首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
A rare subset of human immunodeficiency virus (HIV)-infected individuals maintains undetectable HIV RNA levels without therapy ("elite controllers"). To clarify the role of T-cell responses in mediating virus control, we compared HLA class I polymorphisms and HIV-specific T-cell responses among a large cohort of elite controllers (HIV-RNA < 75 copies/ml), "viremic" controllers (low-level viremia without therapy), "noncontrollers" (high-level viremia), and "antiretroviral therapy suppressed" individuals (undetectable HIV-RNA levels on antiretroviral therapy). The proportion of CD4(+) and CD8(+) T cells that produce gamma interferon (IFN-gamma) and interleukin-2 (IL-2) in response to Gag and Pol peptides was highest in the elite and viremic controllers (P < 0.0001). Forty percent of the elite controllers were HLA-B*57 compared to twenty-three percent of viremic controllers and nine percent of noncontrollers (P < 0.001). Other HLA class I alleles more common in elite controllers included HLA-B*13, HLA-B*58, and HLA-B*81 (P < 0.05 for each). Within elite and viremic controller groups, those with protective class I alleles had higher frequencies of Gag-specific CD8(+) T cells than those without these alleles (P = 0.01). Noncontrollers, with or without protective alleles, had low-level CD8(+) responses. Thus, certain HLA class I alleles are enriched in HIV controllers and are associated with strong Gag-specific CD8(+)IFN-gamma(+)IL-2(+) T cells. However, the absence of evidence of T cell-mediated control in many controllers suggests the presence of alternative mechanisms for viral control in these individuals. Defining mechanisms for virus control in "non-T-cell controllers" might lead to insights into preventing HIV transmission or preventing virus replication.  相似文献   

2.
Elucidating mechanisms leading to the natural control of HIV-1 infection is of great importance for vaccine design and for understanding viral pathogenesis. Rare HIV-1-infected individuals, termed HIV-1 controllers, have plasma HIV-1 RNA levels below the limit of detection by standard clinical assays (<50 to 75 copies/ml) without antiretroviral therapy. Although several recent studies have documented persistent low-grade viremia in HIV-1 controllers at a level not significantly different from that in HIV-1-infected individuals undergoing treatment with combination antiretroviral therapy (cART), it is unclear if plasma viruses are undergoing full cycles of replication in vivo or if the infection of new cells is completely blocked by host immune mechanisms. We studied a cohort of 21 HIV-1 controllers with a median level of viremia below 1 copy/ml, followed for a median of 11 years. Less than half of the cohort carried known protective HLA types (B*57/27). By isolating HIV-1 RNA from large volumes of plasma, we amplified single genome sequences of both pro-rt and env longitudinally. This study is the first to document that HIV-1 pro-rt and env evolve in this patient group, albeit at rates somewhat lower than in HIV-1 noncontrollers, in HLA B*57/27-positive, as well as HLA B*57/27-negative, individuals. Viral diversity and adaptive events associated with immune escape were found to be restricted in HIV-1 controllers, suggesting that replication occurs in the face of less overall immune selection.  相似文献   

3.
The study of HIV-infected “controllers” who are able to maintain low levels of plasma HIV RNA in the absence of antiretroviral therapy (ART) may provide insights for HIV cure and vaccine strategies. Despite maintaining very low levels of plasma viremia, controllers have elevated immune activation and accelerated atherosclerosis. However, the degree to which low-level replication contributes to these phenomena is not known. Sixteen asymptomatic controllers were prospectively treated with ART for 24 weeks. Controllers had a statistically significant decrease in ultrasensitive plasma and rectal HIV RNA levels with ART. Markers of T cell activation/dysfunction in blood and gut mucosa also decreased substantially with ART. Similar reductions were observed in the subset of “elite” controllers with pre-ART plasma HIV RNA levels below conventional assays (<40 copies/mL). These data confirm that HIV replication persists in controllers and contributes to a chronic inflammatory state. ART should be considered for these individuals (ClinicalTrials.gov NCT01025427).  相似文献   

