首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Under anaerobic conditions, intact cells of the purple sulfur bacterium Chromatium vinosum exhibit rapid photooxidation of the two low-potential hemes of the c-type cytochrome associated with the reaction center, after exposure to two short light flashes separated by a dark interval. Reduction of the photooxidized low-potential hemes is very slow under these conditions. On subsequent flashes, rapid photooxidation of a high-potential reaction center heme occurs and is followed by its rereduction on the millisecond time scale. Cells maintained under aerobic conditions exhibit the millisecond time scale reduction of the photooxidized high-potential heme after each flash. Cells grown autotrophically in the presence of Na(2)S and Na(2)S(2)O(3) appear to use the soluble [4Fe-4S]-containing protein, HiPIP, as the only direct electron donor to the reaction center heme under aerobic conditions. In contrast, cells grown in the presence of organic compounds, but in the absence of Na(2)S and Na(2)S(2)O(3), appear to use a soluble c-type cytochrome (most likely cytochrome c(8)) as the only electron donor to the reaction center heme under aerobic conditions. Cells grown autotrophically, in the presence of Na(2)S and Na(2)S(2)O(3), have a slightly higher ratio of HiPIP to cytochrome c(8) and a ratio of Rieske iron-sulfur protein to reaction center that is approximately one-half that of cells grown in the absence of Na(2)S and Na(2)S(2)O(3) but in the presence of organic compounds.  相似文献   

2.
A photosynthetic reaction center complex has been isolated from the green sulfur bacterium Chlorobium vibrioforme. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis reveals polypeptides with apparent molecular masses of 80, 40, 18, 15, 9, and 6 kDa. Only the 18-kDa polypeptide is stained with 3,3',5,5'-tetramethylbenzidine, a heme-specific reagent. Oxidized minus reduced difference spectra show the presence of approximately one heme/P840 and the presence of a cytochrome c551. Flash photolysis of P840 was followed by rereduction of P840+ and oxidation of cytochrome c551, both with a biphasic kinetic with t1/2 values of 7 and 50 microseconds. Using oligonucleotide probes derived from an N-terminal amino acid sequence of the 18-kDa polypeptide, a genomic clone was isolated. The sequence of the gene, which we designate cycA, predicts a single heme binding site (Cys-Asn-Lys-Cys-His). The 621-base pair open reading frame encodes an apoprotein of 22,858 Da with three predicted membrane-spanning alpha-helices. No extensive sequence similarity is found to other cytochromes. Northern blotting indicates that the cycA gene is transcribed as a monocistronic mRNA. Southern blotting shows the presence of only one cycA gene in the C. vibrioforme and Chlorobium tepidum genomes. The unique membrane-bound monoheme cytochrome c551 of C. vibriforme is assigned to a new class of c-type cytochromes. The implications for the current view of evolution of photosynthetic reaction center complexes are discussed.  相似文献   

