首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Purified preparations of the human IFN-gamma R derived from placental membranes were used to produce receptor-specific murine mAb. Supernatants from growth-positive wells were screened for their ability to block binding of 125I-IFN-gamma to human placental membranes. Ten inhibitory cultures were identified. Two of these (GIR-208 and GIR-301) abrogated all binding of radioligand to either intact placental membranes or soluble, purified IFN-gamma R. Three others (GIR-72, 76 and 94) showed moderate blocking activity (65, 59, and 49%, respectively) whereas the remaining five (GIR-57, 67, 83, 109, and 153) blocked binding to a low but significant extent (20 to 40%). Specificity experiments demonstrated that the antibodies reacted with the receptor and not the ligand (IFN-gamma). None of the antibodies reacted with IFN-gamma by ELISA. Moreover, GIR-208 and GIR-301, but not isotype-matched controls, identified the receptor by Western blot analysis. GIR-208 and GIR-301 also completely abrogated binding of 125I-IFN-gamma to either mononuclear phagocytes (U937) or human fibroblasts (WISH). Competition experiments revealed that GIR-208 and GIR-301 recognized similar epitopes on the IFN-gamma R and that these (or this) epitopes were identical to or linked to the ligand binding site of the receptor. In addition, both antibodies inhibited development of IFN-gamma-dependent anti-viral activity in WISH cells in a dose-dependent fashion. These data thus indicate that the IFN-gamma R expressed on human placental cells, mononuclear phagocytes, and fibroblasts are similar.  相似文献   

2.
The receptors for human interferon-gamma (IFN-gamma) on peripheral blood monocytes and various cells of nonhematopoietic origin were thoroughly characterized and compared. The receptors of all cell types exhibited a similar affinity for IFN-gamma (Kd approximately 1 x 10(-10) M), and in all cases receptor-mediated endocytosis and ligand degradation were demonstrated. However, the receptors differed in their molecular weights (95,000 in HeLa cells and 140,000 in monocytes, assuming a 1:1 ligand to receptor ratio) as concluded from experiments of cross-linking to 125I-IFN-gamma. Lower molecular weight species were obtained as well, particularly in monocytes. Such species could represent either degradation products or subunit structures. The monocyte and HeLa receptor responded differently to an excess of ligand. A significant receptor down-regulation was observed when monocytes were incubated with an excess of 125I-IFN-gamma, whereas no such down-regulation was observed in HeLa cells or in normal fibroblasts. This differential response was observed both in the presence or in the absence of a protein synthesis inhibitor. The receptor on monocytes was found to be acid-labile whereas that on HeLa cells was resistant to acid treatment. These and additional experiments indicate that the monocyte receptor is inactivated following internalization, whereas the HeLa receptor retains its structure and recycles back to the cell surface. The difference in the properties and fate of these two receptor subtypes is probably related to the differential functions of IFN-gamma in various cell types.  相似文献   

3.
In this study we report that pretreatment of human amniotic (WISH) cells with interferon gamma (IFN-gamma) in the presence of 12-O-tetradecanoylphorbol 13-acetate (TPA) resulted in the down-modulation of epidermal growth factor (EGF) receptors with respect to both receptor number and affinity. Scatchard analysis of EGF binding in the absence of both IFN-gamma and TPA indicated biphasic binding whereas addition of TPA resulted in the loss of the higher affinity class of sites. Pretreatment with IFN-gamma for 24 h enhanced the TPA-induced inhibition of EGF binding whereas IFN-gamma alone had no effect on binding. Protein kinase C (Ca2+/phospholipid-dependent enzyme) was examined as a possible mediator of IFN-induced EGF-receptor modulation; pretreatment of cells with IFN-gamma affected neither the binding of [3H]phorbol 12,13-dibutyrate to membrane or cytosolic fractions nor the protein kinase C activity, suggesting that IFN-gamma pretreatment did not result in translocation or activation of protein kinase C.  相似文献   

4.
We have used human-rodent somatic cell hybrids to investigate the regional localization of the IFN-gamma R gene on human chromosome 6 and studied functional and antigenic characteristics of the expressed IFN-gamma R by Scatchard analyses of 125I-IFN-gamma binding and binding of an anti-receptor mAb (A6C5). The data obtained revealed coordinate expression of IFN-gamma- and A6C5-binding capacity as well as competition in binding to chromosome 6-positive hybrids and normal cells, indicating that the A6C5-defined protein is by itself capable of high affinity IFN-gamma binding and, thus, is likely to constitute the major IFN-gamma R protein of distinct cell types. The receptor gene could be allocated to region 6q16 to 6q22, which also contains the c-ros oncogene. Genetic linkage of the IFN-gamma R gene to an oncogene located in a region of non-random chromosomal aberrations may have a causal relationship to the deregulated IFN-gamma R expression in several malignancies.  相似文献   

