首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
From analogy to chloroperoxidase from Caldariomyces fumago, it is believed that the electronic structure of the intermediate iron-oxo species in the catalytic cycle of cytochrome P450 corresponds to an iron(IV) porphyrin-pi-cation radical (compound I). However, our recent studies on P450cam revealed that after 8 ms a tyrosine radical and iron(IV) were formed in the reaction of ferric P450 with external oxidants in the shunt pathway. The present study on the heme domain of P450BM3 (P450BMP) shows a similar result. In addition to a tyrosine radical, a contribution from a tryptophan radical was found in the electron paramagnetic resonance (EPR) spectra of P450BMP. Here we present comparative multi-frequency EPR (9.6, 94 and 285 GHz) and M?ssbauer spectroscopic studies on freeze-quenched intermediates produced using peroxy acetic acid as oxidant for both P450 cytochromes. After 8 ms in both systems, amino acid radicals occurred instead of the proposed iron(IV) porphyrin-pi-cation radical, which may be transiently formed on a much faster time scale. These findings are discussed with respect to other heme thiolate proteins. Our studies demonstrate that intramolecular electron transfer from aromatic amino acids is a common feature in these enzymes. The electron transfer quenches the presumably transiently formed porphyrin-pi-cation radical, which makes it extremely difficult to trap compound I.  相似文献   

2.
We report a multifrequency (9.6-, 94-, 190-, and 285-GHz) EPR study of a freeze-quenched intermediate obtained from reaction of substrate-free cytochrome P450cam (CYP101) and its Y96F and Y96F/Y75F mutants with peroxy acids. It is generally assumed that in such a shunt reaction an intermediate [Fe(IV)=O, porphyrin-pi-cation radical] is formed, which should be identical to the species in the natural reaction cycle. However, for the wild type as well as for the mutant proteins, a porphyrin-pi-cation radical is not detectable within 8 ms. Instead, EPR signals corresponding to tyrosine radicals are obtained for the wild type and the Y96F mutant. Replacement of both Tyr-96 and Tyr-75 by phenylalanine leads to the disappearance of the tyrosine EPR signals. EPR studies at 285 GHz on freeze-quenched wild type and Y96F samples reveal g tensor components for the radical (stretched g(x) values from 2.0078 to 2.0064, g(y) = 2.0043, and g(z) = 2.0022), which are fingerprints for tyrosine radicals in a heterogeneous polar environment. The measurements at 94 GHz using a fundamental mode microwave resonator setup confirm the 285-GHz study. From the simulation of the hyperfine structure in the 94-GHz EPR spectra the signals have been assigned to Tyr-96 in the wild type and to Tyr-75 in the Y96F mutant. We suggest that a transiently formed Fe(IV)=O porphyrin-pi-cation radical intermediate in P450cam is reduced by intramolecular electron transfer from these tyrosines within 8 ms.  相似文献   

3.
The interaction of the antitumor agent daunomycin (DN) with ferric iron has been analysed by M?ssbauer spectroscopy, EPR, extended X-ray absorption fine structure (EXAFS), and magnetic susceptibility measurements. In contrast to literature data, at millimolar iron and anthracycline concentrations no solitary Fe(DN)3 complexes are formed in appreciable amounts. The M?ssbauer spectroscopic analysis revealed severe dependencies on temperature, on the preparation procedure, the time allowed for equilibration, and on the metal/ligand ratio. The M?ssbauer spectra exhibit two components: a broad magnetic sextet and a quadrupole doublet at an Fe/DN molar ratio of 1:3 and exclusively a doublet at a molar ratio of 1:20, indicating an equilibrium of these two spectral components. The EPR spectra are dominated by a signal at g(eff) = 2. Double integration of the EPR signals enabled the determination of their spin density and a correlation between EPR and M?ssbauer spectra. The M?ssbauer sextet species is EPR invisible and corresponds to magnetically ordered polynuclear aggregates with high magnetic anisotropy. EXAFS and susceptibility measurements provide additional evidence for the formation of polynuclear aggregates of ferric daunomycin. The quadrupole doublet species in the M?ssbauer spectra correlates with the g = 2 signal in EPR. This species is also related to a magnetically ordered system, exhibiting, however, superparamagnetic behavior due to less magnetic anisotropy. Since daunomycin forms dimers in aqueous solution at millimolar concentrations, we conclude that the cooperative phenomena observed in EPR and M?ssbauer spectra are a consequence of its stacking effects.  相似文献   

