首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The biopolymer lignin is deposited in the cell walls of vascular cells and is essential for long-distance water conduction and structural support in plants. Different vascular cell types contain distinct and conserved lignin chemistries, each with specific aromatic and aliphatic substitutions. Yet, the biological role of this conserved and specific lignin chemistry in each cell type remains unclear. Here, we investigated the roles of this lignin biochemical specificity for cellular functions by producing single cell analyses for three cell morphotypes of tracheary elements, which all allow sap conduction but differ in their morphology. We determined that specific lignin chemistries accumulate in each cell type. Moreover, lignin accumulated dynamically, increasing in quantity and changing in composition, to alter the cell wall biomechanics during cell maturation. For similar aromatic substitutions, residues with alcohol aliphatic functions increased stiffness whereas aldehydes increased flexibility of the cell wall. Modifying this lignin biochemical specificity and the sequence of its formation impaired the cell wall biomechanics of each morphotype and consequently hindered sap conduction and drought recovery. Together, our results demonstrate that each sap-conducting vascular cell type distinctly controls their lignin biochemistry to adjust their biomechanics and hydraulic properties to face developmental and environmental constraints.

During the development of each vascular cell, specific lignin chemistries control their biomechanics and water conduction properties to face environmental changes.

IN A NUTSHELL Background: Lignin comprises multiple cell wall–localized aromatic polymers that are essential for vascular plants to conduct water and strengthen their organs. It has long been thought that lignin was randomly and nonspecifically assembled to provide mechanical strengthening and waterproofing to cells by filling-up the empty spaces in the cell walls. However, the different cell types and morphotypes forming the different sap-conducting pipes and their cell wall layers (inner vs. outer layer) exhibit specific lignin chemistries that are conserved among plant species. We, therefore, investigated the function of these specific lignin chemistries at the cell and cell wall layer levels for the different sap-conducting pipes in plants. Question: What is the function of a specific lignin chemistry for the different plant sap-conducting pipe cells? Can changes in the lignin chemistry of sap-conducting cells affect their hydraulic capacity when facing environmental conditions such as drought? Findings: We answered these questions by changing lignin levels and composition, using drugs to block lignin formation, and/or genetic engineering to switch off genes, in three complementary systems: (1) isolated cells grown in test tubes that we can trigger to become sap conduits, (2) annual plants, and (3) hardwood trees. We show that lignin chemistry is specific to each cell morphotype and changes during cell maturation, modifying the amount of lignin, the chemical composition of lignin units, and the position of these units in the longer polymer. These specific lignin chemistries are required for the proper function of each cell morphotype to properly conduct the sap and strengthen plant organs. Modifying the amount, the composition, and the time when specific units with distinct chemistry are incorporated in lignin of each cell morphotype has dramatic effects, causing defects in sap conduit hydraulic and biomechanical properties. The ratio between the different chemical units of lignin needs to be fine-tuned to adjust plant sap conduction and mechanical strengthening. Thus, changes in the proportion of lignin units with distinct chemistries confer different hydraulic and mechanical properties enabling plants to better resist and/or recover from drought. We also revealed that increases in the proportion of lignin units with aldehyde modulate plant pipe hydraulic and mechanical properties. Next steps: We are now working to identify and understand the molecular mechanisms that control the formation of specific lignin chemistries in distinct sites and times during the development of the different cell wall layers in each cell type and morphotype.  相似文献   