5.
Interferon gamma (IFN gamma) reduced 125I-transferrin binding to WISH cells which are sensitive to its antiproliferative effect. IFN gamma did not affect transferrin binding to Daudi cells or phytohemagglutinin-stimulated human lymphocytes, neither of which respond to its antigrowth action. Scatchard analyses of the equilibrium binding of 125I-transferrin to WISH cells exposed to IFN gamma revealed a decrease in the number of cell surface receptors but no change in the apparent association constant compared with control cells. When 125I-transferrin binding was measured using detergent-extracted cells, the IFN-induced reduction of binding was smaller than with intact cells. This suggests that in WISH cells, IFN gamma not only reduced the total number of transferrin receptors, but also modified the process of receptor internalization and recycling. Labeling of newly synthesized receptors with [35S]-methionine indicated that a reduction in the biosynthesis might account for the decrease in the total number of transferrin receptors in IFN gamma-treated cells. Our results suggest that the antigrowth effect of IFN gamma is at least partly due to its inhibitory action on transferrin receptor expression leading to iron starvation.  相似文献   

6.
Recombinant E. coli-derived murine IFN-gamma (Mu-rIFN-gamma; 5 X 10(7) U/mg) was radiolabeled with 125I by the chloramine-T method without loss of its antiviral activity. The 125I-Mu-rIFN-gamma showed specific binding to L1210 cells. Scatchard analysis indicates about 4000 binding sites per cell and an apparent Kd of 5 X 10(-10)M. Binding of 125I-Mu-rIFN-gamma to cells was inhibited by both natural (glycosylated) and rIFN-gamma, but not by IFN-alpha/beta. Receptor-bound 125I-Mu-rIFN-gamma was rapidly internalized when incubation temperature was raised from 4 degrees C to 37 degrees C. On internalization, almost no IFN-gamma degradation was observed during 16 hr incubation. 125I-Mu-rIFN-gamma binding capacity decreased in cells preincubated with low doses of unlabeled Mu-rIFN-gamma, but not with IFN-alpha/beta. This receptor down-regulation was dose-dependent: 90% reduction of 125I-Mu-rIFN-gamma binding was observed after preincubation with 100 U/ml. After removal of IFN-gamma from the culture medium, the binding capacity increased with time. However, reappearance of receptor was completely blocked by cycloheximide or tunicamycin, suggesting that re-expression of receptors is not due to recycling but to the synthesis of new receptors, and that the receptor is probably a glycoprotein. Cross-linking of 125I-Mu-rIFN-gamma to surface L1210 cell proteins by using bifunctional agents yielded a predominant complex of m.w. 110,000 +/- 5000. Thus, assuming a bimolecular complex, the m.w. of the receptor or receptor subunit would be close to 95,000 +/- 5000. The formation of such a complex appeared highly specific on the basis of the following criteria: it could be inhibited by the addition of Mu-rIFN-gamma but not by Mu-rIFN-alpha/beta, it was not obtained in cells pretreated with IFN-gamma to induce down-regulation of IFN-gamma receptors, and it was also identified in the IFN-alpha/beta-resistant L1210R cell line, known to be sensitive to IFN-gamma and which we have recently shown to express IFN-gamma receptors.  相似文献   

7.
The receptor for human interferon-gamma (IFN-gamma) was purified from foreskin fibroblasts. Triton X-100 extracts obtained from either intact cells or membrane preparations were passed through an immobilized interferon-gamma column. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of eluted fractions revealed a major band of Mr = 95,000 and minor bands of Mr = 80,000 and 60,000. Further purification was obtained by steric exclusion and by lectin chromatography. The purified receptor retained the ability to bind 125I-IFN-gamma with a Kd of 2.2 X 10(-10) M, a value close to that obtained with intact fibroblasts (5 X 10(-10) M). A complex of Mr = 105,000-125,000 was visualized by immunoprecipitation of 125I-IFN-gamma cross-linked to the purified receptor followed by SDS-PAGE and autoradiography. A similar complex was obtained when 125I-IFN-gamma was cross-linked to intact cells. Immunization of mice with the excised SDS-PAGE band of Mr = 95,000 elicited antibodies that blocked the antiviral activity of IFN-gamma and immunoprecipitated the cross-linked complex of 125I-IFN-gamma and its receptor.  相似文献   

