首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We have isolated essentially full-length cDNA clones for human ferritin H and L chains from a human liver cDNA library. This allows the first comparison of H and L nucleotide and amino acid sequences from the same species as well as ferritin L cDNA sequences from different species. We conclude that human H and L ferritins are related proteins which diverged about the time of evolution of birds and mammals. We also deduce the secondary structure of the H and L subunits and compare this with the known structure of horse spleen ferritin. We find that residues involved in subunit interaction in shell assembly are highly conserved in H and L sequences. However, we find several interesting differences in H subunits at the amino acid residues involved in iron transport and deposition. These substitutions could account for known differences in the uptake, storage, and release of iron from isoferritins of different subunit composition.  相似文献   

2.
Human and rodent genomes contain multiple copies of ferritin H and L subunit sequences, although it is not yet clear whether there is more than one expressed gene for either of these subunits. We have isolated a cDNA corresponding to mouse ferritin H subunit and observed that the mouse genome contains three to four H-related sequences. This cDNA was used to establish the genomic location of mouse ferritin H subunit genes by chromosomal in situ hybridization. Metaphase chromosomes of concanavalin A-stimulated lymphocytes from a WMP male mouse were examined by in situ hybridization with 3H-labeled cDNA and the chromosomes were identified by R banding (fluorochrome-photolysis-Giemsa method). The results indicate that mouse ferritin H-related sequences map at chromosomes 3, 6, and 19. Homology of synteny between human and mouse suggests that the sequence on mouse chromosome 19 corresponds to the structural H gene.  相似文献   

3.
The organization of two closely clustered genes, Fer1HCH and Fer2LCH, encoding the heavy-chain homolog (HCH) and the light-chain homolog (LCH) subunits of Drosophila melanogaster ferritin are reported here. The 5019-bp sequence of the cluster was assembled from genomic fragments obtained by polymerase chain reaction (PCR) amplification of genomic DNA and from sequences obtained from the Berkeley Drosophila Genome Project (BDGP) (http://www.fruitfly.org). These genes, located at position 99F1, have different exon-intron structures (Fer1HCH has three introns and Fer2LCH has two introns) and are divergently transcribed. Computer analysis of the possibly shared promoter regions revealed the presence of putative metal regulatory elements (MREs), a finding consistent with the upregulation of these genes by iron, and putative NF-kappaB-like binding sites. The structure of two other invertebrate ferritin genes, from the nematode Caenorhabditis elegans (located on chromosomes I and V), was also analyzed. Both nematode genes have two introns, lack iron-responsive elements (IREs), and encode ferritin subunits similar to vertebrate H chains. These findings, along with comparisons of ferritin genes from invertebrates, vertebrates, and plants, suggest that the specialization of ferritin H and L type chains, the complex exon-intron organization of plant and vertebrate genes, and the use of the IRE/iron regulatory protein (IRP) mechanism for regulation of ferritin synthesis are recent evolutionary acquisitions.  相似文献   

4.
5.
Summary DNa has been extracted from hamster-human and mouse-human hybrid cell lines, restricted with EcoRI, and hybridised to a probe for the H subunit of human ferritin, pDBR2. Sequences highly homologous to this probe have been found on at least eight human chromosomes: 1, 2, 3, 6p216cen, 11, 14, 20, and Xq23–25Xqter. Only the gene on chromosome 11 appears to be expressed in these hybrids Southern blotting of DNA from somatic cell hybrids containing different subsets of human chromosomes. The study shows that H subunit sequences are found on at least nine different chromosomes.  相似文献   