4.
Rieske dioxygenases catalyze the reductive activation of O2 for the formation of cis-dihydrodiols from unactivated aromatic compounds. It is known that O2 is activated at a mononuclear non-heme iron site utilizing electrons supplied by a nearby Rieske iron sulfur cluster. However, it is controversial whether the reactive species is an Fe(III)-(hydro)peroxo or an Fe(II)-(hydro)peroxo (or electronically equivalent species formed by breaking the O-O bond). Here it is shown that benzoate 1,2 dioxygenase oxygenase component (BZDO) prepared in a form with the Rieske cluster oxidized and the mononuclear iron in the Fe(III) state can utilize H2O2 as a source of reduced oxygen to form the correct cis-dihydrodiol product from benzoate. The reaction approaches stoichiometric yield relative to the mononuclear Fe(III) concentration, being limited to a single turnover by inefficient product release from the Fe(III)-product complex. EPR and M?ssbauer studies show that the iron remains ferric throughout this single turnover "peroxide shunt" reaction. These results strongly support Fe(III)-(hydro)peroxo (or Fe(V)-oxo-hydroxo) as the reactive species because there is no source of additional reducing equivalents to form the Fe(II)-(hydro)peroxo state. This conclusion could be further tested in the case of BZDO because the peroxide shunt occurs very slowly compared with normal turnover, allowing the reactive intermediate to be trapped for spectroscopic analysis. We attribute the slow reaction rate to a forced change in the normally strict order of the substrate binding and enzyme reduction steps that regulate the catalytic cycle. The reactive intermediate is a high-spin ferric species exhibiting an unusual negative zero field splitting and other EPR and M?ssbauer spectroscopic properties reminiscent of previously characterized side-on-bound peroxide adducts of Fe(III) model complexes. If the species in BZDO is a similar adduct, its isomer shift is most consistent with an Fe(III)-hydroperoxo reactive state.  相似文献   

5.
At its carboxylate-bridged diiron active site, the hydroxylase component of toluene/o-xylene monooxygenase activates dioxygen for subsequent arene hydroxylation. In an I100W variant of this enzyme, we characterized the formation and decay of two species formed by addition of dioxygen to the reduced, diiron(II) state by rapid-freeze quench (RFQ) EPR, M?ssbauer, and ENDOR spectroscopy. The dependence of the formation and decay rates of this mixed-valent transient on pH and the presence of phenol, propylene, or acetylene was investigated by double-mixing stopped-flow optical spectroscopy. Modification of the alpha-subunit of the hydroxylase after reaction of the reduced protein with dioxygen-saturated buffer was investigated by tryptic digestion coupled mass spectrometry. From these investigations, we conclude that (i) a diiron(III,IV)-W* transient, kinetically linked to a preceding diiron(III) intermediate, arises from the one-electron oxidation of W100, (ii) the tryptophan radical is deprotonated, (iii) rapid exchange of either a terminal water or hydroxide ion with water occurs at the ferric ion in the diiron(III,IV) cluster, and (iv) the diiron(III,IV) core and W* decay to the diiron(III) product by a common mechanism. No transient radical was observed by stopped-flow optical spectroscopy for reactions of the reduced hydroxylase variants I100Y, L208F, and F205W with dioxygen. The absence of such species, and the deprotonated state of the tryptophanyl radical in the diiron(III,IV)-W* transient, allow for a conservative estimate of the reduction potential of the diiron(III) intermediate as lying between 1.1 and 1.3 V. We also describe the X-ray crystal structure of the I100W variant of ToMOH.  相似文献   

6.
Using UV-Vis, resonance Raman, and EPR spectroscopy we have studied the properties of the oxygenated ferrous cytochrome P450 from Sulfolobus solfataricus, (CYP119). The recently determined crystal structure of CYP119 is compared with other available structures of P450s, and detailed structural and spectroscopic analyses are reported. With several structural similarities to CYP102, such as in-plane iron position and a shorter iron-proximal ligand bond, CYP119 shows low-spin conformation preference in the ferric form and partially in the ferrous form at low temperatures. These structural features can explain the fast autoxidation of the oxyferrous complex of CYP119. Finally, we report the first UV-Vis and EPR spectra of the cryoradiolytically reduced oxygenated intermediate of CYP119. The primary reduced intermediate, a hydroperoxo-ferric complex of CYP119, undergoes a 'peroxide shunt' pathway during gradual annealing at 170-195 K and returns to the low-spin ferric form.  相似文献   

