首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
对苯二甲酸是生产聚酯的主要原料,其生产方法主要是采用化学合成法。随着生物转化与生物催化研究的深入,其高效、环保、节能等优势越来越明显。筛选能够生物转化对二甲苯生成对苯二甲酸的菌株将会为生物催化法生产对苯二甲酸打下基础。通过建立筛选模型,利用唯一碳源法从土壤中分离筛选得到微生物16,经鉴定为嗜麦芽窄食单胞菌和睾丸酮丛毛单胞菌的混合菌株,该微生物可以利用对二甲苯为底物生物转化生成对苯二甲酸。实验中对诱导剂进行了选择,表明甲苯对该反应有明显的诱导作用,最佳诱导剂加入量为200mg/L。发酵液中对苯二甲酸及中间产  相似文献   

2.
[目的]筛选和鉴定能够降解聚对苯二甲酸乙二醇酯(PET)单体的微生物,并分析代谢途径.[方法]从青岛小涧西固体废弃物综合处置厂采集样品,以PET单体对苯二甲酸为唯一碳源筛选获得能够代谢对苯二甲酸的菌株TPA3;16S rRNA序列分析确定TPA3菌株的分类地位;采用二代和三代高通量测序技术进行基因组de novo测序和...  相似文献   

3.
粗甘油是生物柴油生产中的主要副产物,一些微生物可将甘油转化为重要化工原料1,3-丙二醇(1,3-PD),而利用这些微生物野生菌株生物合成1,3-PD会存在一些局限性,如底物抑制、产物抑制等。文中从1,3-丙二醇的甘油生物转化途径与这些局限性出发,总结了生物合成中存在的问题,并针对这些问题提出了一些基于基因敲除或基因过表达等基因工程技术的改造方法,综述了利用基因工程菌生物转化甘油生成1,3-丙二醇的最新研究进展。  相似文献   

4.
在单加氧酶和脱氢酶系的作用下,睾丸酮丛毛单胞菌DSM6577以对甲基苯甲酸(p-TOL)为唯一碳源,生物催化生成对苯二甲酸(PTA),并对其细胞生长、底物代谢和产物生成过程进行了研究。结果表明,底物在8h内即可完全代谢,但检测到产物的生成需要更长的时间。  相似文献   

5.
一株微囊藻毒素降解辅助菌的分离和鉴定   总被引:2,自引:0,他引:2  
以从太湖蓝藻中提取的微囊藻毒素作为微囊藻毒素降解菌的筛选物质, 通过稀释平板涂布法从腐烂的蓝藻中富集分离到一菌株, 经形态特征、生理生化特征和16S rDNA 序列分析将该菌株(GenBank 序列登录号为GQ143751)鉴定为藤黄微球菌(Micrococcus luteus); 微囊藻毒素降解实验结果表明该菌株几乎不能降解微囊藻毒素, 但可以明显促进一株微囊藻毒素降解菌微嗜酸寡养单胞菌(Stenotrophomonas acidaminiphila)对微囊藻毒素的降解能力, 将筛选菌株与微嗜酸寡养单胞菌混合培养, 混合菌对微囊藻毒素的降解能力比微嗜酸寡养单胞菌单独培养时提高66.7%。  相似文献   

6.
耐有机溶剂微生物是一类能够在较高浓度有机溶剂中存活或者生长的微生物,其在非水相生物催化等领域表现出巨大的应用优势。与自然筛选、长期驯化和传统诱变等方法相比,利用分子生物学技术获得微生物有机溶剂耐受菌株是一种更为理性且高效的手段。主要综述了近年来利用分子生物学技术对耐性相关功能基因和转录因子进行改造,提高微生物有机溶剂耐受性的研究进展,并展望了有机溶剂耐受菌株的应用前景。  相似文献   

7.
Arthrobacter nitroguajacolicus腈水解酶基因的克隆和表达   总被引:1,自引:0,他引:1  
腈水解酶是一类能将腈类化合物催化生成酸的氰基水解酶。目前已有多个菌种的腈水解酶基因序列被报道,如敏捷食酸菌Acidovoraxfacilis,粪产碱菌Alcaligenesfaecalis,睾丸丛毛单胞菌Comamonastestoteroni,肺炎克雷伯菌Klebsiellapneumoniae,假单胞菌Pseudomonas属菌株,红球菌Rhodococcus属菌株,但节杆菌属菌株Arthrobacternitroguajacolicus的腈水解酶基因序列尚未见报道。经由野生型酶的分离纯化,基因文库筛选及侧翼序列扩增等步骤,克隆得到该菌株的腈水解酶基因,从而为进一步研究该酶的特性及构建用于工业生产的重组菌打下基础。  相似文献   