6.
7.
8.
The chromosomal locations of three cloned human DNA fragments encompassing tRNA genes have been determined by Southern analysis of human-rodent somatic cell hybrid DNAs with subfragments from these cloned genes and flanking sequences used as hybridization probes. These three DNA segments have been assigned to human chromosomes 1, 5, and 16, and homologous sequences are probably located on chromosome 14 and a separate locus on chromosome 1. These studies, combined with previous results, indicate that tRNA genes and pseudogenes are dispersed on at least seven different human chromosomes and suggest that these sequences will probably be found on most, if not all, human chromosomes. Short (8-12 nucleotide) direct terminal repeats flank many of the dispersed tRNA genes. The presence of these flanking repeats, combined with the dispersion of tRNA genes throughout the human genome, suggests that many of these genes may have arisen by an RNA-mediated retroposition mechanism. The possible functional significance of this gene dispersion is considered.  相似文献   

9.
We have constructed and screened cDNA libraries from total maize endosperm poly(A) RNA or from a mRNA fraction enriched in zein sequences. From these libraries we have isolated clones representative of the major classes of zein cDNA sequences and have characterised them by crosshybridisation, by hybrid-selected translation, by in situ hybridisation to maize chromosomes, and hybridisation to genomic Southern blots. We conclude that at least four types of non cross-hybridising zein sequences are present, two coding for light chains and two for heavy chains. At least in the case of the light zeins, there is considerable sequence diversity among the clones which hybridise to each type. Similar results are obtained by translation of the mRNAs selected by each clone. In situ hybridisation shows that the light chain zein genes are located on chromosomes 4, 7, and 10, whilst genes coding for some of the heavy chain zeins are confined to the distal part of the long arm of chromosome 4.  相似文献   

10.
Human inter-alpha-trypsin inhibitor is a plasma protein of Mr 180,000 which has long been described as a single polypeptide chain. However, we have previously demonstrated that it is synthesized in liver by two different mRNA populations coding for heavy or light polypeptide chains [Bourguignon, J. et al. (1983) FEBS Lett. 162, 379-383] and cDNA clones for the heavy or light chains have recently been isolated and characterized [Bourguignon, J. et. al. (1985) Biochem. Biophys. Res. Commun. 131, 1146-1153; Salier, J.P. et al. (1987) Proc. Natl Acad. Sci. USA 84, 8272-8276]. In the present study, we show that human poly(A)-rich RNAs hybrid-selected with various heavy-chain-encoding cDNA clones translate three different heavy chains, designated H1 (Mr 92,000), H2 (Mr 98,000) and H3 (Mr 107,000). We previously characterized two heavy-chain cDNA clones. We now report that they correspond to H1 and H2 chains. We have also determined the sequence of an additional cDNA clone which codes for H3 chain. Its insert size is 1.79 kb with a single open reading frame and a poly(A) tail. The deduced amino acid sequence of the H3 chain is highly similar to those of the H1 (54%) and H2 (44%) chains. Northern analysis of human liver poly(A)-rich RNAs with the three heavy-chain cDNAs as probes clearly identified a single major mRNA population of 3.3 +/- 0.1 kb. Chromosomal localization by in situ hybridization shows that inter-alpha-trypsin inhibitor genes are located on three different human chromosomes. The H1 and H3 genes are located in the p211-p212 region of chromosome 3, whereas the H2 gene resides in the p15 band of chromosome 10. The light-chain gene is located in the q32-q33 region of chromosome 9. These results indicate that heavy and light chains of inter-alpha-trypsin inhibitor are encoded by at least four functional genes.  相似文献   