3.
The temperature dependence of charge recombination from the P+QA- and from the P+QB- states produced by a flash was studied in reaction centers isolated from the photosynthetic thermophilic bacterium Chloroflexus aurantiacus. P designates the primary electron donor; QA and QB the primary and secondary quinone electron acceptors respectively. In QB-depleted reaction centers the rate constant (kAP) for P+QA- recombination was temperature independent between 0-50 degrees C (17.6 +/- 0.7 s-1 at pH 8 and pH 10). The same value was obtained in intact membranes in the presence of o-phenanthroline. Upon lowering the temperature from 250 K to 160 K, kAP increased by a factor of two and remained constant down to 80 K. The overall temperature dependence of kAP was consistent with an activationless process. Ubiquinone (UQ-3) and different types of menaquinone were used for QB reconstitution. In UQ-3 reconstituted reaction centers charge recombination was monoexponential (rate constant k = 0.18 +/- 0.03 s-1) and temperature independent between 5-40 degrees C. In contrast, in menaquinone-3- and menaquinone-4-reconstituted reaction centers P+ rereduction following a flash was markedly biphasic and temperature dependent. In menaquinone-6-reconstituted reaction centers a minor contribution from a third kinetic phase corresponding to P+QA- charge recombination was detected. Analysis of these kinetics and of the effects of the inhibitor o-phenanthroline at high temperature suggest that in detergent suspensions of menaquinone-reconstituted reaction centers a redox reaction removing electrons from the quinone acceptor complex competes with charge recombination. Instability of the semiquinone anions is more pronounced when QB is a short-chain menaquinone. From the temperature dependence of P+ decay the activation parameters for the P+QB- recombination and for the competing side oxidation of the reduced menaquinone acceptor have been derived. For both reactions the activation enthalpies and entropies change markedly with menaquinone chain length but counterbalance each other, resulting in activation free energies at ambient temperature independent of the menaquinone tail. When reaction centers are incorporated into phospholipid vesicles containing menaquinone-8 a temperature-dependent, monophasic, o-phenanthroline-sensitive recombination from the P+QB- state is observed, which is consistent with the formation of stable semiquinone anions. This result seems to indicate a proper QB functioning in the two-subunit reaction center isolated from Chlorflexus aurantiacus when the complex is inserted into a lipid bilayer.  相似文献   

4.
Chen IP  Mathis P  Koepke J  Michel H 《Biochemistry》2000,39(13):3592-3602
The cytochrome (cyt) subunit of the photosynthetic reaction center from Rhodopseudomonas viridis contains four heme groups in a linear arrangement in the spatial order heme1, heme2, heme4, and heme3. Heme3 is the direct electron donor to the photooxidized primary electron donor (special pair, P(+)). This heme has the highest redox potential (E(m)) among the hemes in the cyt subunit. The E(m) of heme3 has been specifically lowered by site-directed mutagenesis in which the Arg residue at the position of 264 of the cyt was replaced by Lys. The mutation decreases the E(m) of heme3 from +380 to +270 mV, i.e., below that of heme2 (+320 mV). In addition, a blue shift of the alpha-band was found to accompany the mutation. The assignment of the lowered E(m) and the shifted alpha-band to heme3 was confirmed by spectroscopic measurements on RC crystals. The structure of the mutant RC has been determined by X-ray crystallography. No remarkable differences were found in the structure apart from the mutated residue itself. The velocity of the electron transfer (ET) from the tetraheme cyt to P(+) was measured under several redox conditions by following the rereduction of P(+) at 1283 nm after a laser flash. Heme3 donates an electron to P(+) with t(1/2) = 105 ns, i.e., faster than in the wild-type reaction center (t(1/2) = 190 ns), as expected from the larger driving force. The main feature is that a phase with t(1/2) approximately 2 micros dominates when heme3 is oxidized but heme2 is reduced. We conclude that the ET from heme2 to heme3 has a t(1/2) of approximately 2 micros, i.e., the same as in the WT, despite the fact that the reaction is endergonic by 50 meV instead of exergonic by 60 meV. We propose that the reaction kinetics is limited by the very uphill ET from heme2 to heme4, the DeltaG degrees of which is about the same (+230 meV) in both cases. The interpretation is further supported by measurements of the activation energy (216 meV in the wild-type, 236 meV in the mutant) and by approximate calculations of ET rates. Altogether these results demonstrate that the ET from heme2 to heme3 is stepwise, starting with a first very endergonic step from heme2 to heme4.  相似文献   

5.
The mechanism of primary photochemistry has been investigated in purified cytoplasmic membranes and isolated reaction centers of Chloroflexus aurantiacus. Redox titrations on the cytoplasmic membranes indicate that the midpoint redox potential of P870, the primary electron donor bacteriochlorophyll, is +362 mV. An early electron acceptor, presumably menaquinone has Em 8.1 = -50 mV, and a tightly bound photooxidizable cytochrome c554 has Em 8.1 = +245 mV. The isolated reaction center has a bacteriochlorophyll to bacteriopheophytin ratio of 0.94:1. A two-quinone acceptor system is present, and is inhibited by o-phenanthroline. Picosecond transient absorption and kinetic measurements indicate the bacteriopheophytin and bacteriochlorophyll form an earlier electron acceptor complex.  相似文献   