8.
WiDR colorectal carcinoma cells are highly sensitive to the synergistic cytotoxic effects of tumor necrosis factor (TNF) and gamma-interferon (IFN-gamma). In the present study, we have investigated the effects of recombinant human (rh) TNF and IFN-gamma on the binding of both ligands in this cell line. WiDR cells exhibited high affinity binding sites for both 125I-rhTNF (Kd = 1.66 x 10(-10) M, 920 sites/cell) and 125I-rhIFN-gamma (Kd = 4.15 x 10(-10) M, 18,960 sites/cell). Preincubation of the cells with rhTNF (24 h) increased cell-associated 125I-rhIFN-gamma radioactivity by 129% when binding was carried out at 37 degrees C, as a result of an increase in both surface bound and internalized 125I-rhIFN-gamma. However, rhTNF did not alter the degradation profile of released 125I-rhIFN-gamma radioactivity. Scatchard analysis of 125I-rhIFN-gamama binding data (4 degrees C) revealed that rhTNF induced a 245% increase in 125I-rhIFN-gamma binding sites. Conversely, rhIFN-gamma caused a 68% increase in 125I-rhTNF binding sites and a 58% increase in receptor affinity. rhIFN-gamma also increased the subsequent binding of 125I-rhIFN-gamma, whereas rhTNF increased the subsequent binding of 125I-rhTNF. Furthermore, preincubation of the cells with both rhTNF and rhIFN-gamma also resulted in an increase in the binding of both ligands. Actinomycin D and cycloheximide blocked all the effects of rhTNF and rhIFN-gamma on ligand binding. However, the basal level of 125I-rhIFN-gamma binding was insensitive to either inhibitor, whereas the basal level of 125I-rhTNF binding was decreased by both inhibitors. These data indicate that in some cell types TNF and IFN-gamma may induce an increase in their own receptors (homologous up-regulation) and concomitantly increase each other's receptors (heterologous up-regulation) and that these actions are due, in part, to enhanced receptor synthesis.  相似文献   

9.
The receptor for murine-interferon-gamma (Mu-IFN-gamma) has been characterized for its molecular size and equilibrium binding constant on a thymoma cell line, EL-4. Binding of 125I-IFN-gamma to intact cells and their solubilized membranes has shown a single class of receptor with Kd values of 1.9 x 10(-9) M and 1.3 x 10(-8) M, respectively. It was shown that solubilization of the Mu-IFN-gamma receptor with a Zwitterionic detergent (Chaps) preserves its binding activity. A direct comparison of the molecular mass of the Mu-IFN-gamma receptor on intact cells versus detergent-solubilized membranes was performed using a radiolabeled photoactivated crosslinking reagent and direct hybridization with 125I-labeled IFN-gamma on Western blots of solubilized receptor. The results indicate that both types of receptors have an identical molecular mass of approximately 80 kDa.  相似文献   

10.
This report demonstrates that 125I-recombinant human interferon-gamma (125I-rHuIFN-gamma) binds to high-affinity specific receptors on human platelets. Scatchard analysis of binding data indicates the presence of homogeneous sites estimated in the order of 150 to 200, with an apparent equilibrium dissociation constant, Kd, of 2 X 10(-10) M. The binding of 125I-rHuIFN-gamma to platelet membrane was inhibited by unlabeled rHuIFN-gamma but not by unlabeled rHuIFN-alpha or unlabeled rHuIFN-beta. High affinity binding sites for HuIFN-alpha were not detectable. Cross-linking of 125I-rHuIFN-gamma to platelet membrane proteins with the use of a bifunctional agent (DSS) yielded a predominant complex of 100,000 +/- 5,000 daltons on SDS-PAGE autoradiography, which confirms the presence of specific receptors for IFN-gamma. Two faint bands of lower m.w., 70,000 and 90,000, could also be visualized. Cross-linking of 125I-rHuIFN-alpha to platelet surface could not be demonstrated by using the same procedures. This is the first time that a receptor for a lymphokine (IFN-gamma) has been demonstrated on human platelets. These findings are consistent with data already published, suggesting an interrelationship between IFN and platelet function.  相似文献   

