首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Perchlorate (ClO4 ?) has been detected in many drinking water supplies in the United States, including the Las Vegas Wash and Lake Mead, Nevada. These locations are highly contaminated and contribute perchlorate to Lake Mead and the Colorado River system. Essential elements for perchlorate bioremediation at these locations were examined, including the presence of perchlorate-reducing bacteria (PRB), sufficient electron donors, occurrence of competing electron acceptors, and ability of PRB to utilize a variety of electron donors. Enumeration of PRB was performed anoxically using most probable number (MPN). Values ranged from ≤20 to 230 PRB/100 ml or ≤20 to ≥ 1.6× 105 PRB/g for Lake Mead water samples and Las Vegas Wash sediments, respectively. 16S rRNA sequences revealed that isolates were γ -proteobacteria, Aeromonas, Dechlorosoma, Rahnella and Shewanella. A screening of potential electron donors using BIOLOGTM demonstrated that all isolates were capable of metabolic versatility. Measurements of total organic carbon (TOC), nitrate and dissolved oxygen (DO) indicated limited presence of electron donor at all sites, whereas the electron acceptors varied throughout the Wash and Lake Mead. The persistence of perchlorate in the sites is attributed to lack of available electron donor and/or the presence of competing electron acceptors. A location has been identified where perchlorate biodegradation could be implemented thereby halting the transport of perchlorate to Lake Mead and the Colorado River.  相似文献   

2.
Ammonium perchlorate, a component of rocket fuel, entered Lake Mead through drainage and shallow groundwater in the Las Vegas Valley, Nevada, and is now found in the lower Colorado River from Lake Mead to the international boundary with Mexico. Perchlorate is a threat to human health through reduction of thyroid hormone production. Perchlorate has been found in water throughout the lower Colorado system and in crops in the California’s Imperial Valley, as well as in several other states, but it has not previously been included in investigations of the Salton Sea. Because perchlorate behaves conservatively in the Colorado River, it was postulated that it could be accumulating at high levels along with other salts in the Salton Sea. Results show that perchlorate is not accumulating in the Sea, although it is present in tributaries to the Sea at levels similar to those found in the Colorado River. Bacterial reduction of perchlorate is the most likely explanation for the observed results. The U.S. Government’s right to retain a non-exclusive, royalty-free license in and to any copyright is acknowledged. Guest editor: S. H. Hurlbert The Salton Sea Centennial Symposium. Proceedings of a Symposium Celebrating a Century of Symbiosis Among Agriculture, Wildlife and People, 1905–2005, held in San Diego, California, USA, March 2005  相似文献   

3.
Live, intact third-stage larvae (L3s) of Strongyloides ratti in the absence of exogenous substrates consumed oxygen at a rate (E-QO2) of 181.8 ± 12.4 ng atoms min−1 mg dry weight−1 at 35°C. Respiratory electron transport (RET) Complex I inhibitor rotenone (2 μ ) produced 33 ± 6.5% inhibition of the E-QO2. Unusually the rotenone-induced inhibition was not relieved by 5 μ -succinate. The E-QO2 of intact L3s was refractory to RET Complex III inhibitor antimycin A at 2 μ ; 4 μ -antimycin inhibited ≤ 10% of the E-QO2. The electron donor couple ascorbate/TMPD augmented the E-QO2 in the presence of rotenone (2 μ ) and antimycin A (4 μ ) by 110%. Azide (1 m ) stimulated the antimycin A refractory QO2 by 36.6 ± 7.2% which was only partially inhibited by 1.0 m -KCN ( ). The data suggest the presence of classical (CPW) and alternate (APW) electron transport pathways in S. ratti L3s.  相似文献   