6.
The reactions of Rhodopseudomonas viridis cytochrome c2 and horse cytochrome c with Rps. viridis photosynthetic reaction centers were studied by using both single- and double-flash excitation. Single-flash excitation of the reaction centers resulted in rapid photooxidation of cytochrome c-556 in the cytochrome subunit of the reaction center. The photooxidized cytochrome c-556 was subsequently reduced by electron transfer from ferrocytochrome c2 present in the solution. The rate constant for this reaction had a hyperbolic dependence on the concentration of cytochrome c2, consistent with the formation of a complex between cytochrome c2 and the reaction center. The dissociation constant of the complex was estimated to be 30 microM, and the rate of electron transfer within the 1:1 complex was 270 s-1. Double-flash experiments revealed that ferricytochrome c2 dissociated from the reaction center with a rate constant of greater than 100 s-1 and allowed another molecule of ferrocytochrome c2 to react. When both cytochrome c-556 and cytochrome c-559 were photooxidized with a double flash, the rate constant for reduction of both components was the same as that observed for cytochrome c-556 alone. The observed rate constant decreased by a factor of 14 as the ionic strength was increased from 5 mM to 1 M, indicating that electrostatic interactions contributed to binding. Molecular modeling studies revealed a possible cytochrome c2 binding site on the cytochrome subunit of the reaction center involving the negatively charged residues Glu-93, Glu-85, Glu-79, and Glu-67 which surround the heme crevice of cytochrome c-554.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Cytochrome b-561 of the ubiquinol-cytochrome c2 oxidoreductase complex of Rhodopseudomonas sphaeroides is reduced after flash illumination in the presence of myxothiazol in an antimycin-sensitive reaction. Flash-induced reduction was observed over the redox range in which cytochrome b-561 and the Q-pool are both oxidized before the flash. The extent of reduction increased with increasing pH, and was maximal at pH greater than 10.0 where the extent approached that observed in the presence of antimycin following a group of flashes. Reduction of cytochrome b-561 in the presence of myxothiazol showed a lag of approximately 1 ms after the flash, followed by reduction with t 1/2 approximately 6 ms; by analogy with the similar kinetics of the quinol oxidase site, we suggest that the rate is determined by collision with the QH2 produced in the pool on flash excitation.  相似文献   

8.
1. Changes in the absorption spectrum induced by 10-mus flashes and continuous light of various intensities were studied in whole cells of Rhodospirillum rubrum in the presence and absence of 2-n-heptyl-4-hydroxyquinoline-N-oxide(HOQNO) and antimycin A. 2. Three cytochromes, c-420 (cytochrome c2), c-560 (cytochrome b) and c-428 were photoactive and gamma and alpha peaks at 420 and 550, 428 and 560, and 428 and 551 nm, respectively; they were photooxidized following the flash with half times of 0.3, 0.6 and 7 ms in the approximate ratios of 1/100, 1/300 and 1/1000 (cytochrome oxidized/antenna chlorophyll) and became reduced with half times of 12 ms, 60 ms and 0.7 s, respectively. c-428 and c-560 have not been distinguished before. 3. From a detailed analysis of the kinetics of P+ (oxidized reaction center chlorophyll) and the cytochromes, we conclude that 5% of the P+ (P2+) oxidizes c-428, whereas the remaining 95% of P+ (P1+) oxidizes c-420. At actinic light intensities low enough to keep c-420 fully reduced, approx. 4-5% of P becomes oxidized, accompanied by all c-428. The P2+ -P2 difference spectrum induced by this weak light is, when corrected for a shift to longer wavelengths of the bacteriochlorophyll absorption band at 878 nm, identical to the difference spectrum caused by the photooxidation of the remaining P1. At low flash intensity, c-428 becomes preferentially photooxidized, which suggests that the reaction centers where c-428 functions as a secondary donor contain much more antenna pigments compared to the centers where c-420 serves this purpose. 4. c+-420 is reduced in a competitive way by reduced c-560 (t 1/2=7 ms), and by an electron donor pool, (t 1/2=15 ms). HOQNO inhibits both pathways; antimycin A only the first. In the presence of HOQNO, c-560 is in the oxidized state in the dark, and is reduced in a light flash (t 1/2=100 ms), indicating that c-560 acts in a cyclic electron transport chain connected to P1. 5. The ratio of numbers of molecules P1 and antenna bacteriochlorophyll, transferring excitation energy to P1, is P1/bacteriochlorophyll1=1/30 P2: bacteriochlorophyll2=1/300; c-420/P1=1:2; c-560/P1=1/6; C-428/P2=1/1; bacteriochlorophyll2=7:3. If P2 is oxidized, excitation energy is transferred from bacteriochlorophyll2 to bacteriochlorophyll1.  相似文献   

