首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of this study was to manufacture fire-retardant-treated low-formaldehyde-emission particleboard from recycled wood-waste particles using polymeric 4,4'-methylenediphenyl isocyanate (PMDI) and phenol-formaldehyde (PF) resins. The influence of the PMDI/PF ratio (ratio of particles sprayed with PMDI to particles sprayed with PF, w/w) after fire retardant treatment on formaldehyde emissions, mechanical properties, and surface fire resistant performance of the manufactured particleboard was investigated. The experimental results showed that the formaldehyde emissions linearly decreased with an increasing PMDI/PF ratio. Moreover, the bending strength, internal bond strength, and screw holding strength increased with an increasing PMDI/PF ratio. The thickness swelling of the particleboard was improved by using an increasing PMDI/PF ratio. Furthermore, the fire-retardant-treated low-formaldehyde-emission particleboards fabricated in our study could pass the third grade standard of surface fire resistant performance as specified by CNS 6532.  相似文献   

2.
The mechanical, physical properties and decay resistances of particleboard made from particles impregnated with Pinus brutia bark extractives were examined. Properties included were modulus of rupture, modulus of elasticity, internal bond, thickness swelling, and weight loss according to European standards. The results showed that particleboards made from particles impregnated with bark extractives had significantly lower mechanical values than those made from unimpregnated particles. Impregnating wood particles with bark extractives improved the decay resistance and thickness swelling of particleboard. Increasing concentration of the extractives decreased the mechanical properties and improved the thickness swelling and decay resistance of the panels. Particleboards made from 1% P. brutia bark extractives met the specifications for modulus of rupture and internal bond strength for general purposes.  相似文献   

3.
The objective of this research was to develop an integrated process to produce biogas and high-quality particleboard using saline creeping wild ryegrass (CWR), Leymus triticoides through anaerobic digestion (AD). Besides producing biogas, AD also serves as a pretreatment method to remove the wax layer of CWR for improving binding capability and then the residue is used to produce high-quality particleboard. CWR was digested for three time periods, 15, 22, and 33 days with the volatile solid (VS) loading of 10 g-VS/L-sludge and the food to microorganism (F/M) ratio of 1.41. The highest biogas yield after digestion for 33 days was 251 mL/g-VS, which is corresponded to energy of 8419BTU/kg-dry CWR. The highest methane content of biogas was 63%. Compared with particleboards manufactured from urea formaldehyde (UF) and untreated CWR, the mechanical and long-term (24 h) water resistance properties of particleboards made from UF and 33-day AD CWR residue were statistically significantly improved, except for modulus of elasticity (MOE). For example, the modulus of rupture (MOR) was increased by 39%. The results indicated that the integrated process could be a cost-effective and environmentally friendly method for producing bioenergy and particleboard with agricultural residues.  相似文献   

4.
The feasibility of manufacturing wood-rubber functional composite panels with a polymeric methylene diphenyl diisocyanate (PMDI) and urea-formaldehyde (UF) combination binder system was investigated. Mechanisms of interacted independent variables (board density, pressing time and pressing temperature) for effect on board properties were opened out. The board performance was evaluated by measuring internal bond (IB) strength, modulus of rupture (MOR) and modulus of elasticity (MOE). The test results were statistically analyzed by using response surface method (RSM) of Design-Expert software to determine the significant independent variables that influenced board properties. A mathematical simulation or response surface models were developed to predict the board properties (MOR, MOE and IB). The results showed that board density and some interactions between the experimental variables were significant factors that influenced board mechanical properties. The suggested optimal board manufacturing conditions were about 170 degrees C, for pressing temperature, 300 s for pressing time, and 1000 g cm(-3) for board density.  相似文献   