4.
A mathematical model was developed to describe the biodegradation kinetics of perchlorate in the presence of nitrate and oxygen as competing electron acceptors. The rate of perchlorate degradation is described as a function of the electron donor (acetate) degradation rate, the concentration of the alternate electron acceptors, and rates of biomass growth and decay. The kinetics of biomass growth are described using a modified Monod model, and inhibition factors are incorporated to describe the influence of oxygen and nitrate on perchlorate degradation. In order to develop input parameters for the model, a series of batch biodegradation studies were performed using Azospira suillum JPLRND, a perchlorate-degrading strain isolated from groundwater. This strain is capable of utilizing oxygen, nitrate, or perchlorate as terminal electron acceptors. The maximum specific growth rate (μmax) and half-saturation constant (K S don) for the bacterium when utilizing either perchlorate or nitrate were similar; 0.16 per h and 158 mg acetate/L, respectively. However, these parameters were different when the strain was growing on oxygen. In this case, μmax and K S don were 0.22 per h and 119 mg acetate/L, respectively. The batch experiments also revealed that nitrate inhibits perchlorate biodegradation by this strain. This finding was incorporated into the model by applying an inhibition coefficient (K i nit) value of 25 mg nitrate/L. Combined with appropriate groundwater transport models, this model can be used to predict perchlorate biodegradation during in situ remediation efforts.  相似文献   

5.
Sedimentary pigments as an index of the trophic status of Lake Mead   总被引:1,自引:0,他引:1  
Sedimentary pigment data were analysed from 6 cores from Lake Mead, the reservoir resulting from the impoundment of the Colorado River by Boulder (now Hoover) Dam in 1935. Surficial sedimentary pigments correlated well with contemporaneously measured primary productivity of the water column at the 6 coring stations. For the coring station nearest the sewerage inflow from the City of Las Vegas, the historical record of pigments closely paralleled the increase in human population, sewerage loading to the reservoir, and the associated phosphorus loadings. For three of the cores, pigments were closely correlated with total nitrogen from the same levels in the cores. Pigment concentrations in cores from different parts of the reservoir corroborate findings of other studies which indicate major differences in productivity of the upper and lower basins of Lake Mead (the lower basin having higher primary productivity). The pigment data from the cores provide some indications of the effect of the damming of the Colorado River above the Grand Canyon in 1963 to form Lake Powell, which significantly reduced phosphorus loading downstream to Lake Mead, and which may have adversely affected the largemouth bass fishery.  相似文献   

6.
While hybridization between Native and Introduced Phragmites australis has not been documented across much of North America, it poses an ongoing threat to Native P. australis across its range. This is especially true for native populations in the biologically rich, but sparsely distributed wetlands of the southwest United States, which are among the most imperiled systems in North America. We identified multiple Hybrid P. australis stands in the Las Vegas Wash watershed, NV, a key regional link to the Colorado River basin. Rapid urbanization in this watershed has caused striking changes in water and nutrient inputs and the distribution of wetland habitats has also changed, with urban wetlands expanding but an overall reduction in wetland habitats regionally. Native P. australis has likely been present in the Wash wetland community in low abundance for thousands of years, but today Hybrid and Native plants dominate the shoreline along much of the Wash. In contrast, Introduced P. australis is rare, suggesting that opportunities for novel hybridization events remain uncommon. Hybrid crosses derived from both the native and introduced maternal lineages are widespread, although the conditions that precluded their establishment are unknown and we did not find evidence for backcrossing. Spread of Hybrid plants is likely associated with flooding events as well as restoration activities, including revegetation efforts and construction for erosion control, that have redistributed sediments containing P. australis rhizomes. Downstream escape of Hybrid plants to Lake Mead and wetlands throughout the lower Colorado River basin is of management concern as these Hybrids appear vigorous and could spread rapidly.  相似文献   

7.
Perchlorate reducing bacteria reduce perchlorate to chlorate (ClO3?), which, in turn, is reduced to chlorite (ClO2?) and ultimately to chloride (Cl?). Magnetospirillum strains are reported to use chlorate/perchlorate as electron acceptors. This study describes the perchlorate reducing property of strain VITRJS5, a Magnetopsirillum isolated from freshwater sediment collected from Chelur freshwater lake, Kerala, India. The strain was microaerophile and was phylogenetically related to a Magnetospirillum sp., a member of the α-subclass of the class Proteobacteria. The placement of the isolate in the genus Magnetospirillum has further confirmed the presence of four key magnetosome membrane genes. PCR amplification and phylogenetic analysis of central metabolic genes such as nifH (nitrogenase) and cbbM (type II RubisCo) displayed the highest similarity (97% and 81%, respectively) with Magnetospirillum sp. BB-1 The growth kinetic parameters of the isolate were studied with acetate as the electron donor in batch experiments. Monod's substrate utilization model has been established with oxygen, nitrate and perchlorate as electron acceptors separately. The maximum specific growth rate (µmax) and half-saturation constant (ksconc) for the bacterium varied while utilizing different electron acceptors. The maximum specific growth rate was 0.226, 0.190 and 0.096 per hour and half-velocity constant Ks was 25.09, 33.36 and 65.37 mg acetate/l for oxygen, nitrate and perchlorate, respectively. The reduction of perchlorate has been analyzed using kinetic studies of the substrate uptake by the bacteria and the half-velocity constant Ks was found to be 52.8 mg/l. The results indicate that the strain VITRJS5 effectively reduces perchlorate by using it as an electron acceptor.  相似文献   