9.
P Joliot  A Verméglio  A Joliot 《Biochemistry》1990,29(18):4355-4361
Light-induced oxidation of the primary electron donor P and of the secondary donor cytochrome c2 was studied in whole cells of Rhodospirillum rubrum in the presence of myxothiazole to slow down their reduction. 1. The primary and secondary electron donors are close to thermodynamic equilibrium during continuous illumination when the rate of the electron transfer is light-limited. This implies a long-range thermodynamic equilibration involving the diffusible cytochrome c2. A different behavior is observed with Rhodobacter sphaeroides R26 whole cells, in which the cytochrome c2 remains trapped within a supercomplex including reaction centers and the cytochrome b/c complex [Joliot, P., et al. (1989) Biochim. Biophys. Acta 975, 336-345]. 2. Under weak flash excitation, the reduction kinetics of the photooxidized primary donor are nearly exponential with a half-time in the hundred microseconds time range. 3. Under strong flash excitation, the reduction of the photooxidized primary donor follows a second-order kinetics. About half of the photooxidized primary donor is reduced in a few milliseconds while the remainder stays oxidized for hundreds of milliseconds despite an excess of secondary donors in their reduced form. The flash intensity dependence of the amplitude of the slow phase of P+ reduction is proportional to the square of the fraction of reaction centers that have undergone a charge separation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
1. The kinetics of cytochrome b reduction and oxidation in the ubiquinone-cytochrome b/c2 oxidoreductase of chromatophores from Rhodopseudomonas sphaeroides Ga have been measured both in the presence and absence of antimycin, after subtraction of contributions due to absorption changes from cytochrome c2, the oxidized bacteriochlorophyll dimer of the reaction center, and a red shift of the antenna bacteriochlorophyll. 2. A small red shift of the antenna bacteriochlorophyll band centered at 589 nm has been identified and found to be kinetically similar to the carotenoid bandshift. 3. Antimycin inhibits the oxidation of ferrocytochrome b under all conditions; it also stimulates the amount of single flash activated cytochrome b reductions 3- to 4-fold under certain if not all conditions. 4. A maximum of approximately 0.6 cytochrome b-560 (Em(7) = 50 mV, n = 1, previously cytochrome b50) hemes per reaction center are reduced following activating flashes. This ratio suggests that there is one cytochrome b-560 heme functional per ubiquinone-cytochrome b/c2 oxidoreductase. 5. Under the experimental conditions used here, only cytochrome b-560 is observed functional in cyclic electron transfer. 6. We describe the existence of three distinct states of reduction of the ubiquinone-cytochrome b/c2 oxidoreductase which can be established before activation, and result in markedly different reaction sequences involving cytochrome b after the flash activation. Poising such that the special ubiquinone (Qz) is reduced and cytochrome b-560 is oxidized yields the conditions for optimal flash activated electron transfer rates through the ubiquinone-cytochrome b/c2 oxidoreductase. However when the ambient redox state is lowered to reduce cytochrome b-560 or raised to oxidize Qz, single turnover flash induced electron transfer through the ubiquinone-cytochrome b/c2 oxidoreductase appears impeded; the points of the impediment are tentatively identified with the electron transfer step from the reduced secondary quinone (QII) of the reaction center to ferricytochrome b-560 and from the ferrocytochrome b-560 to oxidized Qz, respectively.  相似文献   