7.
Oxoferrylporphyrin cation radical complexes were generated by m-chloroperoxybenzoic acid oxidation of the chloro and trifluoromethanesulfonato complexes of tetramesitylporphyrinatoiron(III) [(TMP)Fe] and the trifluoromethanesulfonato complex of tetra(2,6-dichlorophenyl)porphyrinatoiron(III) [TPP(2,6-Cl)Fe]. Coupling between ferryl iron (S = 1) and porphyrin radical (S' = 1/2) spin systems was investigated by M?ssbauer and EPR spectroscopy. The oxoferrylporphyrin cation radical systems generated from the TMP complexes show strong ferromagnetic coupling. Analysis of the magnetic M?ssbauer spectra, using a spin Hamiltonian explicitly including a coupling tensor J, suggests an exchange-coupling constant J greater than 80 cm-1. The EPR spectra show non-zero rhombicity, the origin of which is discussed in terms of contributions from the usual zero-field effects of iron and from iron-radical spin-dipolar interaction. A consistent estimate of zero-field splitting parameter D approximately + 6 cm-1 was obtained by EPR and M?ssbauer measurements. EPR and M?ssbauer parameters are shown to be slightly dependent on solvent, but not on the axial ligand in the starting (TMP)Fe complex. In contrast to the TMP complex, the oxoferrylporphyrin cation radical system generated from [TPP(2,6-Cl)FeOSO2CF3] exhibits M?ssbauer and EPR spectra consistent with weak iron-porphyrin radical coupling of magnitude of J approximately 1 cm-1.  相似文献   

8.
M?ssbauer, 57Fe ENDOR, CW and pulsed EPR experiments were performed on the reduced and the oxidized high-potential iron proteins (HiPIPs) of the wild type (WT) and the C77S mutant from Chromatium vinosum. The EPR spectra of the oxidized WT and mutant show three species respectively having nearly the same g-values but strongly changed spectral contributions. Relaxation times were estimated for oxidized WT and mutant at T = 5 K with pulsed EPR. A-tensor components of both iron pairs were obtained by 57Fe ENDOR, proving a similar magnetic structure for the WT and the mutant. Electronic relaxation has to be taken into account at T = 5 K in native and mutated oxidized HiPIPs to achieve agreement between M?ssbauer and 57Fe ENDOR spectroscopies. The M?ssbauer spectroscopy shows that the oxidized cluster contains a pure ferric and a mixed-valence iron pair coupled antiparallel. While all cluster irons from reduced C. vinosum WT are indistinguishable in the M?ssbauer spectrum, the reduced C77S mutant shows a non-equivalence between the serine-bound and the three cysteine-ligated iron ions. The M?ssbauer parameters confirm a loss of the covalent character of the iron bond when S is replaced by O and indicate a shift of the cluster's electron cloud towards the serine. M?ssbauer spectra of the oxidized mutant can be simulated with two models: model I introduces a single electronic isomer with the serine always ligated to a ferric iron. Model II assumes two equally populated electronic isomers with the serine ligated to a ferric iron and a mixed-valence iron, respectively. The latter model is in better agreement with EPR and NMR.  相似文献   

9.
Previously, we reported spectroscopic properties of cytochrome P450cam compound I, (ferryl iron plus a porphyrin π-cation radical (FeIV = O/Por+)), as well as compound ES (FeIV = O/Tyr) in reactions of substrate-free ferric enzyme with m-chloroperbenzoic acid [T. Spolitak, J.H. Dawson, D.P. Ballou, J. Biol. Chem. 280 (2005) 20300-9]. Compound ES arises by intramolecular electron transfer from nearby tyrosines to the porphyrin π-cation radical of Compound I, and has been characterized by rapid-freeze-quench-Mössbauer/EPR spectroscopy; the tyrosyl radical was assigned to Tyr96 for wild type or to Tyr75 for the Tyr96Phe variant [V. Schünemann, F. Lendzian, C. Jung, J. Contzen, A.L. Barra, S.G. Sligar, A.X. Trautwein, J. Biol. Chem. 279 (2004) 10919–10930]. Here we report rapid-scanning stopped-flow studies of the reactions of peracids with substrate-free ferric Y75F, Y96F, and Y96F/Y75F P450cam variants, showing how these active site changes influence electron transfer from nearby tyrosines and affect formation of intermediates. Curiously, rates of generation of Compounds I and ES for both single mutants were not very different from wild type. Contrasting with the earlier EPR results, the Y96F/Y75F variant was also shown to form an ES-like species, but more slowly. When substrate is not present, or is improperly bound, compound I rapidly converts to compound ES, which can be reduced to form H2O and ferric P450, thus avoiding the modification of nearby protein groups or release of reactive oxygen species.  相似文献   