5.
This research was conducted to investigate the suitability of peanut hull to produce general purpose particleboards. A series of panels were produced using peanut hull and mixture of peanut hull and European Black pine wood chips. Particleboards were manufactured using various hull ratios in the mixture (0%, 25%, 50%, 75% and 100%). Urea formaldehyde adhesive was utilized in board production and boards were produced to target panel's density of 0.7 g/cm3. Panels were tested for some physical (water absorption and thickness swelling), chemical (holocellulose content, lignin content, alcohol-benzene solubility, 1% NaOH solubility, hot water solubility and cold water solubility) and mechanical (modulus of rupture, modulus of elasticity and internal bond) properties. The main observation was that increase in peanut hull in the mixture resulted in a decrease in mechanical and physical properties of produced panels and panel including 25% hull in the mixture solely met the standard required by TS-EN 312 standard. Conclusively, a valuable renewable natural resource, peanut hull could be utilized in panel production while it has been mixed to the wood chips.  相似文献   

6.
New composite boards with low-thermal conductivity produced from a mixture of solid wastes from tissue paper manufacturing (solid waste TPM) and corn peel have been developed. The effects of solid waste TPM/corn peel ratio on the properties of the boards were investigated and the possibility of using recycled polystyrene packaging foam as a laminating agent to improve the quality of the boards was also evaluated. Our results show that the density of the particleboards decrease with increasing the amount of corn peel added in the mixture, leading to a decrease in thermal conductivity of the final product. In contrary, larger amount of solid waste TPM added in the mixture produced stronger boards. The lamination of recycled polystyrene on the surface of particleboards improves the mechanical properties and reduces the thickness swelling of the boards. The best improvement in mechanical properties and swelling resistance could be achieved when 15% polystyrene (w/v) was coated on the surface of the boards.  相似文献   

7.
Soybean protein is a renewable and abundant material that offers an alternative to formaldehyde-based resins. In this study, soybean protein was modified with sodium dodecyl sulfate (SDS) as an adhesive for wood fiber medium density fiberboard (MDF) preparation. Second-order response surface regression models were used to study the effects and interactions of initial moisture content (IMC) of coated wood fiber, press time (PT) and temperature on mechanical and water soaking properties of MDF. Results showed that IMC of coated fiber was the dominant influencing factor. Mechanical and soaking properties improved as IMC increased and reached their highest point at an IMC of 35%. Press time and temperature also had a significant effect on mechanical and water soaking properties of MDF. Second-order regression results showed that there were strong relationships between mechanical and soaking properties of MDF and processing parameters. Properties of MDF made using soybean protein adhesive are similar to those of commercial board.  相似文献   

8.
Properties of medium density fiberboards made from renewable biomass   总被引:1,自引:0,他引:1  
The goal of this study was to determine the comparative properties of dry-formed medium density fiberboards (MDF) made from renewable biomass (wheat and soybean straw) and those from conventional soft wood fiber. The MDF properties evaluated were modulus of elasticity, modulus of rupture, internal bond strength, thickness swell, and screw holding capacity. The results show that MDF made from wheat straw fiber and soy straw fiber have weaker mechanical and water resistance properties than those made from softwood fiber. Soybean straw is comparable to wheat straw in terms of both mechanical and water resistance properties to make MDF. Water resistance of MDF decreased drastically with increasing straw fiber composition. Wheat straw fiber and soybean straw fiber should be physically or chemically treated to increase their water resistance property for MDF production.  相似文献   

9.
This paper investigates the impacts of moisture content, granular size of bamboo particles and the proportion between bamboo and Polyvinyl Chloride (PVC) on the stability and mechanical properties of bamboo-plastic composites, which were made using virgin PVC with bamboo granule as filler. Composite panels which were made with higher moisture content of bamboo through hot-press moulding exhibited excellent dimensional stability. The tensile and flexural properties of the composites were optimal at 40 mesh granule size of bamboo. Dimensional stability and strength properties of the composites can be improved by increasing the polymer content.  相似文献   

10.
Particleboard panels were made from various wood particle/needle litter of Scotch pine (Pinus sylvestris L.) mixtures bonded with urea formaldehyde resin. Litter was characterized by having higher solubility's in alcohol-benzene, with diluting alkali and hot water, and resulted in lower pH values than those of wood particles. The mechanical properties (modulus of rupture, modulus of elasticity, and internal bond strength) of boards containing up to 6.25% litter were lower than those of panels made from wood particles. However, needle litter usage improved the physical property (thickness swelling) and decay resistance of the panels, significantly. Panels consist of 6.25% and 12.50% needle litter met the minimum EN standard requirements of mechanical properties for general-purposes. Particleboards contain more than 50% needle litter had the required level of thickness swelling for 24 h immersion.  相似文献   