8.
Newell CJ  Aziz CE 《Biodegradation》2004,15(6):387-394
The sustainability of biodegradation reactions is of interest at Type 1 chlorinated solvent sites where monitored natural attenuation is being considered as a remedial alternative. Type 1 chlorinated solvent sites are sites undergoing reductive dechlorination where anthropogenic substrates (such as landfill leachate or fermentable organics in the waste materials) ferment to produce hydrogen, a key electron donor. A framework is provided that classifies Type 1 chlorinated solvent sites based on the relative amounts and the depletion rates of the electron donors and the electron acceptors (i.e., chlorinated solvents). Expressions are presented for estimating the total electron donor demand due to the presence of solvents and competing electron acceptors such as dissolved oxygen, nitrate, and sulfate. Finally, a database of 13 chlorinated solvent sites was analyzed to estimate the median and maximum mass discharge rate for dissolved oxygen, nitrate, and sulfate flowing into chlorinated solvent plumes. These values were then used to calculate the amount of hydrogen equivalents and potential for lost perchloroethylene (PCE) biodegradation represented by the inflow of these competing electron acceptors. The median and maximum mass of PCE biodegradation lost due to competing electron acceptors, assuming 100% efficiency, was 226 and 4621 kg year(-1), respectively.  相似文献   

9.
Perchlorate (ClO(4)(-)) contamination of ground and surface water has been recently recognized as a widespread environmental problem. Biological methods offer promising perspectives of perchlorate remediation. Facultative anaerobic bacteria couple the oxidation of organic and inorganic electron-donating substrates to the reduction of perchlorate as a terminal electron acceptor, converting it completely to the benign end-product, chloride. Insoluble inorganic substrates are of interest for low maintenance bioreactor or permeable reactive barrier systems because they can provide a long-term supply of electron donor without generating organic residuals. The main objective of this research was to investigate the feasibility of utilizing elemental sulfur (S(0)) as an insoluble electron donor for the biological reduction of perchlorate. A chemolithotrophic enrichment culture derived from aerobic activated sludge was obtained which effectively coupled the oxidation of elemental sulfur to sulfate with the reduction of perchlorate to chloride and gained energy from the process for cell growth. The enrichment culture grew at a rate of 0.41 or 0.81 1/d in the absence and presence of added organic carbon for cell growth, respectively. The enrichment culture was also shown to carry out sulfur disproportionation to a limited extent as evidenced by the formation of sulfide and sulfate in the absence of added electron acceptor. When nitrate and perchlorate were added together, the two electron acceptors were removed simultaneously after an initial partial decrease in the nitrate concentration.  相似文献   

10.
BACKGROUND: The effect of perchlorate in drinking water on neonatal blood thyroid-stimulating hormone (thyrotropin; TSH) levels was examined for Las Vegas and Reno, Nevada. METHODS: The neonatal blood TSH levels in Las Vegas (with up to 15 microg/L (ppb) perchlorate in drinking water) and in Reno (with no perchlorate detected in the drinking water) from December 1998 to October 1999 were analyzed and compared. The study samples were from newborns in their first month of life (excluding the first day of life) with birth weights of 2, 500-4,500 g. A multivariate analysis of logarithmically transformed TSH levels was used to compare the mean TSH levels between Las Vegas and Reno newborns, with age and sex being controlled as potential confounders. RESULTS: This study of neonatal TSH levels in the first month of life found no effect from living in the areas with environmental perchlorate exposures of 相似文献   