10.
A conserved glutamate covalently attaches the heme to the protein backbone of eukaryotic CYP4 P450 enzymes. In the related Bacillus megaterium P450 BM3, the corresponding residue is Ala264. The A264E mutant was generated and characterized by kinetic and spectroscopic methods. A264E has an altered absorption spectrum compared with the wild-type enzyme (Soret maximum at approximately 420.5 nm). Fatty acid substrates produced an inhibitor-like spectral change, with the Soret band shifting to 426 nm. Optical titrations with long-chain fatty acids indicated higher affinity for A264E over the wild-type enzyme. The heme iron midpoint reduction potential in substrate-free A264E is more positive than that in wild-type P450 BM3 and was not changed upon substrate binding. EPR, resonance Raman, and magnetic CD spectroscopies indicated that A264E remains in the low-spin state upon substrate binding, unlike wild-type P450 BM3. EPR spectroscopy showed two major species in substrate-free A264E. The first has normal Cys-aqua iron ligation. The second resembles formate-ligated P450cam. Saturation with fatty acid increased the population of the latter species, suggesting that substrate forces on the glutamate to promote a Cys-Glu ligand set, present in lower amounts in the substrate-free enzyme. A novel charge-transfer transition in the near-infrared magnetic CD spectrum provides a spectroscopic signature characteristic of the new A264E heme iron ligation state. A264E retains oxygenase activity, despite glutamate coordination of the iron, indicating that structural rearrangements occur following heme iron reduction to allow dioxygen binding. Glutamate coordination of the heme iron is confirmed by structural studies of the A264E mutant (Joyce, M. G., Girvan, H. M., Munro, A. W., and Leys, D. (2004) J. Biol. Chem. 279, 23287-23293).  相似文献   

11.
Freeze-quenched intermediates of substrate-free cytochrome 57Fe-P450(cam) in reaction with peroxy acetic acid as oxidizing agent have been characterized by EPR and Mossbauer spectroscopy. After 8 ms of reaction time the reaction mixture consists of approximately 90% of ferric low-spin iron with g-factors and hyperfine parameters of the starting material; the remaining approximately 10% are identified as a free radical (S' = 1/2) by its EPR and as an iron(IV) (S= 1) species by its Mossbauer signature. After 5 min of reaction time the intermediates have disappeared and the Mossbauer and EPR-spectra exhibit 100% of the starting material. We note that the spin-Hamiltonian analysis of the spectra of the 8 ms reactant clearly reveals that the two paramagnetic species, e.g. the ferryl (iron(IV)) species and the radical, are not exchanged coupled. This led to the conclusion that under the conditions used, peroxy acetic acid oxidized a tyrosine residue (probably Tyr-96) into a tyrosine radical (Tyr*-96), and the iron(III) center of substrate-free P450(cam) to iron(IV).  相似文献   

12.
The electron paramagnetic resonance (EPR) and M?ssbauer properties of native horseradish peroxidase have been compared with those of a synthetic derivative of the enzyme in which a mesohemin residue replaces the natural iron protoporphyrin IX heme prosthetic group. The oxyferryl pi cation radical intermediate, compound I, has been formed from both the native and synthetic enzyme, and the magnetic properties of both intermediates have been examined. The optical absorption characteristics of compound I prepared from mesoheme-substituted horseradish peroxidase are different from those of the compound I prepared from native enzyme [DiNello, R. K., & Dolphin, D. (1981) J. Biol. Chem. 256, 6903-6912]. By analogy to model-compound studies, it has been suggested that these optical absorption differences are due to the formation of an A2u and an A1u pi cation radical species, respectively. However, the EPR and M?ssbauer properties of the native and synthetic enzyme and of their oxidized intermediates are quite similar, if not identical, and the data favor an A2u radical for both compounds I.  相似文献   