11.
The acceptor quinone complex of Rhodopseudomonas viridis reaction centers   总被引:3,自引:0,他引:3  
The acceptor complex of isolated reaction centers from Rhodopseudomonas viridis contains both menaquinone and ubiquinone. In a series of flashes the ubiquinone was observed to undergo binary oscillations in the formation and disappearance of a semiquinone, indicative of secondary acceptor (QB) activity. The oscillating signal, Q-B, was typical of a ubisemiquinone anion with a peak at 450 nm (delta epsilon = 6 mM-1 X cm-1) and a shoulder at 430 nm. Weak electrochromic bandshifts in the infrared were also evident. The spectrum of the reduced primary acceptor (Q-A) exhibited a major peak at 412 nm (delta epsilon = 10 mM-1 X cm-1) consistent with the assignment of menaquinone as QA. The Q-A spectrum also had minor peaks at 385 and 455 nm in the blue region. The same spectrum was recorded after quantitative removal of the secondary acceptor, when only menaquinone was present in the reaction centers. Spectral features in the near-infrared due to Q-A were attributed to electrochromic effects on bacteriochlorophyll (BChl) b and bacteriopheophytin (BPh) b pigments resulting in a distinctive split peak at 810 and 830 nm (delta epsilon = 8 mM-1 X cm-1). The menaquinone was identified as 2-methyl-3-nonylisoprenyl-1,4-naphthoquinone (menaquinone-9). The native QA activity was uniquely provided by this menaquinone and ubiquinone was not involved. QB activity, on the other hand, displayed at least a 40-fold preference for ubiquinone (Q-10) as compared to menaquinone. Thus, both quinone-binding sites display remarkable specificity for their respective quinones. In the absence of donors to P+, charge recombination of the P+Q-A and P+Q-B pairs had half-times of 1.1 +/- 0.2 and 110 +/- 20 ms, respectively, at pH 9.0, indicating an electron-transfer equilibrium constant (Kapp2) of at least 100 for Q-AQB in equilibrium QAQ-B. Also observed was a slow recombination of the cytochrome c-558+ Q-A pair, with t 1/2 = 2 +/- 0.5 s at pH 6.  相似文献   

12.
Reaction centers were purified from the thermophilic purple sulfur photosynthetic bacterium Chromatium tepidum. The reaction center consists of four polypeptides L, M, H and C, whose apparent molecular masses were determined to be 25, 30, 34 and 44 kDa, respectively, by polyacrylamide gel electrophoresis. The heaviest peptide corresponds to tightly bound cytochrome. The tightly bound cytochrome c contains two types of heme, high-potential c-556 and low-potential c-553. The low-potential heme is able to be photooxidized at 77 K. The reaction center exhibits laser-flash-induced absorption changes and circular dichroism spectra similar to those observed in other purple photosynthetic bacteria. Whole cells contain both ubiquinone and menaquinone. Reaction centers contain only a single active quinone; chemical analysis showed this to be menaquinone. Reaction center complexes without the tightly bound cytochrome were also prepared. The near-infrared pigment absorption bands are red-shifted in reaction centers with cytochrome compared to those without cytochrome.  相似文献   

13.
Green sulfur bacteria and heliobacteria are strictly anaerobic phototrophs that have homodimeric type 1 reaction center complexes. Within these complexes, highly reducing substances are produced through an initial charge separation followed by electron transfer reactions driven by light energy absorption. In order to attain efficient energy conversion, it is important for the photooxidized reaction center to be rapidly rereduced. Green sulfur bacteria utilize reduced inorganic sulfur compounds (sulfide, thiosulfate, and/or sulfur) as electron sources for their anoxygenic photosynthetic growth. Membrane-bound and soluble cytochromes c play essential roles in the supply of electrons from sulfur oxidation pathways to the P840 reaction center. In the case of gram-positive heliobacteria, the photooxidized P800 reaction center is rereduced by cytochrome c-553 (PetJ) whose N-terminal cysteine residue is modified with fatty acid chains anchored to the cytoplasmic membrane.  相似文献   