2.
Agarwal UP 《Planta》2006,224(5):1141-1153
A detailed understanding of the structural organization of the cell wall of vascular plants is important from both the perspectives of plant biology and chemistry and of commercial utilization. A state-of-the-art 633-nm laser-based confocal Raman microscope was used to determine the distribution of cell wall components in the cross section of black spruce wood in situ. Chemical information from morphologically distinct cell wall regions was obtained and Raman images of lignin and cellulose spatial distribution were generated. While cell corner (CC) lignin concentration was the highest on average, lignin concentration in compound middle lamella (CmL) was not significantly different from that in secondary wall (S2 and S2–S3). Images generated using the 1,650 cm−1 band showed that coniferaldehyde and coniferyl alcohol distribution followed that of lignin and no particular cell wall layer/region was therefore enriched in the ethylenic residue. In contrast, cellulose distribution showed the opposite pattern—low concentration in CC and CmL and high in S2 regions. Nevertheless, cellulose concentration varied significantly in some areas, and concentrations of both lignin and cellulose were high in other areas. Though intensity maps of lignin and cellulose distributions are currently interpreted solely in terms of concentration differences, the effect of orientation needs to be carefully considered to reveal the organization of the wood cell wall.The Forest Products Laboratory is maintained in cooperation with the University of Wisconsin. This article was written and prepared by U.S. Government employees on official time, and it is therefore in the public domain and not subject to copyright. The use of trade or firm names in this publication is for reader information and does not imply endorsement by the U.S. Department of Agriculture of any product or service.  相似文献   

3.
4.
Ultrastructural and cytochemical features of tracheid cell walls were examined in oven-dried Pinus radiata D. Don disks that demonstrated a range in severity of the wood quality flaw referred to as “intra-ring checking,” from severe to none. Observations of the tracheid cell wall at the ultrastructural level included the localization of the origin of tears between adjacent cells, and the occurrence of tracheid collapse. Cytochemical analysis focused on determination of the spatial distribution of lignin within the cell wall layers. Tracheid lignin content was further quantified using the Klason and acetyl bromide methods. We found considerable homogeneity in the point of failure in the wood demonstrating intra-ring checking, with 80% of the tears occurring at the compound middle lamella (CML)/S1 cell wall interface. In these samples, tracheid collapse was observed adjacent to the tear as well as between tears, and the cell walls appeared to have altered lignin distribution, particularly in the S1 wall layer. We suggest that alterations in the CML/S1 layers create a weak point in the cell wall, making it prone to the observed tears. The mechanisms that may be involved in the occurrence of intra-ring checking are discussed at the morphological level. Tracy L. Putoczki and Hema Nair contributed equally to this work.  相似文献   

5.
We investigated the spatial and temporal distribution of xylans in the cell walls of differentiating earlywood tracheids of Cryptomeria japonica using two different types of monoclonal antibodies (LM10 and LM11) combined with immunomicroscopy. Xylans were first deposited in the corner of the S1 layer in the early stages of S1 formation in tracheids. Cell corner middle lamella also showed strong xylan labeling from the early stage of cell wall formation. During secondary cell wall formation, the innermost layer and the boundary between the S1 and S2 layers (S1/S2 region) showed weaker labeling than other parts of the cell wall. However, mature tracheids had an almost uniform distribution of xylans throughout the entire cell wall. Xylan localization labeled with LM10 antibody was stronger in the outer S2 layer than in the inner layer, whereas xylans labeled with LM11 antibody were almost uniformly distributed in the S2 layer. In addition, the LM10 antibody showed almost no xylan labeling in the S1/S2 region, whereas the LM11 antibody revealed strong xylan labeling in the S1/S2 region. These findings suggest that structurally different types of xylans may be deposited in the tracheid cell wall depending on the developmental stage of, or location in, the cell wall. Our study also indicates that deposition of xylans in the early stages of tracheid cell wall formation may be spatially consistent with the early stage of lignin deposition in the tracheid cell wall.  相似文献   

6.
Background Lignin is a polyphenolic polymer that strengthens and waterproofs the cell wall of specialized plant cell types. Lignification is part of the normal differentiation programme and functioning of specific cell types, but can also be triggered as a response to various biotic and abiotic stresses in cells that would not otherwise be lignifying.Scope Cell wall lignification exhibits specific characteristics depending on the cell type being considered. These characteristics include the timing of lignification during cell differentiation, the palette of associated enzymes and substrates, the sub-cellular deposition sites, the monomeric composition and the cellular autonomy for lignin monomer production. This review provides an overview of the current understanding of lignin biosynthesis and polymerization at the cell biology level.Conclusions The lignification process ranges from full autonomy to complete co-operation depending on the cell type. The different roles of lignin for the function of each specific plant cell type are clearly illustrated by the multiple phenotypic defects exhibited by knock-out mutants in lignin synthesis, which may explain why no general mechanism for lignification has yet been defined. The range of phenotypic effects observed include altered xylem sap transport, loss of mechanical support, reduced seed protection and dispersion, and/or increased pest and disease susceptibility.  相似文献   

