tyrosine kinase activity but selectively interfered with the EGF-induced phosphorylation of the tyrosine residues 845, 1068, and 1148 as well as the phosphorylation of tyrosine 317 of p46 Shc. EGF-induced phosphorylation of Stat3 at tyrosine 705 and Stat3-dependent transactivation were also impaired. Transduction of a short synthetic peptide aptamer sequence not embedded into the scaffold protein resulted in the same impairment of EGF-induced Stat3 activation.  相似文献   

9.
Binding of epidermal growth factor (EGF) to its receptor (EGFR) augments the tyrosine kinase activity of the receptor and autophosphorylation. Exposure of some tissues and cells to EGF also stimulates adenylyl cyclase activity and results in an increase in cyclic AMP (cAMP) levels. Because cAMP activates the cAMP-dependent protein kinase A (PKA), we investigated the effect of PKA on the EGFR. The purified catalytic subunit of PKA (PKAc) stoichiometrically phosphorylated the purified full-length wild type (WT) and kinase negative (K721M) forms of the EGFR. PKAc phosphorylated both WT-EGFR as well as a mutant truncated form of EGFR (Delta1022-1186) exclusively on serine residues. Moreover, PKAc also phosphorylated the cytosolic domain of the EGFR (EGFRKD). Phosphorylation of the purified WT as well as EGFRDelta1022-1186 and EGFRKD was accompanied by decreased autophosphorylation and diminished tyrosine kinase activity. Pretreatment of REF-52 cells with the nonhydrolyzable cAMP analog, 8-(4-chlorophenylthio)-cAMP, decreased EGF-induced tyrosine phosphorylation of cellular proteins as well as activation of the WT-EGFR. Similar effects were also observed in B82L cells transfected to express the Delta1022-1186 form of EGFR. Furthermore, activation of PKAc in intact cells resulted in serine phosphorylation of the EGFR. The decreased phosphorylation of cellular proteins and diminished activation of the EGFR in cells treated with the cAMP analog was not the result of altered binding of EGF to its receptors or changes in receptor internalization. Therefore, we conclude that PKA phosphorylates the EGFR on Ser residues and decreases its tyrosine kinase activity and signal transduction both in vitro and in vivo.  相似文献   

10.
Herstatin is an autoinhibitor of the ErbB family consisting of subdomains I and II of the human epidermal growth factor receptor 2 (ErbB-2) extracellular domain and a novel C-terminal domain encoded by an intron. Herstatin binds to human epidermal growth factor receptor 2 and to the epidermal growth factor receptor (EGFR), blocking receptor oligomerization and tyrosine phosphorylation. In this study, we characterized several early steps in EGFR activation and investigated downstream signaling events induced by epidermal growth factor (EGF) and by transforming growth factor alpha (TGF-alpha) in NIH3T3 cell lines expressing EGFR with and without herstatin. Herstatin expression decreased EGF-induced EGFR tyrosine phosphorylation and delayed receptor down-regulation despite receptor occupancy by ligand with normal binding affinity. Akt stimulation by EGF and TGF-alpha, but not by fibroblast growth factor 2, was almost completely blocked in the presence of herstatin. Surprisingly, EGF and TGF-alpha induced full activation of MAPK in duration and intensity and stimulated association of the EGFR with Shc and Grb2. Although MAPK was fully stimulated, herstatin expression prevented TGF-alpha-induced DNA synthesis and EGF-induced proliferation. The herstatin-mediated uncoupling of MAPK from Akt activation was also observed in Chinese hamster ovary cells co-transfected with EGFR and herstatin. These findings show that herstatin expression alters EGF and TGF-alpha signaling profiles, culminating in inhibition of proliferation.  相似文献   