14.
Electron transfer in reaction center core (RCC) complexes from the green sulfur bacteria Prosthecochloris aestuarii and Chlorobium tepidum was studied by measuring flash-induced absorbance changes. The first preparation contained approximately three iron-sulfur centers, indicating that the three putative electron acceptors F(X), F(A), and F(B) were present; the Chl. tepidum complex contained on the average only one. In the RCC complex of Ptc. aestuarii at 277 K essentially all of the oxidized primary donor (P840(+)) created by a flash was rereduced in several seconds by N-methylphenazonium methosulfate. In RCC complexes of Chl. tepidum two decay components, one of 0.7 ms and a smaller one of about 2 s, with identical absorbance difference spectra were observed. The fast component might be due to a back reaction of P840(+) with a reduced electron acceptor, in agreement with the notion that the terminal electron acceptors, F(A) and F(B), were lost in most of the Chl. tepidum complexes. In both complexes the terminal electron acceptor (F(A) or F(B)) could be reduced by dithionite, yielding a back reaction of 170 ms with P840(+). At 10 K in the RCC complexes of both species P840(+) was rereduced in 40 ms, presumably by a back reaction with F(X)(-). In addition, a 350 micros component occurred that can be ascribed to decay of the triplet of P840, formed in part of the complexes. For P840(+) rereduction a pronounced temperature dependence was observed, indicating that electron transfer is blocked after F(X) at temperatures below 200 K.  相似文献   

15.
1. The kinetics of the interaction of cytochrome c2 and photosynthetic reaction centers purified from Rhodobacter capsulatus were studied in proteoliposomes reconstituted with a mixture of phospholipids simulating the native membrane (i.e. containing 25% L-alpha-phosphatidylglycerol). 2. At low ionic strength, the kinetics of cytochrome-c2 oxidation induced by a single turnover flash was very different, depending on the concentration of cytochrome c2: at concentrations lower than 1 microM, the process was strictly bimolecular (second-order rate constant, k = 1.7 x 10(9) M-1 s-1), while at higher concentrations a fast oxidation process (half-time lower than 20 microseconds) became increasingly dominant and encompassed the total process at a cytochrome c2 concentration around 10 microM. From the concentration dependence of the amplitude of this fast phase an association constant for a reaction-center--cytochrome-c2 complex of about 10(5) M-1 was evaluated. From the fraction of photo-oxidized reaction centers promptly re-reduced in the presence of saturating concentrations of externally added cytochrome c2, it was found that in approximately 60% of the centers the cytochrome-c2 site was exposed to the external compartment. 3. Both the second-order oxidation reaction and the formation of the reaction-center--cytochrome-c2 complex were very sensitive to ionic strength. In the presence of 180 mM KCl, the value of the second-order rate constant was decreased to 7.0 x 10(7) M-1 s-1 and no fast oxidation of cytochrome c2 could be observed at 10 microM cytochrome c2. 4. The kinetics of exchange of oxidized cytochrome c2 bound to the reaction center with the reduced form of the same carrier, following a single turnover flash, was studied in double-flash experiments, varying the dark time between photoactivations over the range 30 microseconds to 5ms. The experimental results were analyzed according to aminimal kinetic model relating the amounts of oxidized cytochrome c2 and reaction centers observable after the second flash to the dark time between flashes. This model included the rate constants for the electron transfer between the primary and secondary ubiquinone acceptors of the complex (k1) and for the exchange of cytochrome c2 (k2). Fitting to the experimental results indicated a value of k1 equal to 2.4 x 10(3) s-1 and a lower limit for k2 of approximately 2 x 10(4) s-1 (corresponding to a second-order rate constant of approximately 3 x 10(9) M-1 s-1).  相似文献   