7.
Joseleau JP  Imai T  Kuroda K  Ruel K 《Planta》2004,219(2):338-345
The occurrence of lignin in the additional gelatinous (G-) layer that differentiates in the secondary wall of hardwoods during tension wood formation has long been debated. In the present work, the ultrastructural distribution of lignin in the cell walls of normal and tension wood fibres from poplar (Populus deltoides Bartr. ex Marshall) was investigated by transmission electron microscopy using cryo-fixation–freeze-substitution in association with immunogold probes directed against typical structural motifs of lignin. The specificity of the immunological probes for condensed and non-condensed guaiacyl and syringyl interunit linkages of lignin, and their high sensitivity, allowed detection of lignin epitopes of definite chemical structures in the G-layer of tension wood fibres. Semi-quantitative distribution of the corresponding epitopes revealed the abundance of syringyl units in the G-layer. Predominating non-condensed lignin sub-structures appeared to be embedded in the crystalline cellulose matrix prevailing in the G-layer. The endwise mode of polymerization that is known to lead to these types of lignin structures appears consistent with such an organized cellulose environment. Immunochemical labelling provides the first visualization in planta of lignin structures within the G-layer of tension wood. The patterns of distribution of syringyl epitopes indicate that syringyl lignin is deposited more intensely in the later phase of fibre secondary wall assembly. The data also illustrate that syringyl lignin synthesis in tension wood fibres is under specific spatial and temporal regulation targeted differentially throughout cell wall layers.Abbreviations G-layer Gelatinous layer - G Guaiacyl monomeric unit - PATAg Periodic acid–thiocarbohydrazide–silver proteinate - S Syringyl monomeric unit  相似文献   

8.
Different patterns of lignified cell walls are associated with diverse functions in a variety of plant tissues. These functions rely on the stiffness and hydrophobicity that lignin polymers impart to the cell wall. The precise pattern of subcellular lignin deposition is critical for the structure–function relationship in each lignified cell type. Here, we describe the role of xylem vessels as water pipes, Casparian strips as apoplastic barriers, and the role of asymmetrically lignified endocarp b cells in exploding seed pods. We highlight similarities and differences in the genetic mechanisms underpinning local lignin deposition in these diverse cell types. By bringing together examples from different developmental contexts and different plant species, we propose that comparative approaches can benefit our understanding of lignin patterning mechanisms.

Diverse lignin patterns underpin distinct functions in different plant tissues.  相似文献   

9.
Woody materials are comprised of plant cell walls that contain a layered secondary cell wall composed of structural polymers of polysaccharides and lignin. Layer-by-layer (LbL) assembly process which relies on the assembly of oppositely charged molecules from aqueous solutions was used to build a freestanding composite film of isolated wood polymers of lignin and oxidized nanofibril cellulose (NFC). To facilitate the assembly of these negatively charged polymers, a positively charged polyelectrolyte, poly(diallyldimethylammomium chloride) (PDDA), was used as a linking layer to create this simplified model cell wall. The layered adsorption process was studied quantitatively using quartz crystal microbalance with dissipation monitoring (QCM-D) and ellipsometry. The results showed that layer mass/thickness per adsorbed layer increased as a function of total number of layers. The surface coverage of the adsorbed layers was studied with atomic force microscopy (AFM). Complete coverage of the surface with lignin in all the deposition cycles was found for the system, however, surface coverage by NFC increased with the number of layers. The adsorption process was carried out for 250 cycles (500 bilayers) on a cellulose acetate (CA) substrate. Transparent free-standing LBL assembled nanocomposite films were obtained when the CA substrate was later dissolved in acetone. Scanning electron microscopy (SEM) of the fractured cross-sections showed a lamellar structure, and the thickness per adsorption cycle (PDDA-Lignin-PDDA-NC) was estimated to be 17 nm for two different lignin types used in the study. The data indicates a film with highly controlled architecture where nanocellulose and lignin are spatially deposited on the nanoscale (a polymer-polymer nanocomposites), similar to what is observed in the native cell wall.  相似文献   