8.
天然活性先导化合物生物转化研究进展   总被引:2,自引:0,他引:2  
天然活性先导化合物生物转化是利用生物催化剂(如:酶、微生物、动植物细胞)将加入到生物反应系统中的天然活性先导化合物进行特异性的分子结构修饰以获得高效、低毒新化合物的方法。该方法可以有效地提高已知的天然活性先导化合物的活性、降低毒副作用、改善水溶性和生物利用度,也可以用来生产具有重要应用价值的微量天然活性先导化合物,同时可用于药物代谢机制的研究。国内外学者已经针对甾体、醌类、黄酮类、萜类等化合物开展了天然活性先导化合物生物转化研究,筛选出一批有重要应用价值的生物转化反应类型,但针对天然活性先导化合物生物转化的机制、生物转化过程工程以及生物转化产物活性等方面的研究较少。将现代生命科学技术(如:生物催化剂的定向改造、高通量筛选、组合生物转化、非水相生物转化)引入天然活性先导化合物生物转化研究中,必将推进天然活性先导化合物的快速发展。  相似文献   

9.
圆红冬孢酵母利用生物乙醇废水-木薯粉水解液发酵产油   总被引:2,自引:0,他引:2  
【目的】获得能够高效降解生物乙醇废水化学需氧量(COD)的圆红冬孢酵母菌株,评估废水初始COD浓度对驯化菌株生长的影响,将木薯粉生产微生物油脂和高浓度有机废水降解过程整合,以生物乙醇废水为水源制备生物乙醇废水-木薯粉水解液培养基,明确产油效率高、生物乙醇废水COD降解率高的初始还原糖浓度。【方法】采用在高浓度的生物乙醇废水中进行多次驯化的方法,获得能够适应废水环境的圆红冬孢酵母菌株;采用双酶水解法对加入乙醇废水中的木薯粉进行水解;采用重量法监测生物量浓度变化,采用酸热法提取油脂,重铬酸钾法监测COD,DNS法测定废水还原糖浓度,凯氏定氮法测定总氮,钼酸铵比色法测定总磷。【结果】通过驯化筛选得到一株能耐受高浓度生物乙醇废水的优势菌株Rhodosporidium toruloides D5。以未稀释的废水为培养基,驯化菌株的最终生物量浓度和COD降解率分别为3.8 g/L和75.0%。采用生物乙醇废水-木薯粉水解液发酵时,控制初始还原糖浓度低于30 g/L时,生物量浓度和油脂浓度随初始还原糖浓度的升高而升高,均在120 h时达到最高COD降解率,初始还原糖浓度对达到的最大COD降解率无明显影响,废水N、P去除率分别达到99%和92%以上。【结论】在未经稀释的高浓度生物乙醇废水中可获得较高的生物量浓度;采用高浓度生物乙醇废水-木薯粉水解液培养基发酵产油,初始还原糖浓度为30 g/L,可在保证高油脂产量的同时,实现废水COD的高效降解,有效回收利用废水中残余的N、P源,从而降低微生物油脂生产和废水处理成本,研究结果可为开发廉价微生物油脂生产技术提供有用的参考。  相似文献   

10.
[目的]利用生物转化法制备海藻多糖,并筛选得到生物转化海藻多糖抗氧化能力最佳的菌株。[方法]采用复合酶解和微生物转化的方法,以ABTS自由基清除率检测为评价指标,对不同菌株生物转化后的海藻多糖进行比较,结合高效液相色谱仪(HPLC)检测微生物转化前后海藻多糖的变化。[结果]复合酶解后的水溶性海藻提取物经单一真菌菌株、单一细菌菌株、混合菌株发酵后,检测对ABTS自由基清除率,结果表明,经植物乳杆菌酵母菌混合菌株发酵后,对ABTS自由基的清除率最高,高达87. 5%。[结论]植物乳杆菌、酵母菌复合菌株转化后的海藻多糖对ABTS自由基清除率最高,与转化前海藻多糖相比清除率提高51. 2%,HPLC检测发现,其海藻多糖的成分增加,其保留时间为6. 186、8. 014、9. 365 min。  相似文献   