11.
The perchlorate (ClO4)-respiring organism, strain perc1ace, can grow using nitrate (NO3) as a terminal electron acceptor. In resting cell suspensions, NO3 grown cells reduced ClO4, and ClO4 grown cells reduced NO3. Activity assays showed that nitrate reductase (NR) activity was 1.31 μmol min−1 (mg protein)−1 in ClO4 grown cells, and perchlorate reductase (PR) activity was 4.24 μmol min−1 (mg protein)−1 in NO3 grown cells. PR activity was detected within the periplasmic space, with activities as high as 14 μmol min−1 (mg protein)−1. The NR had a pH optimum of 9.0 while the PR had an optimum of 8.0. This study suggests that separate terminal reductases are present in strain perclace to reduce NO3 and ClO4.  相似文献   

12.
The period (∼3-5 min) of the ultradian rhythm of the lateral leaflet movement of Desmodium motorium is strongly lengthened (≤30-40%) by the K+ channel blocker tetraethylammoniumchloride (20, 30, and 40 mM) and vanadate (0.5 and 1 mM), which is an effective inhibitor of the plasma membrane-bound H+ pump. The alkali ions K+, Na+, Rb+, and Cs+ (10-40 mM) shorten the period only slightly (≤ 10-15%). Li+ (5-30 mM), however, increases the period of the leaflet rhythm drastically (≤80%). We concluded that the plasmalemma-H+-ATP-ase-driven K+ transport through K+ channels is an essential component of the ultradian oscillator of Desmodium, as has been proposed for the circadian oscillator.  相似文献   

13.
Molecular dimensions and molecular orbital calculations of the electronic structures of 56 substrates, inhibitors and inducers of the cytochromes P-448 and other families of the cytochromes P-450 are reported. Substrates of the cytochromes P-448 are shown to be planar molecules with relatively large values of area/depth2, and to have electronic structures with relatively low values for ΔE, the difference in energy between the frontier orbitals (E(LEMO) − E(HOMO)). Substrates of other families of the cytochromes P-450 are globular molecules, with relatively low values of area/depth2 and relatively high values of ΔE. Molecular orbital calculations of the active oxygen species, singlet oxygen and superoxy anion, have also been made. Singlet oxygen is a poor electron donor (low values of E(HOMO)) but a good electron acceptor (low values of E(LEMO)), whereas superoxy anion is a good electron donor and a poor electron acceptor. Cytochrome P-448 substrates, which are good electron donors, would preferentially accept singlet oxygen, a good electron acceptor; substrates of the other families of cytochrome P-450, which are less effective electron donors, would preferentially accept superoxy anion, a good electron donor, although substrates of both cytochromes P-448 and other P-450s may accept both species of active oxygen. Together with recent published evidence, these data provide a greater understanding of the mode of activation of oxygen by the various families of the cytochromes P-450, and to the insertion of active oxygen into the substrates. Mechanisms are proposed for the oxygenation of substrates, namely, epoxidation involving singlet oxygen and hydroxylation by superoxy anion. Finally, a detailed explanation of the cytochrome P-450 cycle is discussed, and mechanisms of the different types of oxidative metabolism are presented.  相似文献   

14.
Three strains of sulfate-reducing bacteria (ADR21, ADR26 and ADR28) were isolated from Adour estuary sediments (French South Atlantic coast). Cells of these isolates were rod-shaped, motile and stained Gram-negative. The 16S rRNA and dsrAB genes sequence analyses indicated that these three strains belonged to the genus Desulfomicrobium within the delta Proteobacteria, with Desulfomicrobium escambiense strain DSM10707T as their closest relative. According to phenotypic characteristics, strains ADR21 and ADR28 could be considered as members of the same species. The relatedness values, based on DNA–DNA hybridization studies, between strains ADR21/DSM10707T, ADR26/DSM10707T and ADR21/ADR26 ranged between 30.6–40.8%, 45.2–43.0% and 19.0–26.4%, respectively. Strains ADR21 and ADR28 grew well on lactate, fumarate, malate, formate, ethanol and H2/acetate in the presence of sulfate as an electron acceptor. Thiosulfate, nitrate, fumarate and DMSO were alternative electron acceptors. Malate was well fermented but pyruvate and fumarate only poorly. Strain ADR26 could not grow on ethanol or fumarate and was unable to use DMSO or fumarate as electron acceptors. The three new strains exhibited differences compared to the type strain of D. escambiense, such as temperature optima, substrate utilization and mercury methylation capacities. On the basis of both genetic and phenotypic evidences, strain ADR21 is proposed as the type strain of the species Desulfomicrobium salsuginis sp. nov., and strain ADR26 as the type strain of the species Desulfomicrobium aestuarii sp. nov.  相似文献   