11.
Spleen cells from hamsters immunized with recombinant mouse interferon-gamma (IFN-gamma) were fused with mouse myeloma cells, resulting in the production of four anti-IFN-gamma monoclonal antibodies. Binding of 125I-IFN-gamma by these protein A-bound antibodies was specifically blocked by cold IFN-gamma. Binding by three of these antibodies was also blocked by a synthetic peptide corresponding to the N-terminal 1-39 amino acids of IFN-gamma, whereas a corresponding C-terminal (95-133) peptide had no effect on binding. The N-terminal specificity of these three antibodies was confirmed by their specific binding of 125I-N-terminal (1-39) peptide. One of the N-terminal specific monoclonal antibodies inhibited both antiviral and macrophage priming (for tumor cell killing) activities of IFN-gamma, whereas the other two had no effect on either biologic function. The selectivity of the inhibition of IFN-gamma function was not due to a differential ability of the N-terminal specific antibodies to bind IFN-gamma. Blocking experiments with cold IFN-gamma and N-terminal peptide suggest that the epitope specificities of the monoclonal antibodies could be determined by the conformational or topographic structure of IFN-gamma. An exact determination of the epitope specificity of the monoclonal antibody that inhibited IFN-gamma function could provide insight into the structural basis for the role of the N-terminal domain in the biologic function of IFN-gamma. Polyclonal antibodies to either the N-terminal or the C-terminal peptides also inhibited both the antiviral and the macrophage-priming activities of IFN-gamma. All of the antibodies that inhibited IFN-gamma function also blocked binding of IFN-gamma to membrane receptor on cells, whereas antibodies that did not block function also did not inhibit binding. The data suggest that both the N-terminal and the C-terminal domains of IFN-gamma play an important role in its antiviral and macrophage-priming functions, possibly in a cooperative manner.  相似文献   

12.
The effect of synthetic porcine brain natriuretic peptide (pBNP), a novel brain peptide with sequence homology to alpha-human atrial natriuretic peptide (hANP), on receptor binding and cGMP generation, was studied in cultured rat vascular smooth muscle cells (VSMC) and compared with that of alpha-hANP. 125I-pBNP bound to the cells in a time-dependent manner similar to that of 125I-alpha-hANP. Scatchard analysis indicated a single class of binding sites for pBNP with affinity and capacity identical to those of alpha-hANP. pBNP and alpha-hANP were almost equipotent in inhibiting the binding of either radioligand and stimulating intracellular cGMP generation. These data indicate that BNP and ANP interact with the same receptor sites to activate guanylate cyclase in rat VSMC.  相似文献   

13.
We have characterized a new member of the superfamily of proinflammatory peptides encoded by a growth factor-inducible gene, fic, previously isolated by differential screening of a cDNA library of mRNA from serum-stimulated NIH 3T3 cells. Immunoprecipitation analyses showed that the protein was rapidly induced following serum stimulation and secreted unglycosylated into the medium. The fic protein, FIC, shows highest sequence homology (57%) to human and rabbit monocyte chemoattractant protein 1 (MCP-1), an established monocyte activator. To determine the biological activity of FIC and to compare it with that of mouse MCP-1 (muMCP-1), both proteins were expressed in the baculovirus system. FIC and muMCP-1 were purified to near homogeneity by a two-step chromatography protocol. Both proteins elicited changes in intracellular calcium concentration in human monocytes. The effect was dependent on external Ca2+ and was inhibited by pretreatment of cells with pertussis toxin. FIC did not desensitize human monocytes to the three related cytokines muMCP-1, human MCP-1 (huMCP-1), and huMCP-2. However, pretreatment with muMCP-1 or huMCP-1, but not with huMCP-2, desensitized human monocytes to FIC. Specific binding of [125I]FIC was found in human monocytes, mouse monocytic cultured cells, and human endothelial cells but not in lymphocytes, neutrophils, or primary mouse fibroblasts. Scatchard analysis of the binding of [125I]FIC to human monocytes showed the presence of two classes of receptors, with apparent KdS of 1.2 and 7.7 nM and receptor numbers per cell of 2,400 and 6,300, respectively. FIC, muMCP-1, and huMCP-1 competed to the same extent for the binding of [125I]FIC to human monocytes, contrary to huMCP-2, which competed very ineffectively, if at all.  相似文献   