11.
Recombinant expression of a chimeric EGFR/ErbB-3 receptor in NIH 3T3 fibroblasts allowed us to investigate cytoplasmic events associated with ErbB-3 signal transduction upon ligand activation. An EGFR/ErbB-3 chimera was expressed on the surface of NIH 3T3 transfectants as two classes of receptors possessing epidermal growth factor (EGF) binding affinities comparable to those of the wild-type EGF receptor (EGFR). EGF induced autophosphorylation in vivo of the chimeric receptor and DNA synthesis of EGFR/ErbB-3 transfectants with a dose response similar to that of EGFR transfectants. However, the ErbB-3 and EGFR cytoplasmic domains exhibited striking differences in their interactions with several known tyrosine kinase substrates. We demonstrated strong association of phosphatidylinositol 3-kinase activity with the chimeric receptor upon ligand activation comparable in efficiency with that of the platelet-derived growth factor receptor, while the EGFR exhibited a 10- to 20-fold-lower efficiency in phosphatidylinositol 3-kinase recruitment. By contrast, both phospholipase C gamma and GTPase-activating protein failed to associate with or be phosphorylated by the ErbB-3 cytoplasmic domain under conditions in which they coupled with the EGFR. In addition, though certain signal transmitters, including Shc and GRB2, were recruited by both kinases, EGFR and ErbB-3 elicited tyrosine phosphorylation of distinct sets of intracellular substrates. Thus, our findings show that ligand activation of the ErbB-3 kinase triggers a cytoplasmic signaling pathway that hitherto is unique within this receptor subfamily.  相似文献   

12.
Intraperitoneal injection of epidermal growth factor (EGF) into mice resulted in the phosphorylation of liver nuclei phospholipase Cgamma1 (PLCgamma1) at the tyrosine, coincident with the time course of nuclear membrane epidermal growth factor receptor (EGFR) activation. The function of PLCgamma1 in mice liver nuclei was attributed to a 120 kDa protein fragment. This 120 kDa protein was immunoprecipitated with the isozyme specific PLCgamma1 antibody and was found to be sensitive to a PLCgamma1 specific blocking peptide. The 10-partial sequence analysis revealed that the 120 kDa protein contains the PELCQVSLSE sequence at its N-terminal end and the RTRVNGDNRL sequence at its C-terminal end, which reveals that this protein is a major fragment of PLCgamma1 devoid of an amino acid portion at the N-terminal end. The tyrosine-phosphorylated 120 kDa protein interacts with activated EGFR, binds phosphatidylinositol-3-OH-kinase enhancer (PIKE), enhances nuclear phosphatidylinositol-3-OH-kinase (PI[3]K) activity, and generates diacylglycerol (DAG) in response to the EGF signal to the nucleus in vivo. The immunoprecipitated 120 kDa protein fragment displayed phosphatidylinositol (PI) hydrolysis activity. These results establish the capacity of EGF-triggered nuclear signaling which is mediated by EGFR itself, located on the inner nuclear membrane. This is the first report identifying a 120 kDa PLCgamma1 fragment generated in vivo in the nucleus and capable of discharging the function of nuclear PLCgamma1.  相似文献   

13.
In human epidermoid carcinoma KB cells, a glycoprotein of Mr = 190,000 (gp190) has been shown to be phosphorylated on tyrosine residues upon EGF stimulation (Kadowaki et al., 1987, J. Biol. Chem. in press). Using a specific antibody to the c-terminal portion of the human c-erbB-2 gene product, we have found that gp190 is the human c-erbB-2 gene product which is structurally closely related to the epidermal growth factor (EGF) receptor. Since monoclonal antibody specific for the EGF receptor abolished both EGF binding to its receptor and tyrosine phosphorylation of the c-erbB-2 gene product, we have concluded that activation of EGF receptor tyrosine kinase activity upon EGF binding leads to the phosphorylation of the c-erbB-2 gene product on its tyrosine residues.  相似文献   