4.
To provide insight into the dynamics and source of residual viremia in human immunodeficiency virus (HIV) patients successfully treated with antiretroviral therapy, 14 intensely monitored patients treated with indinavir and efavirenz sustaining HIV RNA at <50 copies/ml for >5 years were studied. Abacavir was added to the regimen of eight patients at year 5. After the first 9 months of therapy, HIV RNA levels had reached a plateau ("residual viremia") that persisted for over 5 years. Levels of residual viremia differed among patients and ranged from 3.2 to 23 HIV RNA copies/ml. Baseline HIV DNA was the only significant pretreatment predictor of residual viremia in regression models including baseline HIV RNA, CD4 count, and patient age. In the four of five patients with detectable viremia who added abacavir to their regimen after 5 years, HIV RNA levels declined rapidly. The estimated half-life of infected cells was 6.7 days. Decrease in activated memory cells and a reduction in gamma interferon production to HIV Gag and p24 antigen in ELISpot assays were observed, consistent with a decrease in HIV replication. Thus, in patients treated with efavirenz plus indinavir, levels of residual viremia were established by 9 months, were predicted by baseline proviral DNA, and remained constant for 5 years. Even after years of highly suppressive therapy, HIV RNA levels declined rapidly after the addition of abacavir, suggesting that productive infection contributes to residual ongoing viremia and can be inhibited with therapy intensification.  相似文献   

5.
Continued use of antiretroviral therapy despite the emergence of drug-resistant human immunodeficiency virus (HIV) has been associated with the durable maintenance of plasma HIV RNA levels below pretherapy levels. The factors that may account for this partial control of viral replication were assessed in a longitudinal observational study of 20 HIV-infected adults who remained on a stable protease inhibitor-based regimen despite ongoing viral replication (plasma HIV RNA levels consistently >500 copies/ml). Longitudinal plasma samples (n = 248) were assayed for drug susceptibility and viral replication capacity (measured by using a single-cycle recombinant-virus assay). The initial treatment-mediated decrease in plasma viremia was directly proportional to the reduction in replicative capacity (P = 0.01). Early virologic rebound was associated the emergence of a virus population exhibiting increased protease inhibitor phenotypic resistance, while replicative capacity remained low. During long-term virologic failure, plasma HIV RNA levels often remained stable or increased slowly, while phenotypic resistance continued to increase and replicative capacity decreased slowly. The emergence of primary genotypic mutations within protease (particularly V82A, I84V, and L90M) was temporally associated with increasing phenotypic resistance and decreasing replicative capacity, while the emergence of secondary mutations within protease was associated with more-gradual changes in both phenotypic resistance and replicative capacity. We conclude that HIV may be constrained in its ability to become both highly resistant and highly fit and that this may contribute to the continued partial suppression of plasma HIV RNA levels that is observed in some patients with drug-resistant viremia.  相似文献   

6.
We examined the pathogenic significance of the latent viral reservoir in the resting CD4+ T cell compartment of HIV-1-infected individuals as well as its involvement in the rebound of plasma viremia after discontinuation of highly active anti-retroviral therapy (HAART). Using heteroduplex mobility and tracking assays, we show that the detectable pool of latently infected, resting CD4+ T cells does not account entirely for the early rebounding plasma HIV in infected individuals in whom HAART has been discontinued. In the majority of patients examined, the rebounding plasma virus was genetically distinct from both the cell-associated HIV RNA and the replication-competent virus within the detectable pool of latently infected, resting CD4 + T cells. These results indicate the existence of other persistent HIV reservoirs that could prompt rapid emergence of plasma viremia after cessation of HAART and underscore the necessity to develop therapies directed toward such populations of infected cells.  相似文献   

7.
8.
Despite reports of viral genetic defects in persons who control human immunodeficiency virus type 1 (HIV-1) in the absence of antiviral therapy, the extent to which such defects contribute to the long-term containment of viremia is not known. Most previous studies examining for such defects have involved small numbers of subjects, primarily focused on subjects expressing HLA-B57, or have examined single viral genes, and they have focused on cellular proviral DNA rather than plasma viral RNA sequences. Here, we attempted viral sequencing from 95 HIV-1 elite controllers (EC) who maintained plasma viral loads of <50 RNA copies/ml in the absence of therapy, the majority of whom did not express HLA-B57. HIV-1 gene fragments were obtained from 94% (89/95) of the EC, and plasma viral sequences were obtained from 78% (61/78), the latter indicating the presence of replicating virus in the majority of EC. Of 63 persons for whom nef was sequenced, only three cases of nef deletions were identified, and gross genetic defects were rarely observed in other HIV-1 coding genes. In a codon-by-codon comparison between EC and persons with progressive infection, correcting for HLA bias and coevolving secondary mutations, a significant difference was observed at only three codons in Gag, all three of which represented the historic population consensus amino acid at the time of infection. These results indicate that the spontaneous control of HIV replication is not attributable to shared viral genetic defects or shared viral polymorphisms.  相似文献   