15.
Akira Kusai  Tateo Yamanaka 《BBA》1973,292(3):621-633
A highly purified preparation of an NAD(P) reductase was obtained from Chlorobium thiosulfatophilum and some of its properties were studied. The enzyme possesses FAD as the prosthetic group, and reduces benzyl viologen, 2,6-dichloro-phenolindophenol and cytochromes c, including cytochrome c-555 (C. thiosulfato-philum), with NADPH or NADH as the electron donor. It reduces NADP+ or NAD+ photosynthetically with spinach chloroplasts in the presence of added spinach ferredoxin. It reduces the pyridine nucleotides with reduced benzyl viologen. The enzyme also shows a pyridine nucleotide transhydrogenase activity. In these reactions, the type of pyridine nucleotide (NADP or NAD) which functions more efficiently with the enzyme varies with the concentration of the nucleotide used; at concentrations lower than approx. 1.0 mM, NADPH (or NADP+) is better electron donor (or acceptor), while NADH (or NAD+) is a better electron donor (or acceptor) at concentrations higher than approx. 1.0 mM. Reduction of dyes or cytochromes c catalysed by the enzyme is strongly inhibited by NADP+, 2′-AMP and and atebrin.  相似文献   

16.
Cyanobacterin, a secondary metabolite produced by the cysnobacterium, Scytonema hofmanni, inhibits electron transport at a site in photosystem II. It was previously shown that a DCMU-resistant mutant of A. nidulans R2 was still susceptible to cyanobacterin (Gleason et al., Plant Science, 46 (1986) 5–10). Apparently, cyanobacterin acts at a site different from that of DCMU and similar PS II inhibitors. To confirm this conclusion, a cyanobacterin-resistant strain of A. nidulans R2 was produced by nitrosoguanidine mutagenesis and selected by growth in the presence of 4.7 μM cyanobacterin. Hill activity in mutant thylakoids was compared to that of the wild type membranes in the presence of ferricyanide and silicomolybdate as electron acceptors. Photosynthetic electron transport in the mutant membranes shows a high degree of resistance to cyanobacterin in both reactions. In contrast, the mutant exhibits the same susceptibility to DCMU inhibition as the wild type R2. Cyanobacterin acts at a unique site, inhibiting electron flow from quinone-A to quinone-B.  相似文献   

17.
1. In subchloroplast fragments prepared with the detergent deoxycholate the primary reactions of Photosystem II could be studied at room temperature, because the secondary reactions were largely or completely inhibited.

2. The main quencher of chlorophyll fluorescence in these particles was the photosynthetically active pool of plastoquinone in its oxidized form. Its photoreduction in the presence of artificial electron donors was accompanied by a shift of a chlorophyll a absorption band. Its reoxidation in the dark was very slow, even in the presence of ferricyanide.

3. Of all the artificial electron donors tested MnCl2 was by far the most efficient.

4. Measurements at room temperature of the C550 absorbance change confirmed its correlation with the primary electron acceptor. Its difference spectrum was broader and its extinction coefficient correspondingly lower than at liquid-N2 temperature. In chloroplasts the C550 concentration was about 1:360 chlorophylls.

5. In the dark C550 was largely in the reduced state and its oxidation by plastoquinone took place in the presence of an artificial electron donor only, suggesting that the redox potential of C550 was increased by accumulated positive charges at the donor side of the reaction center.

6. The free radical 1,1′-diphenyl-2-picrylhydrazyl oxidized C550 directly in a 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU)-insensitive reaction. A DCMU-insensitive oxidation of C550 was observed at high ferricyanide concentrations as well, but probably in this case an endogenous electron donor was oxidized, which in turn oxidized C550 via the back reaction of the photochemical reaction.

7. The oxidized form of the primary electron donor, P680+, accumulated in the light in the presence of deoxycholate and a low ferricyanide concentration. In chloroplasts the P680 concentration was about 1:360 chlorophylls.

8. The P 680 absorption difference spectrum and electron spin resonance could be explained by the oxidation of a chlorophyll a dimer. Repeated deoxycholate treatments progressively changed the spectra to those of a monomer. The monomer was still photochemically active.

