共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Characterization of Escherichia coli DnaAcos protein in replication systems reconstituted with highly purified proteins 总被引:2,自引:1,他引:2
Excessive initiation of chromosomal replication occurs in the dnaAcos mutant at 30°C. Whereas purified wild-type DnaA protein binds ATP and ADP tightly, DnaAcos protein is defective for such nucleotide binding. As initiation is a multistep reaction and DnaA protein functions at each step, activities of DnaAcos protein need to be examined precisely. DnaAcos protein specifically bound a DNA fragment containing the chromosomal replication origin with an affinity similar to that seen with the wild-type protein. In a system reconstituted with purified proteins at 30°C, the mutant protein initiated replication of single-stranded DNA that contains a DnaA-binding hairpin structure. Thus, DnaAcos protein basically sustains affinity to a DnaA-binding sequence and functions in the loading of DnaB helicase onto single-stranded DNA. Thermal stabilities of wild-type DnaA and DnaAcos activities were comparable. Unlike wild-type DnaA protein, DnaAcos protein was inactive for minichromosomal replication in systems reconstituted with purified proteins in which the ATP-bound form of DnaA protein is required for initiation. Taken together, the data indicate that the prominent defect in DnaAcos protein appears to be the inability to bind nucleotide. 相似文献
3.
Porin channels in Escherichia coli: studies with liposomes reconstituted from purified proteins. 总被引:32,自引:27,他引:32
Rates of diffusion of uncharged and charged solute molecules through porin channels were determined by using liposomes reconstituted from egg phosphatidylcholine and purified Escherichia coli porins OmpF (protein 1a), OmpC (protein 1b), and PhoE (protein E). All three porin proteins appeared to produce channels of similar size, although the OmpF channel appeared to be 7 to 9% larger than the OmpC and PhoE channels in an equivalent radius. Hydrophobicity of the solute retarded the penetration through all three channels in a similar manner. The presence of one negative charge on the solute resulted in about a threefold reduction in penetration rates through OmpF and OmpC channels, whereas it produced two- to tenfold acceleration of diffusion through the PhoE channel. The addition of the second negatively charged group to the solutes decreased the diffusion rates through OmpF and OmpC channels further, whereas diffusion through the PhoE channel was not affected much. These results suggest that PhoE specializes in the uptake of negatively charged solutes. At the present level of resolution, no sign of true solute specificity was found in OmpF and OmpC channels; peptides, for example, diffused through both of these channels at rates expected from their molecular size, hydrophobicity, and charge. However, the OmpF porin channel allowed influx of more solute molecules per unit time than did the equivalent weight of the OmpC porin when the flux was driven by a concentration gradient of the same size. This apparent difference in "efficiency" became more pronounced with larger solutes, and it is likely to be the consequence of the difference in the sizes of OmpF and OmpC channels. 相似文献
4.
Reconstitution of RecBC DNase activity from purified Escherichia coli RecB and RecC proteins 总被引:8,自引:0,他引:8
I D Hickson C N Robson K E Atkinson L Hutton P T Emmerson 《The Journal of biological chemistry》1985,260(2):1224-1229
The Escherichia coli RecB protein, normally synthesized in low amounts, has been amplified by linkage of the recB gene to the phage lambda leftward promoter in an expression plasmid. From strains harboring this plasmid, RecB protein has been purified to homogeneity by a simple procedure which includes affinity chromatography on a column of RecC protein bound to agarose. The purified RecB protein has DNA-dependent ATPase activity but no exonuclease activity. RecC protein alone has neither ATPase nor exonuclease activity. However, when combined together, the RecB and RecC proteins show the ATP-dependent double-stranded exonuclease properties characteristic of the RecBC DNase. 相似文献
5.
6.
Initiation of lambda DNA replication reconstituted with purified lambda and Escherichia coli replication proteins 总被引:2,自引:0,他引:2
M Zylicz D Ang K Liberek T Yamamoto C Georgopoulos 《Biochimica et biophysica acta》1988,951(2-3):344-350
Using highly purified bacteriophage lambda and E. coli replication proteins, we were able to reconstitute an in vitro system capable of replication ori lambda-containing plasmid DNA. The addition of a new E. coli factor, the grpE gene product, to this replication system reduced the level of dnaK protein required for efficient DNA synthesis by at least 10-fold, and also allowed the isolation of a stable DNA replication intermediate. Based on all available information, we propose a molecular mechanism for the action of the dnaK and grpE proteins during the prepriming reaction leading to lambda DNA synthesis. 相似文献
7.