9.
While many studies show that the APOBEC3 family of cytidine deaminases can inhibit human immunodeficiency virus type 1 (HIV-1) replication, the clinical significance of this host defense mechanism is unclear. Elite suppressors are HIV-1-infected individuals who maintain viral loads below 50 copies/ml without antiretroviral therapy. To determine the role of APOBEC3G/F proteins in the control of viremia in these patients, we used a novel assay to measure the frequency of hypermutated proviral genomes. In most elite suppressors, the frequency was not significantly different than that observed in patients on highly active antiretroviral therapy. Thus, enhanced APOBEC3 activity alone cannot explain the ability of elite suppressors to control viremia.  相似文献   

10.
Immune control of human immunodeficiency virus (HIV) is not restored by highly active antiretroviral therapies (HAART) during chronic infection. We examined the capacity of repeated structured therapeutic interruptions (STI) to restore HIV-specific CD4 and CD8 T-cell responses that controlled virus production. Eleven STI (median duration, 7 days; ranges, 4 to 24 days) were performed in three chronically HIV-infected patients with CD4 counts above 400/mm(3) and less than 200 HIV RNA copies/ml after 18 to 21 months of HAART; treatment resumed after 1 week or when virus became detectable. HIV-specific T-cell responses were analyzed by proliferation, gamma interferon (IFN-gamma) production, and enzyme-linked immunospot assays. Seven virus rebounds were observed (median, 4,712 HIV-1 RNA copies/ml) with a median of 7 days during which CD4 and CD8 counts did not significantly change. After treatment resumed, the viral load returned below 200 copies/ml within 3 weeks. Significant CD4 T-cell proliferation and IFN-gamma production against HIV p24 appeared simultaneously with or even before the virus rebounds in all patients. These CD4 responses lasted for less than 3 weeks and disappeared before therapeutic control of the virus had occurred. Increases in the numbers of HIV-specific CD8 T cells were delayed compared to changes in HIV-specific CD4 T-cell responses. No delay or increase in virus doubling time was observed after repeated STI. Iterative reexposure to HIV during short STI in chronically infected patients only transiently mobilized HIV-specific CD4 T1-helper cells, which might be rapidly altered by virus replication. Such kinetics might explain the failure at delaying subsequent virus rebounds and raises concerns about strategies based on STI to restore durable HIV-specific T-cell responses in chronic HIV infection.  相似文献   

11.
The human immunodeficiency virus (HIV)-mediated immune response may be beneficial or harmful, depending on the balance between expansion of HIV-specific T cells and the level of generalized immune activation. The current study utilizes multicolor cytokine flow cytometry to study HIV-specific T cells and T-cell activation in 179 chronically infected individuals at various stages of HIV disease, including those with low-level viremia in the absence of therapy ("controllers"), low-level drug-resistant viremia in the presence of therapy (partial controllers on antiretroviral therapy [PCAT]), and high-level viremia ("noncontrollers"). Compared to noncontrollers, controllers exhibited higher frequencies of HIV-specific interleukin-2-positive gamma interferon-positive (IL-2(+) IFN-gamma(+)) CD4(+) T cells. The presence of HIV-specific CD4(+) IL-2(+) T cells was associated with low levels of proliferating T cells within the less-differentiated T-cell subpopulations (defined by CD45RA, CCR7, CD27, and CD28). Despite prior history of progressive disease, PCAT patients exhibited many immunologic characteristics seen in controllers, including high frequencies of IL-2(+) IFN-gamma(+) CD4(+) T cells. Measures of immune activation were lower in all CD8(+) T-cell subsets in controllers and PCAT compared to noncontrollers. Thus, control of HIV replication is associated with high levels of HIV-specific IL-2(+) and IFN-gamma(+) CD4(+) T cells and low levels of T-cell activation. This immunologic state is one where the host responds to HIV by expanding but not exhausting HIV-specific T cells while maintaining a relatively quiescent immune system. Despite a history of advanced HIV disease, a subset of individuals with multidrug-resistant HIV exhibit an immunologic profile comparable to that of controllers, suggesting that functional immunity can be reconstituted with partially suppressive highly active antiretroviral therapy.  相似文献   