11.
A novel sulfate-reducing bacterium isolated from fuel-contaminated subsurface soil, strain PRTOL1, mineralizes toluene as the sole electron donor and carbon source under strictly anaerobic conditions. The mineralization of 80% of toluene carbon to CO2 was demonstrated in experiments with [ring-U-14C]toluene; 15% of toluene carbon was converted to biomass and nonvolatile metabolic by-products, primarily the former. The observed stoichiometric ratio of moles of sulfate consumed per mole of toluene consumed was consistent with the theoretical ratio for mineralization of toluene coupled with the reduction of sulfate to hydrogen sulfide. Strain PRTOL1 also transforms o- and p-xylene to metabolic products when grown with toluene. However, xylene transformation by PRTOL1 is slow relative to toluene degradation and cannot be sustained over time. Stable isotope-labeled substrates were used in conjunction with gas chromatography-mass spectrometry to investigate the by-products of toluene and xylene metabolism. The predominant by-products from toluene, o-xylene, and p-xylene were benzylsuccinic acid, (2-methylbenzyl)succinic acid, and 4-methylbenzoic acid (or p-toluic acid), respectively. Metabolic by-products accounted for nearly all of the o-xylene consumed. Enzyme assays indicated that acetyl coenzyme A oxidation proceeded via the carbon monoxide dehydrogenase pathway. Compared with the only other reported toluene-degrading, sulfate-reducing bacterium, strain PRTOL1 is distinct in that it has a novel 16S rRNA gene sequence and was derived from a freshwater rather than marine environment.  相似文献   

12.
A toluene-degrading denitrifier, Azoarcus tolulyticus Tol-4, was one of eight similar strains isolated from three petroleum-contaminated aquifer sediments. When the strain was grown anaerobically on toluene, 68% of the carbon from toluene was found as CO2 and 30% was found as biomass. Strain Tol-4 had a doubling time of 4.3 h, a Vmax of 50 micromol x min-1 x g of protein-1, and a cellular yield of 49.6 g x mol of toluene-1. Benzoate appeared to be an intermediate, since F-benzoates accumulated from F-toluenes and [14C]benzoate was produced from [14C]toluene in the presence of excess benzoate. Two metabolites, E-phenylitaconic acid (1 to 2%) and benzylsuccinic acid (<1%), accumulated from anaerobic toluene metabolism. These same products were also produced when cells were grown on hydrocinnamic acid and trans-cinnamic acid but were not produced from benzylalcohol, benzaldehyde, benzoate, p-cresol, or their hydroxylated analogs. The evidence supports an anaerobic toluene degradation pathway involving an initial acetyl coenzyme A (acetyl-CoA) attack in strain Tol-4, as proposed by Evans and coworkers (P. J. Evans, W. Ling, B. Goldschmidt, E. R. Ritter, and L. Y. Young, Appl. Environ. Microbiol. 58:496-501, 1992) for another toluene-degrading denitrifier, strain T1. Our findings support a modification of the proposed pathway in which cinnamoyl-CoA follows the oxidation of hydrocinnamoyl-CoA, analogous to the presumed oxidation of benzylsuccinic acid to form E-phenylitaconic acid. Cinnamic acid was detected in Tol-4 cultures growing in the presence of toluene and [14C]acetate. We further propose a second acetyl-CoA addition to cinnamoyl-CoA as the source of benzylsuccinic acid and E-phenylitaconic acid. This pathway is supported by the finding that monofluoroacetate added to toluene-growing cultures resulted in a significant increase in production of benzylsuccinic acid and E-phenylitaconic acid and by the finding that [14C]benzylsuccinic acid was detected after incubation of cells with toluene, [14C]acetate, and cinnamic acid. Evidence for anaerobic toluene metabolism by methyl group oxidation was not found, since benzylsuccinic acid and E-phenylitaconic acid were not detected after incubation with benzylalcohol and benzaldehyde, nor were benzylalcohol and benzaldehyde detected even in 14C trapping experiments.  相似文献   