Histone-like proteins and bacterial chromosome structure 总被引:38,自引:0,他引:38
D E Pettijohn 《The Journal of biological chemistry》1988,263(26):12793-12796
8.
M Bartsch 《The Journal of biological chemistry》1985,260(1):237-241
Immunological homology between chloroplast ribosomal proteins (r-proteins) from a higher plant (Spinacia) and bacterial r-proteins was examined using antibodies prepared against 35 purified Escherichia coli r-proteins. Cross-reactions were determined on cellulose acetate gels and on nitrocellulose paper, after electrophoretic transfer of r-proteins from one- and two dimensional polyacrylamide gels, using peroxidase and fluorescein-conjugated second antibodies for detection (immunoblotting). The specificity of positive cross-reactions was confirmed by absorption experiments using purified E. coli r-proteins. Antisera against five proteins of the small subunit and six proteins of the large subunit of E. coli ribosome (i.e. anti-S7, -S9, -S11, -S12, and -S19; anti-L1, -L2, -L3, -L6, -L13, and -L17) gave cross-reactions. As an inference from this work, and a recent study on the synthesis of certain chloroplast r-proteins in isolated chloroplasts (Eneas-Filho, J., Hartley, M. R., and Mache, R. (1981) Mol. Gen. Genet. 184, 484-488), we suggest that chloroplast r-proteins S7 and L2 are encoded in the organelle DNA. 相似文献
9.
Siegele DA 《Journal of bacteriology》2005,187(18):6253-6254
10.
High-affinity calcium-binding proteins in Escherichia coli 总被引:4,自引:0,他引:4
A C Harmon D Prasher M J Cormier 《Biochemical and biophysical research communications》1985,127(1):31-36
Crude extracts of Escherichia coli contain at least three heat stable proteins of Mr, 33,000, 47,000, and 60,000, which bind 45Ca2+ in buffers containing micromolar calcium and physiological salt concentrations. Fractions containing these proteins neither activated the calmodulin-dependent enzyme, NAD kinase, nor inhibited the activity of this enzyme in the presence of brain calmodulin. Radioimmunoassay of crude extracts for calmodulin indicated the presence of a calmodulin-like antigen. Crude extracts also contain proteins that interact with 2-trifluoromethyl-10H-(3'-aminopropyl)phenothiazine-Sepharose in a calcium-dependent manner, but proteins eluted from this resin did not bind calcium with high affinity. 相似文献
11.
12.
Interaction of nocardicin A with the penicillin-binding proteins of Escherichia coli in intact cells and in purified cell envelopes 总被引:2,自引:0,他引:2
This study deals with the interaction of nocardicin A with Escherichia coli penicillin-binding proteins. Competition experiments with two different isotopically labelled beta-lactams indicated that nocardicin A interacts with penicillin-binding proteins 1a, 1b, 2 and 4 in intact cells. Binding of nocardicin A to the penicillin-binding proteins was abolished, or greatly reduced, when the assays were carried out with purified cell envelopes. Important differences between the binding patterns of benzyl[14C]penicillin to intact cells and to purified cell envelopes were also observed. These results suggest that the interaction of beta-lactam antibiotics with their target proteins depends to a very great extent on the state of the cell envelope as a whole. 相似文献
13.
Properties of purified ribonuclease P from Escherichia coli 总被引:12,自引:0,他引:12
The purified protein moiety of ribonuclease P (EC 3.1.26.5) from Escherichia coli, a single polypeptide of molecular weight approximately 17 500, has not catalytic activity by itself on several RNA substrates. However, when it is marked in vitro with an RNA species called M1 RNA, RNase P activity is reconstituted. The rate at which the purified RNase P cleaves any particular tRNA precursor molecule depends on the identity of that tRNA precursor. 相似文献
14.