13.
The cytochrome P450 protein-bound porphyrin complex with the iron-coordinated active oxygen atom as Fe(IV)O is called Compound I (Cpd I). Cpd I is the intermediate species proposed to hydroxylate directly the inert carbon–hydrogen bonds of P450 substrates. In the natural reaction cycle of cytochrome P450 Cpd I has not yet been detected, presumably because it is very short-lived. A great variety of experimental approaches has been applied to produce Cpd I artificially aiming to characterize its electronic structure with spectroscopic techniques. In spite of these attempts, none of the spectroscopic studies of the last decades proved capable of univocally identifying the electronic state of P450 Cpd I. Very recently, however, Rittle and Green [9] have shown that Cpd I of CYP119, the thermophillic P450 from Sulfolobus acidocaldarius, is univocally a Fe(IV)O–porphyrin radical with the ferryl iron spin (S = 1) antiferromagnetically coupled to the porphyrin radical spin (S′ = 1/2) yielding a Stot = 1/2 ground state very similar to Cpd I of chloroperoxidase from Caldariomyces fumago. In this mini-review the efforts to characterize Cpd I of cytochrome P450 by spectroscopic methods are summarized.  相似文献   

14.
Ferritins are ubiquitous proteins that concentrate, store, and detoxify intracellular iron through oxidation of Fe2+ (ferroxidation), followed by translocation and hydrolysis to form a large inorganic mineral core. A series of mutagenesis, kinetics, and spectroscopic studies of ferritin led to the proposal that the oxidation/translocation path involves a diiron protein site. Recent stopped-flow absorption and rapid freeze-quench M?ssbauer studies have identified a single peroxodiferric species as the initial transient intermediate formed in recombinant frog M ferritin during rapid ferroxidation [Pereira, S. A., Small, W., Krebs, C., Tavares, P., Edmondson, D. E., Theil, E. C., and Huynh, B. H. (1998) Biochemistry 37, 9871-9876]. To further characterize this transient intermediate and to establish unambiguously the peroxodiferric assignment, rapid freeze-quenching was used to trap the initial intermediate for resonance Raman investigation. Discrete vibrational modes are observed for this intermediate, indicating a single chromophore in a homogeneous state, in agreement with the M?ssbauer conclusions. The frequency at 851 cm-1 is assigned as nu(O-O) of the bound peroxide, and the pair of frequencies at 485 and 499 cm-1 is attributed, respectively, to nus and nuas of Fe-O2-Fe. Identification of the chromophore as a micro-1,2 bridged diferric peroxide is provided by the isotope sensitivity of these Raman bands. Similar peroxodiferric intermediates have been detected in a mutant of the R2 subunit of ribonucleotide reductase from Escherichia coli and chemically reduced Delta9 stearoyl-acyl carrier protein desaturase (Delta9D), but in contrast, the ferritin intermediate is trapped from the true reaction pathway of the native protein. Differences in the Raman signatures of these peroxide species are assigned to variations in Fe-O-O-Fe angles and may relate to whether the iron is retained in the catalytic center or released as an oxidized product.  相似文献   

15.
The novel cytochrome P450/redox partner fusion enzyme CYP116B1 from Cupriavidus?metallidurans was expressed in and purified from Escherichia coli. Isolated CYP116B1 exhibited a characteristic Fe(II)CO complex with Soret maximum at 449 nm. EPR and resonance Raman analyses indicated low-spin, cysteinate-coordinated ferric haem iron at both 10 K and ambient temperature, respectively, for oxidized CYP116B1. The EPR of reduced CYP116B1 demonstrated stoichiometric binding of a 2Fe-2S cluster in the reductase domain. FMN binding in the reductase domain was confirmed by flavin fluorescence studies. Steady-state reduction of cytochrome c and ferricyanide were supported by both NADPH/NADH, with NADPH used more efficiently (K(m[NADPH]) = 0.9 ± 0.5 μM and K(m[NADH]) = 399.1 ± 52.1 μM). Stopped-flow studies of NAD(P)H-dependent electron transfer to the reductase confirmed the preference for NADPH. The reduction potential of the P450 haem iron was -301 ± 7 mV, with retention of haem thiolate ligation in the ferrous enzyme. Redox potentials for the 2Fe-2S and FMN cofactors were more positive than that of the haem iron. Multi-angle laser light scattering demonstrated CYP116B1 to be monomeric. Type I (substrate-like) binding of selected unsaturated fatty acids (myristoleic, palmitoleic and arachidonic acids) was shown, but these substrates were not oxidized by CYP116B1. However, CYP116B1 catalysed hydroxylation (on propyl chains) of the herbicides S-ethyl dipropylthiocarbamate (EPTC) and S-propyl dipropylthiocarbamate (vernolate), and the subsequent N-dealkylation of vernolate. CYP116B1 thus has similar thiocarbamate-oxidizing catalytic properties to Rhodoccocus erythropolis CYP116A1, a P450 involved in the oxidative degradation of EPTC.  相似文献   