13.
Strain T1 is a facultative bacterium that is capable of anaerobic toluene degradation under denitrifying conditions. While 80% of the carbon from toluene is either oxidized to carbon dioxide or assimilated into cellular carbon, a significant portion of the remainder is transformed into two dead-end metabolites. These metabolites were produced simultaneous to the mineralization of toluene and were identified as benzylsuccinic acid and benzylfumaric acid. Identification was based on comparison of mass spectra of the methyl esters of the metabolites and authentic compounds that were chemically synthesized. Strain T1 is also capable of o-xylene transformation during growth on toluene. o-Xylene does not serve as a source of carbon and is not mineralized. Rather, it is transformed to analogous dead-end metabolites, (2-methylbenzyl)-succinic acid and (2-methylbenzyl)-fumaric acid. o-Xylene transformation also occurred during growth on succinic acid, which suggests that attack of the methyl group by succinyl-coenzyme A is a key reaction in this transformation. We reason that the main pathway for toluene oxidation to carbon dioxide involves a mechanism similar to that for the formation of the metabolites and involves an attack of the methyl group of toluene by acetyl-coenzyme A.  相似文献   

14.
Strain T1 is a facultative bacterium that is capable of anaerobic toluene degradation under denitrifying conditions. While 80% of the carbon from toluene is either oxidized to carbon dioxide or assimilated into cellular carbon, a significant portion of the remainder is transformed into two dead-end metabolites. These metabolites were produced simultaneous to the mineralization of toluene and were identified as benzylsuccinic acid and benzylfumaric acid. Identification was based on comparison of mass spectra of the methyl esters of the metabolites and authentic compounds that were chemically synthesized. Strain T1 is also capable of o-xylene transformation during growth on toluene. o-Xylene does not serve as a source of carbon and is not mineralized. Rather, it is transformed to analogous dead-end metabolites, (2-methylbenzyl)-succinic acid and (2-methylbenzyl)-fumaric acid. o-Xylene transformation also occurred during growth on succinic acid, which suggests that attack of the methyl group by succinyl-coenzyme A is a key reaction in this transformation. We reason that the main pathway for toluene oxidation to carbon dioxide involves a mechanism similar to that for the formation of the metabolites and involves an attack of the methyl group of toluene by acetyl-coenzyme A.  相似文献   

15.
E-Phenylitaconic acid has been isolated as a metabolite generated by Azoarcus tolulyticus Tol-4 along with benzylsuccinic acid during anaerobic degradation of toluene. Strain Tol-4 converted 1 to 2% of toluene carbon to E-phenylitaconate and benzylsuccinate (10:1). The identification of E-phenylitaconic acid was based on 1H nuclear magnetic resonance (NMR) characterization of degradation products derived from 13C-labeled toluene followed by comparison of spectroscopic and chromatographic data for the isolated, unlabeled metabolite with those for chemically synthesized benzylfumaric acid, benzylmaleic acid, E-phenylitaconic acid, and Z-phenylitaconic acid. Spectroscopic comparisons included 1H NMR, 13C NMR, and nuclear overhauser effect correlations. High-pressure liquid chromatography (HPLC) retention times and HPLC coinjections with synthetic dioic acids provided another reliable line of evidence for structure assignment. The formation of E-phenylitaconic acid differs from previous reports of benzylfumaric acid generation along with benzylsuccinic acid during anaerobic microbial degradation of toluene. This has important implications relevant to elaboration of the metabolic route for anaerobic toluene degradation by strain Tol-4 and related organisms. Similar amounts of E-phenylitaconic acid were also produced by seven other strains of A. tolulyticus.  相似文献   

16.
Abstract

The study was designed to investigate whether exhaled breath condensate, obtained by cooling exhaled air in spontaneous breathing, could be a suitable matrix for toluene quantitative analyses. Nine healthy subjects were exposed for a short period (20 min) to a known concentration of toluene. Exhaled breath condensate samples were collected before and at the end of the exposure, while the environmental concentration of toluene was continuously monitored. Toluene was analysed by head-space gas-chromatography mass spectrometry, and assay repeatability was also estimated in vitro. Baseline and post-exposure measurement of hippuric acid, the urinary toluene metabolite, was performed to assess current toluene exposure. Before the exposure toluene concentrations in the exhaled breath condensate were lower than the detectable limit in all subjects, while after the exposure toluene was detectable with a median value 0.35 µg l?1 (range 0.15–0.55 µg l?1) in all the exhaled breath condensate samples. As compared with the standard calibration in distilled water, the curves obtained by exhaled breath condensate were linear and comparable with the range examined in vivo for toluene. A significant correlation was found between the environmental toluene levels and toluene in the exhaled breath condensate at the end of exposure. Furthermore, a significant relationship between increased exhaled breath condensate toluene levels and urinary hippuric acid after the exposure was found. In conclusion, exhaled breath condensate is a promising matrix for toluene assessment, although its application in humans requires further investigations.  相似文献   