14.
Secretory carrier membrane proteins (SCAMPs) are ubiquitously expressed proteins of post-Golgi vesicles. In the presence of the tyrosine phosphatase inhibitor vanadate, or after overexpression in Chinese hamster ovary (CHO) cells, SCAMP1 and SCAMP3 are phosphorylated selectively on tyrosine residue(s). Phosphorylation is reversible after vanadate washout in situ or when isolated SCAMP3 is incubated with the recombinant tyrosine phosphatase PTP1B. Vanadate also causes the partial accumulation of SCAMP3, but not SCAMP1, in “patches” at or near the cell surface. A search for SCAMP kinase activities has shown that SCAMPs 1 and 3, but not SCAMP2, are tyrosine phosphorylated in EGF-stimulated murine fibroblasts overexpressing the EGF receptor (EGFR). EGF catalyzes the progressive phosphorylation of the SCAMPs up to 1 h poststimulation and may enhance colocalization of the EGFR and SCAMP3 within the cell interior. EGF also induces SCAMP–EGFR association, as detected by coimmunoprecipitation, and phosphorylation of SCAMP3 is stimulated by the EGFR in vitro. These results suggest that phosphorylation of SCAMPs, either directly or indirectly, may be functionally linked to the internalization/down-regulation of the EGFR.  相似文献   

15.
Activated epidermal growth factor receptors (EGFRs) recruit intracellular proteins that mediate receptor signaling and endocytic trafficking. Rin1, a multifunctional protein, has been shown to regulate EGFR internalization (1). Here we show that EGF stimulation induces a specific, rapid, and transient membrane recruitment of Rin1 and that recruitment is dependent on the Src homology 2 (SH2) domain of Rin1. Immunoprecipitation of EGFR is accompanied by co-immunoprecipitation of Rin1 in a time- and ligand-dependent manner. Association of Rin1 and specifically the SH2 domain of Rin1 with the EGFR was dependent on tyrosine phosphorylation of the intracellular domain of the EGFR. The recruitment of Rin1, observed by light microscopy, indicated that although initially cytosolic, Rin1 was recruited to both plasma membrane and endosomes following EGF addition. Moreover, the expression of the SH2 domain of Rin1 substantially impaired the internalization of EGF without affecting internalization of transferrin. Finally, we found that Rin1 co-immunoprecipitated with a number of tyrosine kinase receptors but not with cargo endocytic receptors. These results indicate that Rin1 provides a link via its SH2 domain between activated tyrosine kinase receptors and the endocytic pathway through the recruitment and activation of Rab5a.  相似文献   

16.
Tyrosine phosphorylation of the nonreceptor tyrosine kinase p125 focal adhesion kinase (FAK) and the adapter protein paxillin is rapidly increased by multiple agonists, including bombesin (BOM) and lysophosphatidic acid (LPA), through heptahelical G protein-coupled receptors (GPCRs). The pathways involved remain incompletely understood. The experiments presented here were designed to test the role of epidermal growth factor receptor (EGFR) transactivation in the rapid increase of tyrosine phosphorylation of FAK and paxillin induced by GPCR agonists. Our results show that treatment with the selective EGFR tyrosine kinase inhibitor AG 1478, at concentrations that completely blocked the increase in tyrosine phosphorylation of these proteins induced by EGF, did not affect the stimulation of tyrosine phosphorylation of either FAK or paxillin induced by multiple GPCR agonists including LPA, BOM, vasopressin, bradykinin, and endothelin. Similar results were obtained when Swiss 3T3 cells were treated with another highly specific inhibitor of the EGF receptor kinase activity, PD-158780. Collectively, our results clearly dissociate EGFR transactivation from the tyrosine phosphorylation of FAK and paxillin induced by multiple GPCR agonists.  相似文献   

17.
Phospholipase C-gamma (PLC-gamma) and GTPase activating protein (GAP) are substrates of EGF, PDGF and other growth factor receptors. Since either PLC-gamma or GAP also bind to the activated receptors it was suggested that their SH2 domains are mediating this association. We attempted to delineate the specific region of the EGF receptor that is responsible for the binding, utilizing EGF receptor mutants, PLC-gamma, and a bacterially expressed TRP E fusion protein containing the SH2 domains of GAP. As previously shown, tyrosine autophosphorylation of the wild-type receptor wsa crucial in mediating the association and in agreement, a kinase negative EGF receptor could bind PLC-gamma or TRP E GAP SH2, but only when cross tyrosine phosphorylated by an active EGF receptor kinase. The importance of autophosphorylation for association was confirmed by demonstrating that a carboxy-terminal deletion of the EGFR missing four autophosphorylation sites bound these proteins poorly. To study the role of EGF receptor autophosphorylation further, a 203 amino acid EGF receptor fragment was generated with cyanogen bromide that contained all known tyrosine autophosphorylation sites. This fragment bound both TRP E GAP SH2 and PLC-gamma but only when tyrosine phosphorylated. This data localizes a major binding site for SH2 domain containing proteins to the carboxy-terminus of the EGF receptor and points to the importance of tyrosine phosphorylation in mediating this association.  相似文献   