16.
Stopped-flow absorption and freeze-quench electron paramagnetic resonance (EPR) and M?ssbauer spectroscopies have been used to obtain evidence for the intermediacy of a (mu-1,2-peroxo)diiron(III/III) complex on the pathway to the tyrosyl radical and (mu-oxo)diiron(III/III) cluster during assembly of the essential cofactor in the R2 subunit of ribonucleotide reductase from mouse. The complex accumulates to approximately 0.4 equiv in the first few milliseconds of the reaction and decays concomitantly with accumulation of the previously detected diiron(III/IV) cluster, X, which generates the tyrosyl radical and product (mu-oxo)diiron(III/III) cluster. Kinetic complexities in the reaction suggest the existence of an anti-cooperative interaction of the monomers of the R2 homodimer in Fe(II) binding and perhaps O2 activation. The detection of the (mu-1,2-peroxo)diiron(III/III) complex, which has spectroscopic properties similar to those of complexes previously characterized in the reactions of soluble methane monooxygenase, stearoyl acyl carrier protein Delta9 desaturase, and variants of Escherichia coli R2 with the iron ligand substitution, D84E, provides support for the hypothesis that the reactions of the diiron-carboxylate oxidases and oxygenases commence with the formation of this common intermediate.  相似文献   

17.
The green primary compound of chloroperoxidase was prepared by freeze-quenching the enzyme after rapid mixing with a 5-fold excess of peracetic acid. The electron paramagnetic resonance (EPR) spectra of these preparations consisted of at least three distinct signals that could be assigned to native enzyme, a free radical, and the green compound I as reported earlier. The absorption spectrum of compound I was obtained through subtraction of EPR signals measured under passage conditions. The signal is well approximated by an effective spin Seff = 1/2 model with g = 1.64, 1.73, 2.00 and a highly anisotropic line width. M?ssbauer difference spectra of compound I samples minus native enzyme showed well-resolved magnetic splitting at 4.2 K, an isomer shift delta Fe = 0.15 mm/s, and quadrupole splitting delta EQ = 1.02 mm/s. All data are consistent with the model of an exchange-coupled spin S = 1 ferryl iron and a spin S' = 1/2 porphyrin radical. As a result of the large zero field splitting, D, of the ferryl iron and of intermediate antiferromagnetic exchange, S.J.S'.J approximately 1.02 D, the system consists of three Kramers doublets that are widely separated in energy. The model relates the EPR and M?ssbauer spectra of the ground doublet to the intrinsic parameters of the ferryl iron, D/k = 52 K, E/D congruent to 0.035, and A perpendicular (gn beta n) = 20 T, and the porphyrin radical.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
57Fe-enriched ribonucleotide reductase subunit B2 from Escherichia coli strain N6405/pSPS2 has been characterized by M?ssbauer and EPR spectroscopy in its native diferric state and in a new differous form. The native protein exhibits two M?ssbauer doublets in a 1:1 ratio with parameters that are in excellent agreement with those reported for the wild-type protein (Atkin, C. L., Thelander, L., Reichard, P., and Lang, G. (1983) J. Biol. Chem. 248, 7464-7472); in addition, our studies show the absence of adventitiously bound iron. The iron content in the present samples approached 4 per B2 subunit, and the tyrosyl radical content exceeded 1 per B2 subunit. The higher values are attributed to the use of a new epsilon 280 for the protein and more efficient methods for iron extraction. We thus propose that subunit B2 has two binuclear iron clusters, each associated with its own tyrosyl radical, in contradistinction from the prevailing model. Reduction of the native protein with dithionite or reconstitution of the apoprotein with Fe(II) afforded a protein complex with M?ssbauer parameters, delta EQ = 3.13 mm/s and delta = 1.26 mm/s at 4.2 K, and a low field EPR signal associated with an integer spin system. These spectral properties resemble those of methane monooxygenase in its diferrous form. Upon exposure to O2, the reduced subunit B2 readily converts to the diferric state and yields active enzyme.  相似文献   