11.
12.
13.
We report here the structure of cDNA clones encoding axolotl light chains of the lambda type. A single IGLC gene and eight different potential IGLV genes belonging to four different families were detected. The axolotl Cgamma domain has several residues or stretches of residues that are typically conserved in mammalian, avian, and Xenopus Cgamma, but the KATLVCL stretch, which is well conserved in the Cgamma and T-cell receptor Cbeta domains of many vertebrate species, is not well conserved. All axolotl Vgamma sequences closely match several human and Xenopus Vgamma-like sequences and, although the axolotl Cgamma and Vgamma sequences are very like their tetrapod homologues, they are not closely related to nontetrapod L chains. Southern blot experiments suggested the presence of a single IGLC gene and of a limited number of IGLV genes, and analysis of IGLV-J junctions clearly indicated that at least three of the IGLJ segments can associate with IGLV1, IGLV2, or IGLV3 subgroup genes. The overall diversity of the axolotl Vgamma CDR3 junctions seems to be of the same order as that of mammalian Vgamma chains. However, a single IGLV4 segment was found among the 45 cDNAs analyzed. This suggests that the axolotl IGL locus may have a canonical tandem structure, like the mammalian IGK or IGH loci. Immunofluorescence, immunoblotting, and microsequencing experiments strongly suggested that most, if not all L chains are of the gamma type. This may explain in part the poor humoral response of the axolotl.  相似文献   

14.
15.
Ferritin receptors are present on the membranes of many normal and malignant cells. The binding specificity of these receptors for H and L subunits was examined using recombinant human ferritin homopolymers. At least two different types of ferritin receptors were found, one derived from normal rat, pig, and human liver which shows similar binding of H- and L-ferritin. The second receptor type, specific for the H-chain ferritin, has been identified on membranes of hepatic and other transformed cells, and of normal lymphoblasts and erythroid precursors. These two receptor types may have different metabolic functions: the hepatic receptor acting as a scavenger for circulating ferritin and possibly for iron exchange between hepatocytes and macrophages; the H-ferritin receptor having a regulatory role which is not directly related to iron metabolism. The expression of the H-ferritin receptor is closely related to the activation and proliferation state of the cells. Addition of H-ferritin to the culture medium of cells expressing the H-ferritin receptor resulted in inhibition of cell proliferation and of colony formation.  相似文献   

16.
The iron storage protein ferritin consists of two types of subunits of different molecular weight, heavy (H) and light (L). The rat genome contains approximately 20 copies of the ferritin L-subunit gene, of which we have sequenced seven. One is an expressed ferritin gene containing three introns located between the alpha-helical domains of the L-subunit protein. The remaining six have the characteristics of processed pseudogenes. Sequence divergence suggest that these pseudogenes arose approximately 3-12 X 10(6) years ago, well within the 30 X 10(6) years of divergence of rat and mouse. By using intron probes derived from the expressed ferritin L-gene, a homologous second copy has been identified in some Fischer rats. Comparison of the 5'-untranslated region of the rat L-gene with the published sequences of this region of the human L (Santoro, C., Marone, M., Ferrone, M., Costanzo, F., Colombo, M., Minganti, C., Cortese, R., and Silengo, L. (1986) Nucleic Acids Res. 14, 2863-2876) and H (Costanzo, F., Colombo, M., Staempfli, S., Santoro, C., Marone, M., Frank, R., Delius, H., and Cortese, R. (1986) Nucleic Acids Res. 14, 721-735) genes and of a bullfrog cDNA (Didsbury, J. R., Theil, E. C., Kaufman, R. E., and Dickey, L. F. (1986) J. Biol. Chem. 261, 949-955) show a strongly conserved 28-base pair sequence, suggesting a translational regulatory function. The 5' flanking region of the rat L-gene contains sequences homologous to those in the flanking areas of the human L- and H-genes. The implications of these conserved sequences for control of ferritin expression are discussed.  相似文献   

17.
Ferritins are iron storage proteins made of 24 subunits forming a hollow spherical shell. Vertebrate ferritins contain varying ratios of heavy (H) and light (L) chains; however, known ferritin structures include only one type of chain and have octahedral symmetry. Here, we report the 1.9A structure of a secreted insect ferritin from Trichoplusia ni, which reveals equal numbers of H and L chains arranged with tetrahedral symmetry. The H/L-chain interface includes complementary features responsible for ordered assembly of the subunits. The H chain contains a ferroxidase active site resembling that of vertebrate H chains with an endogenous, bound iron atom. The L chain lacks the residues that form a putative iron core nucleation site in vertebrate L chains. Instead, a possible nucleation site is observed at the L chain 3-fold pore. The structure also reveals inter- and intrasubunit disulfide bonds, mostly in the extended N-terminal regions unique to insect ferritins. The symmetrical arrangement of H and L chains and the disulfide crosslinks reflect adaptations of insect ferritin to its role as a secreted protein.  相似文献   