11.
对福建龙岩城区栽植的30种园林树木测定木材基本密度、生材密度和生材含水率。结果表明,针叶树木材基本密度以柏木Cupressus funebris最高(0.636 g·cm-3),南洋杉Araucaria cunninghamii最低(0.462 g·cm-3);阔叶树以相思树Acacia confusa最高(0.757 g·cm-3),美丽异木棉Ceiba speciosa最低(0.228 g·cm-3)。生材密度针叶树竹柏Podocarpus nagi最高(0.975 g·cm-3),南洋杉最低(0.838 g·cm-3);阔叶树相思树最高(1.204 g·cm-3),石栗Aleurites moluccana最低(0.799 g·cm-3)。生材含水率针叶树竹柏最高(105%),柏木最低(30%);阔叶树以美丽异木棉最高(319%),光皮梾木Swida wilsoniana和木麻黄Casuarina equisetifolia最低,均为56%。南北两向的基本密度、生材密度和生材含水率差异不大。在距树皮8 cm范围内,基本密度和生材密度的径向变化模式可归纳为五种类型:(1)密度从髓心向树皮方向递增;(2)密度从髓心向树皮方向递减;(3)距树皮8 cm范围内密度变化不明显;(4)距树皮3~5 cm范围内密度较低;(5)距树皮3~5 cm范围内密度较高。生材含水率径向变化趋势仅限于上述前四种类型。  相似文献   

12.
Phytagel and nano-clay particles were used to improve the mechanical and thermal properties and moisture resistance of soy protein concentrate (SPC) resin successfully. SPC and Phytagel were mixed together to form a cross-linked structure. The Phytagel-modified SPC resin (PH-SPC) showed improved tensile strength, modulus, moisture resistance, and thermal stability as compared to the unmodified SPC resin. The incorporation of 40% Phytagel and 20% glycerol led to an overall 340% increase in the tensile strength (over 50 MPa) and approximately 360% increase in the Young's modulus (over 710 MPa) of the SPC resin. Nano-clay was uniformly dispersed into PH-SPC resin to further improve the properties. The PH-SPC (40% Phytagel) resin modified with 7% clay nanoparticles (CPH-SPC) had a modulus of 2.1 GPa and a strength of 72.5 MPa. The dynamic mechanical properties such as storage modulus together with the glass transition temperature of the modified resins were also increased by the addition of clay nanoparticles. The moisture resistance of the CPH-SPC resin was higher as compared to both SPC and PH-SPC resins. The thermal stability of the CPH-SPC resin was seen to be higher as compared to the unmodified SPC.  相似文献   

13.
Previous optimization strategies for the bioconversion of lignocellulosics by steam explosion technologies have focused on the effects of temperature, pH, and treatment time, but have not accounted for changes in severity brought about by properties inherent in the starting feedstock. Consequently, this study evaluated the effects of chip properties, feedstock size (40-mesh, 1.5 x 1.5 cm, 5 x 5 cm), and moisture content (12% and 30%) on the overall bioconversion process, and more specifically on the efficacy of removal of recalcitrant lignin from the lignocellulosic substrates following steam explosion. Increasing chip size resulted in an improvement in the solids recovery, with concurrent increases in the water soluble, hemicellulose-derived sugar recovery (7.5%). This increased recovery is a result of a decrease in the "relative severity" of the pretreatment as chip size increases. Additionally, the decreased relative severity minimized the condensation of the recalcitrant residual lignin and therefore increased the efficacy of peroxide fractionation, where a 60% improvement in lignin removal was possible with chips of larger initial size. Similarly, increased initial moisture content reduced the relative severity of the pretreatment, generating improved solids and hemicellulose-derived carbohydrate recovery. Both increased chip size and higher initial moisture content results in a substrate that performs better during peroxide delignification, and consequently enzymatic hydrolysis. Furthermore, a post steam-explosion refining step increased hemicellulose-derived sugar recovery and was most effectively delignified (to as low as 6.5%). The refined substrate could be enzymatically hydrolyzed to very high levels (98%) and relatively fast rates (1.23 g/L/h).  相似文献   