12.
13.
Episodes of low-level viremia (LLV), with plasma human immunodeficiency virus type 1 (HIV-1) RNA levels ranging from 50 to 400 copies (c)/ml, occur commonly during highly active antiretroviral therapy (HAART). LLV has been associated with virologic failure of HAART in some studies, while in others LLV did not appear to affect the clinical outcome. To understand the processes leading to LLV, genetic analyses were used to determine whether plasma virions emanated from archived or from newly evolved viral genomes. Episodes of LLV (plasma HIV-1 RNA, 50 to 379 [median, 77] c/ml) were detected in 21/37 (57%) HIV-1-infected children with median plasma HIV-1 RNA levels of <50 c/ml during 79 patient years of HAART. Viral sequences were derived by direct sequencing of PCR products from 21 plasma specimens diluted to end point. In phylogenetic analysis, LLV viral sequences grouped with virus from early in the course of infection in 8/11 subjects. Six specimens had multiple identical viral sequences, suggesting origin from clonally expanded infected cells. LLV plasma virus evolved over time, indicating viral replication, in 3/11 subjects. Two of these had frequent LLV, including the selection of drug-resistant mutants. In summary, plasma virus from episodes of LLV during effective HAART appeared to originate from two distinct processes, (i) clonal outgrowth from long-lived HIV-1-infected cells, presumably following activation and proliferation of these cells, and (ii) ongoing viral replication that included the selection of new drug-resistant mutants. These observations provide a plausible explanation for the divergent clinical outcomes previously associated with LLV.  相似文献   

14.
Analyses of the breadth and specificity of virus-specific CD8(+) T cell responses associated with control of HIV have largely relied on measurement of cytokine secretion by effector T cells. These have resulted in the identification of HIV elite controllers with low or absent responses in which non-T-cell mechanisms of control have been suggested. However, successful control of HIV infection may be associated with central memory T cells, which have not been consistently examined in these individuals. Gag-specific T cells were characterized using a peptide-based cultured enzyme-linked immunosorbent spot assay (ELISpot). Peripheral blood mononuclear cells from HIV elite controllers (n = 10), progressors (n = 12), and antiretroviral-treated individuals (n = 9) were cultured with overlapping peptides for 12 days. Specificity was assessed by tetramer staining, functional features of expanded cells were assessed by cytokine secretion, and virus inhibition and phenotypic characteristics were assessed by cell sorting and coculture assays. After peptide stimulation, elite controllers showed a greater number of previously undetectable (new) responses compared to progressors (P = 0.0008). These responses were highly polyfunctional, with 64.5% of responses having 3 to 5 functions. Expandable epitope-specific CD8(+) T cells from elite controllers had strong virus inhibitory capacity and predominantly displayed a central memory phenotype. These data indicate that elite controllers with minimal T cell responses harbor a highly functional, broadly directed central memory T cell population that is capable of suppressing HIV in vitro. Comprehensive examination of this cell population could provide insight into the immune responses associated with successful containment of viremia.  相似文献   

15.
A small percentage of human immunodeficiency virus (HIV)- and simian immunodeficiency virus (SIV)-infected individuals spontaneously control virus replication. The majority of these elite controllers mount high-frequency virus-specific CD4(+) T cell responses. To evaluate the role these responses might play in viral control, we depleted two elite controller macaques of CD4(+) cells. SIV-specific CD4(+) T cell responses did not return to baseline levels until 8 weeks postdepletion. Viral loads remained stable throughout the experiment, suggesting that SIV-specific CD4(+) T cell responses may not play a direct role in controlling chronic viral replication in these elite controllers.  相似文献   

16.
Various strategies of interrupting highly active antiretroviral therapy (HAART) are being investigated for the treatment of human immunodeficiency virus (HIV) infection. Interruptions of greater than 2 weeks frequently result in rebound of plasma HIV RNA. In order to discern changes in the viral population that might occur during cycles of treatment interruption, we evaluated the homology of HIV-1 envelope gene sequences over time in 12 patients who received four to seven cycles of 4 weeks off HAART followed by 8 weeks on HAART by using the heteroduplex tracking assay and novel statistical tools. HIV populations in 9 of 12 patients diverged from those found in the first cycle in at least one subsequent cycle. The substantial genetic changes noted in HIV env did not correlate with increased or decreased log changes in levels of plasma HIV RNA (P > 0.5). Thus, genetic changes in HIV env itself did not contribute in a systematic way to changes in levels of plasma viremia from cycle to cycle of treatment interruption. In addition, the data suggest that there may be multiple compartments contributing to the rebound of plasma viremia and to viral diversity from cycle to cycle of intermittent therapy.  相似文献   