A. M. Anuchin A. V. Goncharenko O. I. Demidenok A. S. Kaprelyants 《Applied Biochemistry and Microbiology》2011,47(6):580-585
Four major families of bacterial histone-like proteins (HU, IHF, H-NS, FIS), united on the basis of structural similarity and performing specific structural and regulatory functions in the cell, are discussed. Histone-like proteins perform topological modification of the chromosome (twisting, bending, and folding) and directly regulate the functioning of promoters of individual operons. Histone-like proteins are critical for the regulation of cell metabolism, are involved in the response to environmental changes, and play a key role in the transition to and maintenance of the resting cells of bacteria. 相似文献
15.
16.
Kriek M Martins F Leonardi R Fairhurst SA Lowe DJ Roach PL 《The Journal of biological chemistry》2007,282(24):17413-17423
Thiamine is biosynthesized by combining two heterocyclic precursors. In Escherichia coli and other anaerobes, one of the heterocycles, 4-methyl-5-(beta-hydroxyethyl) thiazole phosphate, is biosynthesized from 1-deoxyxylulose-5-phosphate, tyrosine, and cysteine. Genetic evidence has identified thiH, thiG, thiS, and thiF as essential for thiazole biosynthesis in E. coli. In this paper, we describe the measurement of the thiazole phosphate-forming reaction using purified protein components. The activity is shown to require four proteins isolated as heterodimers: ThiGH and ThiFS. Reconstitution of the [4Fe-4S] cluster in ThiH was essential for activity, as was the use of ThiS in the thiocarboxylate form. Spectroscopic studies with ThiGH strongly suggested that S-adenosylmethionine (AdoMet) bound to the [4Fe-4S] cluster, which became more susceptible to reduction to the +1 state. Assays of thiazole phosphate formation showed that, in addition to the proteins, Dxp, tyrosine, AdoMet, and a reductant were required. The analysis showed that no more than 1 mol eq of thiazole phosphate was formed per ThiGH. Furthermore, for each mole of thiazole-P formed, 1 eq of AdoMet and 1 eq of tyrosine were utilized, and 1 eq of 5'-deoxyadenosine was produced. These results demonstrate that ThiH is a member of the "radical-AdoMet" family and support a mechanistic hypothesis in which AdoMet is reductively cleaved to yield a highly reactive 5'-deoxyadenosyl radical. This radical is proposed to abstract the phenolic hydrogen atom from tyrosine, and the resultant substrate radical cleaves to yield dehydroglycine, which is required by ThiG for the thiazole cyclization reaction. 相似文献
17.
18.
Spector S Flynn JM Tidor B Baker TA Sauer RT 《Protein expression and purification》2003,32(2):317-322
In bacteria, protein expression initiates with a formyl-methionine group. Addition of the antibiotic actinonin, a known peptide deformylase inhibitor, at the time of induction of protein expression results in the retention of the formyl group by the overexpressed protein. In addition, because deformylation is a prerequisite for removal of the initiating methionine, this post-translational processing step is also prevented by actinonin, and the N-formyl methionine residue is retained by proteins from which it is normally removed. We have demonstrated the applicability of this system for obtaining N-modified forms of several different proteins and use one of these modified molecules to show that the N-terminal amino group is not required for ClpXP degradation of proteins bearing an N-terminal recognition signal. 相似文献
19.
20.
Berkmen M 《Protein expression and purification》2012,82(1):240-251
Disulfide bonds are covalent bonds formed post-translationally by the oxidation of a pair of cysteines. A disulfide bond can serve structural, catalytic, and signaling roles. However, there is an inherent problem to the process of disulfide bond formation: mis-pairing of cysteines can cause misfolding, aggregation and ultimately result in low yields during protein production. Recent developments in the understanding of the mechanisms involved in the formation of disulfide bonds have allowed the research community to engineer and develop methods to produce multi-disulfide-bonded proteins to high yields. This review attempts to highlight the mechanisms responsible for disulfide bond formation in Escherichia coli, both in its native periplasmic compartment in wild-type strains and in the genetically modified cytoplasm of engineered strains. The purpose of this review is to familiarize the researcher with the biological principles involved in the formation of disulfide-bonded proteins with the hope of guiding the scientist in choosing the optimum expression system. 相似文献