18.
The 4S RNA genes in HeLa mitochondrial DNA (mtDNA) have been mapped by electron microscopy using the electron-opaque label ferritin. This method is based on the high affinity interaction between the protein, avidin, and biotin. 4S RNA, covalently coupled to biotin, was hybridized to single-stranded mtDNA. The hybrids were then labeled with ferritin-avidin conjugates. The positions of ferritin-labeled 4S RNA genes were determined relative to the rRNA genes on both heavy (H) and light (L) strands of mtDNA. This region was recognized as a duplex segment after hybridization either with rRNA in the case of H strands or with DNA complementary to rRNA in the case of L strands.Our studies suggest that at least nineteen 4S RNA genes are present in the HeLa mitochondrial genome. On the H strand, we have confirmed the nine map positions found in a previous electron microscope mapping study (Wu et al., 1972) and obtained evidence for three additional 4S RNA genes. On the L strand, seven 4S RNA genes have been mapped. The nineteen genes are distributed more or less uniformly around the genome. There is a pair of closely spaced genes, approximately 150 nucleotides apart, on the H strand, and another closely spaced pair on the L strand.  相似文献   

19.
B S Allen  J L Stein  G S Stein  H Ostrer 《Genomics》1991,10(2):486-488
Two single-copy sequences flanking two different human histone gene clusters were used as probes to map these clusters by in situ hybridization. pFF435B, a unique sequence subclone derived from a lambda genomic clone (lambda HHG55) containing H2A, H2B, H3, and H4 genes, mapped to chromosome 1q21 (chi 2 = 120.99, P less than 0.001). pST519E, a single-copy sequence derived from a lambda genomic clone (lambda HHG17) containing only H3 and H4 genes, mapped to chromosome 6p21 (chi 2 = 112.62, P less than 0.001). These findings agree with previous assignments of human histone genes to chromosomes 1 and 6 and demonstrate that the single-copy flanking sequences in different human histone gene clusters are unique for different chromosomes.  相似文献   

20.
The cDNA for H and L chain V regions of two anti-Z-DNA mAb, Z22 and Z44, were cloned and sequenced. These are the first experimentally induced anti-nucleic acid antibody sequences available for comparison with autoantibody sequences. Z22 and Z44 are IgG2b and IgG2a antibodies from C57BL/6 mice. They recognize different facets of the Z-DNA structure. They both use VH10 family genes and share 95% sequence base sequence identity in the VH and leader sequences; however, they differ in the 5'-untranslated region of the VH mRNA, indicating they arise from different germline genes. Both use JH4 segments. They differ from each other very extensively in the CDR3 of both H and L chains. The most closely related H chains in the current GenBank/EMBL data base are two mouse IgG anti-DNA autoantibodies, one from an MRL-lpr/lpr mouse (MRL-DNA4) and one from an NZB/NZW mouse (BV04-01). Z22 and Z44 share 95% sequence identity with these antibodies in the VH segment. In addition, Z22 is identical to MRL-DNA4 at 91% of the positions in the 5'-untranslated region of the H chain mRNA. The two antibodies share 95% base sequence identity in the V kappa segment. The most closely related L chains, with 97 to 98% sequence identity, are the V kappa 10b germline gene for Z22 and the V kappa 10a germ line gene, which is associated with A/J anti-arsonate antibodies and BALB/c anti-ABO blood group substance antibodies, for Z44. Z22 and Z44 share several structural features (similarities in VH, JH, and V kappa) but differ very markedly in the L chain CDR1 and both H and L chain CDR3 sequences; these regions may determine the differences in their specific interactions with Z-DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号