18.
The mechanism of UV-radiation-induced EGF receptor (EGFR) internalization remains to be established. In the present study, we found UV-radiation-mediated internalization of the EGFR to be dependent on the cytoplasmic carboxy-terminal region. UV radiation was unable to induce internalization of EGFR carboxy-terminal truncation mutants where all or four of the five major autophosphorylation sites were missing (963- and 1028-EGFR, respectively). Mutational removal of serine residues 1046, 1047, 1057 and 1142 within the carboxy-terminal receptor region was also sufficient to abolish UV-radiation-induced internalization of the EGFR. Furthermore, the UV-radiation-induced internalization was abrogated for an EGFR mutated in tyrosine 1045 (Y1045F), the major c-Cbl binding site. However, UV radiation did not induce phosphorylation at tyrosine 1045, in contrast to the prominent phosphorylation induced by EGF. Our results suggest a mechanism for UV-radiation-induced internalization of EGFR involving a conformational change that is dependent on structural elements formed by specific serine and tyrosine residues in the carboxy-terminal domain.  相似文献   

19.
The c-Cbl protooncogene product is a prominent substrate of protein tyrosine kinases and is rapidly tyrosine-phosphorylated upon stimulation of a wide variety of cell-surface receptors. We have identified a novel c-Cbl-interacting protein termed CIN85 with a molecular mass of 85 kDa which shows similarity to adaptor proteins, CMS and CD2AP. CIN85 mRNA is expressed ubiquitously in normal human tissues and cancer cell lines analyzed. CIN85 was basally associated with c-Cbl. For interaction of CIN85 with c-Cbl, the second SH3 domain of CIN85 was shown to serve as a central player. The CIN85-c-Cbl association was enhanced shortly after stimulation of 293 cells with epidermal growth factor (EGF) and gradually diminished to a basal level, which correlated with a tyrosine phosphorylation level of c-Cbl. Our results suggest that CIN85 may play a specific role in the EGF receptor-mediated signaling cascade via its interaction with c-Cbl.  相似文献   

20.
After the intraportal injection of EGF, the EGF receptor (EGFR) is rapidly internalized into hepatic endosomes where it remains largely receptor bound (Lai et al., 1989. J. Cell Biol. 109:2751-2760). In the present study, we evaluated the phosphotyrosine content of EGFRs at the cell surface and in endosomes in order to assess the consequences of internalization. Quantitative estimates of specific radioactivity of the EGFR in these two compartments revealed that tyrosine phosphorylation of the EGFR was observed at the cell surface within 30 s of ligand administration. However, the EGFR was also highly phosphorylated in endosomes reaching levels of tyrosine phosphorylation significantly higher than those of the cell surface receptor at 5 and 15 min after EGF injection. A 55-kD tyrosine phosphorylated polypeptide (pyp55) was observed in association with the EGFR at the cell surface within 30 s of EGF injection. The protein was also found in association with the EGFR in endosomes as evidenced by coprecipitation studies using a mAb to the EGFR as well as by coelution with the EGR in gel permeation chromatography. Limited proteolysis of isolated endosomes indicated that the tyrosine phosphorylated domains of the EGFR and associated pyp55 were cytosolically oriented while internalized EGF was intraluminal. The identification of pyp55 in association with EGFR in both hepatic plasma membranes and endosomes may be relevant to EGFR function and/or trafficking of the EGFR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号