19.
The Fe(II)- and alpha-ketoglutarate(alphaKG)-dependent dioxygenases have roles in synthesis of collagen and sensing of oxygen in mammals, in acquisition of nutrients and synthesis of antibiotics in microbes, and in repair of alkylated DNA in both. A consensus mechanism for these enzymes, involving (i) addition of O(2) to a five-coordinate, (His)(2)(Asp)-facially coordinated Fe(II) center to which alphaKG is also bound via its C-1 carboxylate and ketone oxygen; (ii) attack of the uncoordinated oxygen of the bound O(2) on the ketone carbonyl of alphaKG to form a bicyclic Fe(IV)-peroxyhemiketal complex; (iii) decarboxylation of this complex concomitantly with formation of an oxo-ferryl (Fe(IV)=O(2)(-)) intermediate; and (iv) hydroxylation of the substrate by the Fe(IV)=O(2)(-) complex via a substrate radical intermediate, has repeatedly been proposed, but none of the postulated intermediates occurring after addition of O(2) has ever been detected. In this work, an oxidized Fe intermediate in the reaction of one of these enzymes, taurine/alpha-ketoglutarate dioxygenase (TauD) from Escherichia coli, has been directly demonstrated by rapid kinetic and spectroscopic methods. Characterization of the intermediate and its one-electron-reduced form (obtained by low-temperature gamma-radiolysis of the trapped intermediate) by M?ssbauer and electron paramagnetic resonance spectroscopies establishes that it is a high-spin, formally Fe(IV) complex. Its M?ssbauer isomer shift is, however, significantly greater than those of other known Fe(IV) complexes, suggesting that the iron ligands in the TauD intermediate confer significant Fe(III) character to the high-valent site by strong electron donation. The properties of the complex and previous results on related alphaKG-dependent dioxygenases and other non-heme-Fe(II)-dependent, O(2)-activating enzymes suggest that the TauD intermediate is most probably either the Fe(IV)-peroxyhemiketal complex or the taurine-hydroxylating Fe(IV)=O(2)(-) species. The detection of this intermediate sets the stage for a more detailed dissection of the TauD reaction mechanism than has previously been reported for any other member of this important enzyme family.  相似文献   

20.
It is generally assumed that the putative compound I (cpd I) in cytochrome P450 should contain the same electron and spin distribution as is observed for cpd I of peroxidases and catalases and many synthetic cpd I analogues. In these systems one oxidation equivalent resides on the Fe(IV)=O unit (d(4), S=1) and one is located on the porphyrin (S'=1/2), constituting a magnetically coupled ferryl iron-oxo porphyrin pi-cation radical system. However, this laboratory has recently reported detection of a ferryl iron (S=1) and a tyrosyl radical (S'=1/2), via M?ssbauer and EPR studies of 8 ms-reaction intermediates of substrate-free P450cam from Pseudomonas putida, prepared by a freeze-quench method using peroxyacetic acid as the oxidizing agent [Schünemann et al., FEBS Lett. 479 (2000) 149]. In the present study we show that under the same reaction conditions, but in the presence of the substrate camphor, only trace amounts of the tyrosine radical are formed and no Fe(IV) is detectable. We conclude that camphor restricts the access of the heme pocket by peroxyacetic acid. This conclusion is supported by the additional finding that binding of camphor and metyrapone inhibit heme bleaching at room temperature and longer reaction times, forming only trace amounts of 5-hydroxy-camphor, the hydroxylation product of camphor, during peroxyacetic acid oxidation. As a control we performed freeze-quench experiments with chloroperoxidase from Caldariomyces fumago using peroxyacetic acid under the identical conditions used for the substrate-free P450cam oxidations. We were able to confirm earlier findings [Rutter et al., Biochemistry 23 (1984) 6809], that an antiferromagnetically coupled Fe(IV)=O porphyrin pi-cation radical system is formed. We conclude that CPO and P450 behave differently when reacting with peracids during an 8-ms reaction time. In P450cam the formation of Fe(IV) is accompanied by the formation of a tyrosine radical, whereas in CPO Fe(IV) formation is accompanied by the formation of a porphyrin radical.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号