14.
Root effects on soil water and hydraulic properties   总被引:1,自引:0,他引:1  
Plants can affect soil moisture and the soil hydraulic properties both directly by root water uptake and indirectly by modifying the soil structure. Furthermore, water in plant roots is mostly neglected when studying soil hydraulic properties. In this contribution, we analyze effects of the moisture content inside roots as compared to bulk soil moisture contents and speculate on implications of non-capillary-bound root water for determination of soil moisture and calibration of soil hydraulic properties. In a field crop of maize (Zea mays) of 75 cm row spacing, we sampled the total soil volumes of 0.7 m × 0.4 m and 0.3 m deep plots at the time of tasseling. For each of the 84 soil cubes of 10 cm edge length, root mass and length as well as moisture content and soil bulk density were determined. Roots were separated in 3 size classes for which a mean root porosity of 0.82 was obtained from the relation between root dry mass density and root bulk density using pycnometers. The spatially distributed fractions of root water contents were compared with those of the water in capillary pores of the soil matrix. Water inside roots was mostly below 2–5% of total soil water content; however, locally near the plant rows it was up to 20%. The results suggest that soil moisture in roots should be separately considered. Upon drying, the relation between the soil and root water may change towards water remaining in roots. Relations depend especially on soil water retention properties, growth stages, and root distributions. Gravimetric soil water content measurement could be misleading and TDR probes providing an integrated signal are difficult to interpret. Root effects should be more intensively studied for improved field soil water balance calculations. Presented at the International Conference on Bioclimatology and Natural Hazards, Pol’ana nad Detvou, Slovakia, 17–20 September 2007.  相似文献   

15.
Cuticle thickness of leaves varies >?100 times across species, yet its dry mass cost and ecological benefits are poorly understood. It has been repeatedly demonstrated that thicker cuticle is not superior as a water barrier, implying that other functions must be important. Here, we measured the mechanical properties, dry mass and density of isolated cuticle from 13 evergreen woody species of Australian forests. Summed adaxial and abaxial cuticle membrane mass per unit leaf area (CMA) varied from 2.95 to 27.4?g m(-2) across species, and accounted for 6.7-24% of lamina dry mass. Density of cuticle varied only from 1.04 to 1.24?g?cm(-3) ; thus variation in CMA was mostly due to variation in cuticle thickness. Thicker cuticle was more resistant to tearing. Tensile strength and modulus of elasticity of cuticle were much higher than those of leaf laminas, with significant differences between adaxial and abaxial cuticles. While cuticle membranes were thin, they could account for a significant fraction of leaf dry mass due to their high density. The substantial cost of thicker cuticle is probably offset by increased mechanical resistance which might confer longer leaf lifespans among evergreen species.  相似文献   

16.
Particleboard specimens produced by adding waste tire rubber particles were assayed against white- and brown-rot fungi and termites in laboratory conditions. Particleboards were manufactured from a mixture of pine and poplar particles bonded with two different resins (melamine/urea formaldehyde [MUF] and polyisocyanate [PI]) by adding waste tire rubber particles at three different levels (10%/90%, 20%/80%, and 30%/70% by weight of waste tire rubber/wood). The particleboard specimens with waste tire rubber were not generally resistant against four fungi tested. Only MUF-containing specimens showed considerably better performance in decay resistance tests using the brown-rot fungus, Postia placenta; however, addition of waste tire rubber into those specimens did not provide resistance in comparison with control specimens without tire rubber. Formosan termites were also able to degrade particleboard specimens with waste tire rubber.  相似文献   