17.
The study was designed to investigate whether exhaled breath condensate, obtained by cooling exhaled air in spontaneous breathing, could be a suitable matrix for toluene quantitative analyses. Nine healthy subjects were exposed for a short period (20 min) to a known concentration of toluene. Exhaled breath condensate samples were collected before and at the end of the exposure, while the environmental concentration of toluene was continuously monitored. Toluene was analysed by head-space gas-chromatography mass spectrometry, and assay repeatability was also estimated in vitro. Baseline and post-exposure measurement of hippuric acid, the urinary toluene metabolite, was performed to assess current toluene exposure. Before the exposure toluene concentrations in the exhaled breath condensate were lower than the detectable limit in all subjects, while after the exposure toluene was detectable with a median value 0.35 µg l-1 (range 0.15-0.55 µg l-1) in all the exhaled breath condensate samples. As compared with the standard calibration in distilled water, the curves obtained by exhaled breath condensate were linear and comparable with the range examined in vivo for toluene. A significant correlation was found between the environmental toluene levels and toluene in the exhaled breath condensate at the end of exposure. Furthermore, a significant relationship between increased exhaled breath condensate toluene levels and urinary hippuric acid after the exposure was found. In conclusion, exhaled breath condensate is a promising matrix for toluene assessment, although its application in humans requires further investigations.  相似文献   

18.
Groundwater from a xylene-contaminated acquifer was enriched in the laboratory in the presence of toluene, xylenes, ethylbenzene, and benzene. A pure culture that degrades toluene and m-xylene under nitrate-reducing conditions was isolated. Fatty acid analysis, 16S rRNA sequencing, and morphological traits indicate that the isolate was a strain of Azoarcus tolulyticus. The kinetics of toluene degradation under nitrate-reducing conditions by this isolate was determined. Nitrate reduction does not proceed beyond nitrite. Nitrate and toluene are substrate limiting at low concentrations, whereas toluene, nitrate, and nitrite are inhibitory at high concentrations. Several inhibition models were compared to experimental data to represent inhibition by these substrates. A kinetic model for toluene and nitrate degradation as well as for cell growth and nitrite production was developed and compared to experimental data. The results of this work may find important application in the remediation of groundwater aquifers contaminated with aromatic hydrocarbons. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 82-90, 1997.  相似文献   

19.
A bacterial isolate, Pseudomonas putida CN-T19, could grow in a two-phase medium with toluene up to 50% (v/v). Changes in fatty acid composition and membrane fluidity of the isolate were investigated to understand how this microorganism responds toluene. The changes in the ratios of unsaturated to saturated fatty acids were insignificant between cells grown with and without toluene. The changes in the ratio of cis- to trans-fatty acids of C16:1 and C18:1 was, however, significantly lower in cells grown with toluene than cells grown without toluene, giving approximately 1.3 and 9.7, respectively. Toluene had a fluidizing effect on the membrane of cells grown without toluene, resulting in decrease in membrane polarization ratio. Less fluidizing effect of toluene on the membrane of cells grown with toluene was observed, giving 11% of polarization percentage, which was significantly lower than 53% in cells grown without toluene. These results suggest that cis/trans isomeration of C16:1 and C18:1 makes cell membranes more rigid to respond toluene, and is an adaptive strategy allowing P. putida CN-T19 to grow in the presence of organic solvent.  相似文献   

20.
This study was undertaken to determine the effect of aromatic hydrocarbons on growth and plant growth promoting activities of Azotobacter chroococcum strain JL104. The organism was grown on Jensen’s media without sucrose, supplemented with different concentrations of aromatic hydrocarbons. Azotobacter chroococcum strain JL104 was able to grow in the presence of benzene, toluene, aniline and benzoic acid and was able to utilize these as sole carbon source as well. The culture showed the highest growth in presence of 0.5% concentrations of aniline and benzoic acid and 0.01% concentrations of benzene and toluene. Maximum indole acetic acid (IAA) production and acetylene reduction activity (ARA) were recorded with benzene and benzoic acid, respectively. Among other substituted benzene derivatives such as xylene, p-hydroxybenzoic acid, di-nitrophenol and di-chlorophenol, xylene was observed to be the least toxic and di-nitrophenol the most toxic hydrocarbon. The highest soil survival was found in soil amended with 1% sucrose however, the population of A. chroococccum strain JL104 declined continuously in unamended soil. Amongst various hydrocarbons, 0.1% toluene amended soil supported the maximum survival, indicating it to be least toxic aromatic hydrocarbon carbon in soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号