14.
Hepatopoietin (HPO) is a novel polypeptide mitogen specific for hepatocytes and hepatoma cell lines, which is derived from liver and supports its regeneration. To determine whether HPO acts via a receptor-based signal transduction, recombinant human hepatopoietin was labeled by iodination and used to characterize its binding activity by specific displacement test and Scatchard analysis in primarily cultured rat hepatocytes and human hepatoma Hep-G2 cells. The binding was saturable and specific because it was replaceable by HPO but not by epidermal growth factor, transforming growth factor-alpha, or insulin. Scatchard analysis indicated the presence of a single class of high affinity receptor with dissociation constant (Kd) of 2 and 0.7 pM, and a receptor density of about 10, 000 sites/cell and 55,000 sites/cell in the rat hepatocytes and human hepatoma cells, respectively. The Kd values were consistent with the half-maximum dose of HPO activity. Affinity cross-linking of the receptor with 125I-HPO revealed a polypeptide of molecular mass approximately 90 kDa by SDS-polyacrylamide gel electrophoresis. Thus, the molecular mass of the HPO receptor was calculated to be about 75 kDa. These data demonstrated the existence of an HPO receptor in hepatocytes and hepatoma cells, which may account for biological effect.  相似文献   

15.
125I-Labeled recombinant human interleukin-3 (IL-3) was used to study the characteristics and distribution of receptors for IL-3 on human cells. Receptors were found on primary monocytes, on some strains of KG-1 cells, and on pre-B cell lines. Binding was rapid at 37 degrees C, while requiring several hours to reach equilibrium at 4 degrees C. Equilibrium binding studies indicated that IL-3 bound to a single class of high affinity receptor (less than 500 receptors/cell) with a Ka of approximately 1 x 10(10) M-1. Inhibition studies revealed that human granulocyte/macrophage colony stimulating factor partially inhibited the binding of 125I-IL-3 to human monocytes but not JM-1 cells. Additional analysis showed that on KG-1 cells, both IL-3 and GM-CSF partially competed specific binding of heterologous radiolabeled ligand, with approximately equivalent capacities. This competition occurred at both 37 and 4 degrees C. These results suggest heterogeneity in the binding sites for IL-3 and GM-CSF in which a subset of receptors binds only IL-3, a subset only GM-CSF, and another subset can bind both, all with high affinity. Additional heterogeneity was suggested by equilibrium binding of 125I-IL-3 to KG-1 cells which revealed a biphasic Scatchard plot containing a low affinity component not observed on monocytes and JM-1 cells.  相似文献   

16.
The effect of purified, recombinant murine gamma interferon (IFN-gamma) on the regulation of macrophage proliferation induced by colony-stimulating factor 1 (CSF-1) was investigated. Although both hemopoietic stem cells (GM-CFC) and tissue-derived peritoneal exudate macrophages (PEM) proliferated in response to CSF-1, the more mature PEM were much more sensitive to an antiproliferative effect of IFN-gamma. The role of IFN-gamma receptor expression and its relationship to growth inhibition was examined. Bone marrow cells as a whole did not exhibit an appreciable amount of IFN-gamma receptor binding activity. Likewise, nonadherent (NA) cells derived from CSF-1-stimulated bone marrow cultures displayed low levels of IFN-gamma receptor binding activity. On the contrary, more mature adherent (AD) cells (monocytes/macrophages) from the same culture exhibited high levels of IFN-gamma receptor binding activity, which continued to increase with culture time. The elevated IFN-gamma binding activity is due to an increase in total receptor number rather than the binding affinity as judged by Scatchard analysis. Similar to the relationship between PEM and GM-CFC, more mature AD cells were also more susceptible to the inhibitory effect of IFN-gamma on CSF-1-induced proliferation than their less mature NA counterparts. The fact that the sensitivity to IFN-gamma correlated well with the expression of existing IFN-gamma receptors strongly suggests that the inhibitory effect is mediated through IFN-gamma receptors. This study shows that the expression of IFN-gamma receptors in mononuclear phagocytes may not only represent one of the phenotypic parameters acquired by the growing macrophages during the process of differentiation, but may play some role in controlling proliferation.  相似文献   