9. A new interpretation of the difference spectrum of P700 is proposed: it may be the same as that of the difference spectrum of P680 if the bleaching at 700 nm is attributed to a band shift.  相似文献   


18.
The thermodynamic and spectral properties of the photochemical reaction center components of Heliobacterium chlorum have been examined. The primary electron donor bacteriochlorophyll has Em,7 = +225 mV, and the ‘primary acceptor’ Em,10 = −510 mV. The former has an EPR signal in its oxidised form near G = 2.0025, ΔH = 0.95 mT, reminiscent of the properties of the primary donor in bacteria containing bacteriochlorophyll a. The ‘primary acceptor’ has properties similar to those of the iron-sulfur cluster acceptors of green sulfur bacteria. H. chlorum contains a c-type cytochrome (Em,7 = +170 mV) that donates electrons to the photooxidised primary donor with . The reaction center of H. chlorum is thus very similar to that found in representative green sulfur bacteria, but the cellular architecture and photopigments of this group are quite distinct from those of H. chlorum.  相似文献   

19.
Charge-transfer reactions to secondary electron donors (Z, M) and acceptors (QA, QB) in Photosystem II particles isolated from a thermophilic cyanobacterium Synechococcus sp. (Schatz, G.H. and Witt H.T. (1984) Photobiochem. Photobiophys. 7, 1–14) were analyzed by measurements of fluorescence yield and absorbance changes in the millisecond time domain induced by repetitive flashes. (1) The electron-transfer reaction QAQB → QAQB was found to occur with kinetic phases of 0.2 ± 0.1 ms and 1.5 ± 0.5 ms half-time. At 10 ms after flashes an equilibrium distribution of QAQB/QAQB of about 15/85 in oxygen-evolving and of about 25/75 in Tris-treated PS II particles was reached. (2) The absorbance difference spectra were determined for (QA - QA), (QB - QB), (Z+ - Z) and for (S4 - S0), the transition associated with oxygen evolution. In the ultraviolet region they show that these electron-acceptors and -donors are the same as in spinach PS II. In the visible region all the difference spectra contain major contributions by electrochromic bandshifts due to electrostatic interaction of the reduced acceptors or oxidized donors with nearby reaction center pigments. Upon electron transfer from QA to QB electrochromic bandshifts due to interaction with pheophytin a disappeared almost completely. Bandshifts observed in the (Z+ - Z) and (S4 - S0) spectra were attributed to chlorophyll a.  相似文献   

20.
The mechanism of the charge separation and stabilization of separated charges was studied using the femtosecond absorption spectroscopy. It was found that nuclear wavepacket motions on potential energy surface of the excited state of the primary electron donor P* leads to a coherent formation of the charge separated states P+BA, P+HA and P+HB (where BA, HB and HA are the primary and secondary electron acceptors, respectively) in native, pheophytin-modified and mutant reaction centers (RCs) of Rhodobacter sphaeroides R-26 and in Chloroflexus aurantiacus RCs. The processes were studied by measurements of coherent oscillations in kinetics at 890 and 935 nm (the stimulated emission bands of P*), at 800 nm (the absorption band of BA) and at 1020 nm (the absorption band of BA) as well as at 760 nm (the absorption band of HA) and at 750 nm (the absorption band of HB). It was found that wavepacket motion on the 130–150 cm−1 potential surface of P* is accompanied by approaches to the intercrossing region between P* and P+BA surfaces at 120 and 380 fs delays emitting light at 935 nm (P*) and absorbing light at 1020 nm (P+BA). In the presence of Tyr M210 (Rb. sphaeroides) or M195 (C. aurantiacus) the stabilization of P+BA is observed within a few picosseconds in contrast to YM210W. At even earlier delay (40 fs) the emission at 895 nm and bleaching at 748 nm are observed in C. aurantiacus RCs showing the wavepacket approach to the intercrossing between the P* and P+HB surfaces at that time. The 32 cm−1 rotation mode of HOH was found to modulate the electron transfer rate probably due to including of this molecule in polar chain connecting PB and BA and participating in the charge separation. The mechanism of the charge separation and stabilization of separated charges is discussed in terms of the role of nuclear motions, of polar groups connecting P and acceptors and of proton of OH group of TyrM210.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号