16.
(1) A flash number dependency of flash-induced absorbance changes was observed with whole cells of Rhodospirillum rubrum and chromatophores of R. rubrum and Rhodopseudomonas sphaeroides wild type and the G1C mutant. The oscillatory behavior was dependent on the redox potential; it was observed under oxidizing conditions only. Absorbance difference spectra measured after each flash in the 275--500 nm wavelength region showed that a molecule of ubiquinone, R, is reduced to the semiquinone (R-) after odd-numbered flashes and reoxidized after even-numbered flashes. The amount of R reduced was approximately one molecule per reaction center. (2) The flash number dependency of the electrochromic shift of the carotenoid spectrum was studied with chromatophores of Rps. sphaeroides wild type and the G1C mutant. At higher values of the ambient redox potential a relatively slow phase with a rise time of 30 ms was observed after even-numbered flashes, in addition to the fast phase (completed within 0.2 ms) occurring after each flash. Evidence was obtained that the slow phase represents the formation of an additional membrane potential during a dark reaction that occurs after flashes with an even number. This reaction is inhibited by antimycin A, whereas the oscillations of the R/R- absorbance changes remain unaffected. At low potentials (E = 100 mV) no oscillations of the carotenoid shift were observed: a fast phase was followed by a slow phase (antimycin-sensitive) with a half-time of 3 ms after each flash. (3) The results are discussed in terms of a model for the cyclic electron flow as described by Prince and Dutton (Prince, R.C. and Dutton, P.L. (1976) Bacterial Photosynthesis Conference, Brussels, Belgium, September 6--9, Abstr. TB4) employing the so-called Q-cycle.  相似文献   

17.
Abstract The quinone and cytochrome components of the respiratory chain of the microaerophilic bacterium Helicobacter pylori have been investigated. The major isoprenoid quinone was menaquinone-6, with traces of menaquinone-4; no methyl-substituted or unusual menaquinone species were found. Cell yield was highest after growth at 10% (v/v) oxygen and menaquinone levels (per dry cell mass) were maximal at 5–10% (v/v) oxygen. Helicobacter pylori cells and membranes contained b -and c -type cytochromes, but not terminal oxidases of the a -or d -types, as judged by reduced minus oxidised difference spectra. Spectra consistent with the presence of a CO-binding terminal oxidase of the cytochrome b -or o -type were obtained. The soluble fraction from disrupted cells also contained cytochrome c . There were no significant qualitative differences in the cytochrome complements of cells grown at oxygen concentrations in the range 2–15% (v/v) but putative oxidases were highest in cells grown at 5–10% (v/v) oxygen.  相似文献   