17.
18.
19.
Human immunodeficiency virus type 1 (HIV-1) controllers maintain viremia at <2,000 RNA copies/ml without antiretroviral therapy. Viruses from controllers with chronic infection were shown to exhibit impaired replication capacities, in part associated with escape mutations from cytotoxic-T-lymphocyte (CTL) responses. In contrast, little is known about viruses during acute/early infection in individuals who subsequently become HIV controllers. Here, we examine the viral replication capacities, HLA types, and virus sequences from 18 HIV-1 controllers identified during primary infection. gag-protease chimeric viruses constructed using the earliest postinfection samples displayed significantly lower replication capacities than isolates from persons who failed to control viremia (P = 0.0003). Protective HLA class I alleles were not enriched in these early HIV controllers, but viral sequencing revealed a significantly higher prevalence of drug resistance mutations associated with impaired viral fitness in controllers than in noncontrollers (6/15 [40.0%] versus 10/80 [12.5%], P = 0.018). Moreover, of two HLA-B57-positive (B57+) controllers identified, both harbored, at the earliest time point tested, signature escape mutations within Gag that likewise impair viral replication capacity. Only five controllers did not express “protective” alleles or harbor viruses with drug resistance mutations; intriguingly, two of them displayed typical B57 signature mutations (T242N), suggesting the acquisition of attenuated viruses from B57+ donors. These data indicate that acute/early stage viruses from persons who become controllers have evidence of reduced replication capacity during the initial stages of infection which is likely associated with transmitted or acquired CTL escape mutations or transmitted drug resistance mutations. These data suggest that viral dynamics during acute infection have a major impact on HIV disease outcome.Human immunodeficiency virus type I (HIV-1)-infected individuals who control viremia spontaneously without antiviral therapy have been termed HIV controllers (3, 18, 21, 48, 52). Unraveling the mechanisms associated with this phenotype should provide important insights regarding HIV pathogenesis and could contribute to vaccine development.Host and viral genetics, as well as host innate and adaptive immune responses, influence the rate of disease progression in HIV-1 infection (reviewed in reference 18). Several studies have reported the correlation between in vitro HIV replication capacity and level of plasma virus loads or disease progression in individuals with chronic infection (6, 13, 35, 45, 50, 55). Studies of HIV-1 elite controllers (EC), who control viremia to below the limit of detection in commercial assays, have revealed the presence of replication-competent viruses in these individuals (7), although these viruses appear to be less fit based on studies of envelope (35) and Gag-protease (45). This fitness defect in the chronic phase of infection is due at least in part to fitness-impairing mutations induced by cytotoxic-T-lymphocyte (CTL) responses restricted by “protective” HLA class I alleles (46).In contrast, little is known about viruses obtained from the acute/early phase of infection in persons who subsequently become HIV-1 controllers, largely due to the difficulty in enrolling such people during the acute/early phase of infection. The characterization of acute/early-phase viruses in individuals who subsequently achieve low set-point virus loads is of paramount importance to our understanding of the mechanisms of HIV-1 control.In the present study, we analyzed acute/early-phase plasma HIV RNA sequences from 18 untreated individuals who were diagnosed during the acute/early phase and subsequently became controllers (<2,000 RNA copies/ml). We compared these to sequences from a group of HIV-1 noncontrollers enrolled similarly during acute/early infection. We also generated chimeric viruses carrying patient-derived gag-protease sequences from acute/early-phase infection and compared the viral replication capacities of the chimeric viruses from controllers and from noncontrollers.We observed that the chimeric viruses derived from controllers have significantly reduced replicative capacities compared to those from noncontrollers. Moreover, we observed that at least 80% of these individuals who go on to become controllers featured transmission of attenuated drug-resistant viruses, transmission of HLA-B57-restricted CTL escape variants to HLA-mismatched recipients, selection of attenuated CTL escape variants in HLA-B57-positive (B57+) recipients, or combinations of these factors. Taken together, these results indicate that the initial viral dynamics have a major influence on the subsequent course of disease.  相似文献   

20.
Following interruption of antiretroviral therapy among individuals with acquired drug resistance, preexisting drug-sensitive virus emerges relatively rapidly. In contrast, wild-type virus is not archived in individuals infected with drug-resistant human immunodeficiency virus (HIV) and thus cannot emerge rapidly in the absence of selective drug pressure. Fourteen recently HIV-infected patients with transmitted drug-resistant virus were followed for a median of 2.1 years after the estimated date of infection (EDI) without receiving antiretroviral therapy. HIV drug resistance and pol replication capacity (RC) in longitudinal plasma samples were assayed. Resistance mutations were characterized as pure populations or mixtures. The mean time to first detection of a mixture of wild-type and drug-resistant viruses was 96 weeks (1.8 years) (95% confidence interval, 48 to 192 weeks) after the EDI. The median time to loss of detectable drug resistance using population-based assays ranged from 4.1 years (conservative estimate) to longer than the lifetime of the individual (less conservative estimate). The transmission of drug-resistant virus was not associated with virus with reduced RC. Sexual transmission of HIV selects for highly fit drug-resistant variants that persist for years. The prolonged persistence of transmitted drug resistance strongly supports the routine use of HIV resistance genotyping for all newly diagnosed individuals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号