17.
Several cytokines and growth factors act on cells after their association with the glycosaminoglycan (GAG) moiety of cell surface proteoglycans (PGs). Interferon-gamma (IFN-gamma) binds to GAG; however, the relevance of this interaction for the biological activity of IFN-gamma on human cells remains to be established. Human arterial smooth muscle cells (HASMC), the main cells synthesizing PG in the vascular wall, respond markedly to IFN-gamma. We found that treatment of HASMC with chondroitinase ABC, an enzyme that degrades chondroitin sulfate GAG, reduced IFN-gamma binding by more than 50%. This treatment increased the affinity of 125I-IFN-gamma for cells from a Kd value of about 93 nM to a Kd value of about 33 nM. However, the total binding was reduced from 9. 3 +/- 0.77 pmol/microg to 3.0 +/- 0.23 pmol/mg (n = 4). Interestingly, pretreatment with chondroitinase ABC reduced significantly the cellular response toward IFN-gamma. The interaction of IFN-gamma with chondroitin sulfate GAG was confirmed by affinity chromatography of isolated cell-associated 35S-, 3H-labeled PG on a column with immobilized IFN-gamma. The cell-associated PG that binds to IFN-gamma was a chondroitin sulfate PG (CSPG). This CSPG had a core protein of approximately 110 kDa that was recognized by anti-CD44 antibodies on Western blots. High molecular weight complexes between IFN-gamma and chondroitin 6-sulfate were observed in gel exclusion chromatography. Additions of chondroitin 6-sulfate to cultured HASMC antagonized the antiproliferative effect and expression of major histocompatibility complex II antigens induced by IFN-gamma. These results indicate that IFN-gamma binds with low affinity to the chondroitin sulfate GAG moiety of the cell surface CSPG receptor CD44. This interaction may increase the local concentration of IFN-gamma at the cell surface, thus facilitating its binding to high affinity receptors and modulating the ability of IFN-gamma to signal a cellular response.  相似文献   

18.
S Mihara  M Fujimoto 《Life sciences》1992,50(3):219-226
We characterized the endothelin (ET) receptor in Girardi heart (GH) cells derived from human atrium. The ET isopeptides ET-1, ET-2 and ET-3 induced the monotonous and long-lasting rise in cytosolic free Ca2+ concentration [( Ca2+]i) with almost the same potency in GH cells. Scatchard analysis of [125I]ET-1 and [125I]ET-3 binding revealed that GH cells have almost the same number of binding sites for either labeled ligand. All ET isopeptides displaced either [125I]ET-1 or [125I]ET-3 binding in GH cells almost equipotently. These results reveal that the functional ET receptors in GH cells are of the ETB-type. GH cells are the first cell line to be found to express the functional ETB-receptor.  相似文献   

19.
Hepatocyte growth factor (HGF), a humoral mediator for regeneration of liver and kidney, possesses multiple biological activities. To investigate target cell specificity and to examine whether multiple actions of HGF are related to properties of the HGF receptor on target cells, we examined the effects of HGF on cell growth and motility and analyzed the HGF receptor in various species of cells. HGF stimulated growth and DNA synthesis of PAM212 (naturally immortalized mouse keratinocytes), Mv1Lu (mink lung epithelia), and A431 (human epidermoid carcinoma) cells, as well as mature hepatocytes, but inhibited those of IM-9 (human B-lymphoblasts). Conversely, HGF had a marked stimulatory effect on cell motility of MDCK (Mardin-Darby canine kidney epithelia) cells, but not on their growth. Also, HGF enhanced the motility of various species of cells, including A431, PAM212, HepG2 (human hepatoma), KB (human epidermoid carcinoma), and J-111 (human monocytes) cells. Scatchard analysis of 125I-HGF binding to hepatocytes indicated that the cells expressed both high- and low-affinity binding sites for HGF with Kd values of 23 and 260 pM, respectively. High-affinity HGF receptor with Kd values of 20-25 pM was detected at 40-720 sites/cell in MDCK, A431, PAM212, Lu99, and IM-9 cells, but not in fibroblasts and hematopoietic cells. In contrast, low-affinity binding sites were detected in all cell lines examined, even in those not responsive to HGF. Northern blots revealed that cells possessing a high-affinity HGF receptor expressed c-MET/HGF receptor mRNA. Therefore, HGF probably regulates both cell growth and motility of various types of epithelial cells and some types of mesenchymal cells. The multiple biological activities of HGF may be exerted through a high-affinity HGF receptor linked to multiple distinct intracellular signaling pathways.  相似文献   

20.
Nuclear T3 specific binding sites were characterized by Scatchard analyses of L-125I-T3 binding to nuclei extracted from freshly isolated and 1, 2 and 6 day-cultured hepatocytes. The results demonstrate a marked decrease in T3 binding capacity of nuclei extracted from 1 day-cultured cells followed by an almost complete recovery within 6 days. The affinity constant value of nuclear receptor sites is significantly decreased in 1 day-cultured cells with a subsequent partial recovery. The affinity and capacity pattern of nuclear T3 binding sites appears to be in line with the delayed responses of hepatocyte primary cultures to T3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号