18.
The green sulfur bacterium Chlorobium vibrioforme was cultured in the presence of ethylene to selectively inhibit the synthesis of the chlorosome antenna BChl d. Use of these cells as starting material simplified the isolation of a photoactive antenna-depleted membrane fraction without the use of high concentrations of detergents. The preparation had a BChl alpha/P840 of 50, and the spectral properties were similar to those of preparations isolated from cells grown with a normal complement of chlorosomes. The membrane preparation was active in NADP+ photoreduction. This indicated that the fraction contained reaction centers with complete electron-transfer sequences which were then characterized further by flash kinetic spectrophotometry and EPR. We confirmed that cytochrome c553 is the endogenous donor to P840+, and at room temperature we observed a recombination reaction between the reduced terminal acceptor and P840+ with a t1/2 = 7 ms. Oxidative degradation of iron-sulfur centers using low concentrations of chaotropic salts introduced a faster recombination reaction of t1/2 = 50 microseconds which was lost at higher concentrations of chaotrope, indicating the participation of another iron-sulfur redox center earlier than the terminal acceptor. Cluster insertion using ferric chloride and sodium sulfide in the presence of 2-mercaptoethanol restored both the 50-microseconds and 7-ms recombination reactions, allowing definitive assignments of these centers as iron-sulfur centers. Following the suggestion of Nitschke et al. [(1990) Biochemistry 29, 3834-3842], we associate these two kinetic phases to back-reactions between P840+ and iron-sulfur centers FX and FAFB, respectively. The iron-sulfur cluster degradation and reconstitution protocols also led to inhibition and restoration of NADP+ photoreduction by the membrane preparation, providing unequivocal evidence for the function of the centers FX and FAFB in the physiological electron-transfer sequence on the acceptor side of the Chlorobium reaction center. At 77 K we observed a recombination reaction of t1/2 = 20 ms that we suggest occurs between Fx- and P840+. Degradation of the iron-sulfur clusters resulted in replacement of the 20-ms phase with a faster reaction of t1/2 = 80 microseconds that was most likely a recombination between the early acceptor A1- and P840+ or decay of 3P840. Analysis of the iron-sulfur centers in the preparation by EPR at cryogenic temperature supports the optical measurements. EPR signals originating from the terminal acceptor(s) were not observed following treatment of the membrane preparation by chaotropes, and a modified signal was restored following cluster reinsertion.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
The content of cytochrome c-420 in Rhodospirillum rubrum chromatophores prepared by grinding with alumina is 5--10% of that in whole cells, and 20--40% in chromatophores by 'French' pressing. Flash-induced phosphorylation of various chromatophores which varied in cytochrome content from 7 to 40% is proportional to the cytochrome content. Extrapolating the cytochrome c-420 content to that observed in whole cells, a ratio ATP/P+X- near 1 is calculated. At low flash intensity the phosphorylation per flash is proportional to flash energy. Photophosphorylation in flashes given after a time of several minutes is only slightly dependent on the number of flashes. If the flashes are spaced from 0.1 to 10 s, relative phosphorylation in the first flash is about 70% and in the second 90+ of that observed in the following flashes. Proton binding is not affected by the cytochrome c-420 content and a ratio of H+/P+x- of 2.3 was found. These results can be explained by a working hypothesis in which charge separation occurring at one reaction centre and the resulting electron transport mediated amongst others by c-420, results in the injection of two protons into an ATPase, this in contrast to a chemiosmotic mechanism, where the protons are released in the chromatophore inner space.  相似文献   

20.
(1) Short flash excitation of membrane vesicles of a cytochrome-c2-deficient mutant of Rhodobacter capsulatus (strain MT-G4/S4) led to rapid oxidation of a c-type cytochrome. In redox titrations, the photooxidation of c-type cytochrome was attenuated with a midpoint of approx. +360 mV. Vesicles from a control strain, MT1131, gave similar results. These findings are consistent with those of Prince et al. (Prince, R.C., Davidson, E., Haith, L.E. and Daldal, F. (1986) Biochemistry 25, 5208-5214). (2) In anaerobic intact cells the extent of rapid re-reduction of c-type cytochrome oxidised after a flash was less in MT-G/S4 than in MT1131. Cytochrome c reduction in both strains was inhibited by myxothiazol. The myxothiazol-sensitive component of the electrochromic absorbance change in cells indicated that rapid charge separation through the cytochrome bc1 complex was less extensive after a flash in MT-G4/S4 than in MT 1131. (3) In anaerobic intact cells and in chromatophores of Rb. capsulatus strain MT-GS18, a mutant deficient in both cytochrome c1 and cytochrome c2, flash excitation led to the oxidation of c-type cytochrome. Redox titrations and spectra of chromatophores suggested that this is the same cytochrome as was photooxidized in vesicles of MT-G4/S4 and MT1131. This result is in contrast with earlier findings (Prince, R.C. and Daldal, F. (1987) Biochim. Biophys, Acta 894, 370-378) in which it was reported that no photooxidation of c-type cytochrome occurred in the absence of c1 and c2, and argues against the possibility that cytochrome c1 can rapidly and directly donate electrons to the reaction centre. (4) It is proposed that a previously uncharacterized, membrane-bound c-type cytochrome (Em7 approximately +360 mV) is present in Rb-capsulatus MT1131, in the c2-deficient mutant MT-G4/34 and in the c1/c2-deficient mutant MTGS18. This cytochrome and cytochrome c2 are alternative electron donors to the reaction centre in strain MT1131.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号