17.
祁连山草地生态系统在维护我国西部生态安全方面起着举足轻重的作用。为了解祁连山不同类型草地土壤水分、养分等理化性质与植被分布特征,及土壤理化性质与植被特征的相关关系,于祁连山选取7种类型的草地,测定土壤水分含量、养分含量、容重、颗粒组成和植被特征,计算土壤颗粒的分形维数、0~40 cm土层土壤有机碳、全氮和全磷储量、植物多样性指数。结果表明: 祁连山不同类型草地的土壤理化性质与植被特征差异显著,高寒草甸相比于其他类型草地具有较高的土壤水分、养分和黏粒含量,及较低的容重和砂粒含量;0~40 cm土层土壤有机碳、全氮、全磷储量变化范围分别为3084~45247、164~2358、100~319 g·m-2,整体表现为有机碳和全氮含量高、全磷含量低;土壤全磷储量与植物多样性指数呈显著正相关关系,表明土壤全磷含量是祁连山草地植物多样性的关键影响因素。相比其他草地类型,高寒草甸具有较好的植被状况和土壤水分、养分条件。  相似文献   

18.
基于网格取样(20m×20m),采用经典统计学和地统计学相结合的方法,研究了干旱荒漠区煤矸石山表层(0~5 cm)土壤水分物理性质的空间异质性和分布格局.结果表明:研究区土壤容重、毛管孔隙度、毛管最大持水量、总孔隙度、饱和含水量表现为弱变异,土壤含水率表现为中等变异.除土壤容重的最佳拟合模型为高斯模型外,其余指标的最佳...  相似文献   

19.
We recently visualized by immune electron microscopy a virus-like particle in the stools of patients with hepatitis A. The particle measured approximately 27 nm in diameter and morphologically resembled a picornavirus or parvovirus. To further characterize this particle, we have determined its buoyant density in cesium chloride (CsCl) by ultracentrifugation. Hepatitis A particles from three positive stool specimens were isopycnically banded in separate experiments, and the gradient fractions were examined for particles by immune electron microscopy by using hepatitis A convalescent sera. In each experiment, the particles were observed in a normal distribution about a peak fraction with a mean density of approximately 1.4 g/cm(3). The buoyant density of 1.4 g/cm(3) in CsCl together with its morphology and the reported resistance of hepatitis virus to acid, ether, and heat suggest that this particle is parvovirus-like.  相似文献   

20.
利用遥感光谱法进行农田土壤水分遥感动态监测   总被引:14,自引:1,他引:14  
李建龙  蒋平  刘培君  赵德华  朱明  徐胜 《生态学报》2003,23(8):1498-1504
自 1 997年 4月至 1 998年 1 0月 ,在甘肃省定西县进行了大面积 0~ 5 0 cm土层农田土壤水分按每 1 5 d本底资料实际观测 ,对此间收到的 5幅 TM与 7幅 NOAA卫片数据资料进行了加工处理 ,并对地面光谱资料也进行了观测。在光谱反演与光谱和土壤水分相关性分析基础上 ,利用遥感技术和地理信息系统 ,初步建立了典型试验区 ( 3× 3km2 )遥感信息与土壤含水量之间的遥感光谱相关监测模型 ,做出了观测区土壤水分含量分布图和得到了大面积农田土壤水分宏观动态监测结果 ,并同地面实测土壤水分进行了精度校正。研究结果表明 ,文中提出的“光学植被盖度”概念 ,对土壤水分遥感监测研究是有益的 ,利用遥感光谱法和数学统计方法求出了有关物理参数 ,初步建立了 TM与 NOAA光谱水分监测模型 ,其模型监测 0~2 0 cm土层含水量的精度达到 90 %以上 ,实际监测土壤水分精度达到 72 .3% ;在遥感监测 2 0~ 5 0 cm土层土壤含水量中 ,利用遥感模型监测土壤水分精度达到 80 %以上 ,实际遥感监测精度达到 60 %左右 ,其结果可有效指导干旱半干旱雨养农业区春耕时间和动态监测大面积土壤墒情 ,可为农业生产提供科学依据。另外 ,经地面大量观测表明 ,一般来说 ,当土壤含水量为田间最大持水量的 5 5 %~ 85 %时 ,从生长状况和经济  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号