10.
The lignin distribution in cell walls of spruce and beech wood was determined by high-voltage transmission-electron-microscopy (TEM) in sections stained with potassium permanganate as well as by field-emission-scanning-electron-microscopy (FE-SEM) combined with a back-scattered electron detector on mercurized specimens. The latter is a new technique based on the mercurization of lignin and the concomitant visualization of mercury by back-scattered electron microscopy (BSE). Due to this combination it was possible to obtain a visualized overview of the lignin distribution across the different layers of the cell wall. To our knowledge, this combined method was used the first time to analyse the lignin distribution in cell walls. In agreement with previous work the highest lignin levels were found in the compound middle lamella and the cell corners. Back-scattered FE-SEM allows the lignin distribution in the pit membrane of bordered pits as well as in the various cell wall layers to be shown. In addition, by using TEM as well as SEM we observed that lignin closely follows the cellulose microfibril orientation in the secondary cell wall. From these observations, we conclude that the polymerisation of monolignols is affected by the arrangement of the polysaccharides which constitute the cell wall.  相似文献   

11.
利用紫外光显微镜、透射电子显微镜结合免疫胶体金标记,研究了杜仲(Eucommia ulmoides Oliv.)次生木质部分化过程中木质素与半纤维素组分(木葡聚糖和木聚糖)在细胞壁分布的动态变化。在形成层及细胞伸展区域,细胞壁具有木葡聚糖的分布,而没有木聚糖和木质素沉积,随着次生壁S1层的形成,木质素出现在细胞角隅和胞间层,木聚糖开始出现在S1层中,此时木葡聚糖则分布在初生壁和胞间层;随着次生,壁S2层及S3层的形成和加厚,木质逐逐步由细胞角隅和胞间层扩展到S1、S2和S3层,其沉积呈现出不均匀的块状或片状沉积模式,在次生壁各层形成与其木质化的同时,木聚糖逐渐分布于整个次生壁中,而木糖聚糖仍局限分布于初生壁和胞间层。结果表明,随着细胞次生壁的形成与木质化,细胞壁结构发生较大变化。细胞壁的不同区域,如细胞角隅、胞间层、初生壁和次生壁各层,具有不同的半纤维素组成,其与木质等细胞壁组分结构构成不同的细胞壁分子结构。  相似文献   

12.
The dynamic changes in the distribution of lignin and hemicelluloses (xylans and xyloglucans) in cell walls during the differentiation of secondary xylem in Eucommia ulmoides Oliv. were studied by means of ultraviolet light microscopy and transmission electron microscopy combined with immunogold labelling. In the cambial zone and cell expansion zone, xyloglucans were localized both in the tangential and radial walls, but no xylans or lignin were found in these regions. With the formation of secondary wall S1 layer, lignin occurred in the cell corners and middle lamella, while xylans appeared in S1 layer, and xyloglucans were localized in the primary walls and middle lamella. In pace with the formation of secondary wall S2 and S3 layer, lignification extended to S1, S2 and S3 layer in sequence, showing a patchy style of lignin deposition. Concurrently, xylans distributed in the whole secondary walls and xyloglucans, on the other hand, still localized in the primary walls and middle lamella. The results indicated that along with the formation and lignification of the secondary wall, great changes had taken place in the cell walls. Different parts of cell walls, such as cell corners, middle lamella, primary walls and various layers of secondary walls, had different kinds of hemicelluloses, which formed various cell wall architecture combined with lignin and other cell wall components.  相似文献   

13.
Many plant species have one or more types of acylation of cell wall polymers. Grasses (Poaceae family) are unique with abundant acylation of specific cell wall polymers by hydroxycinnamates. The most common hydroxycinnamates found in a wide range of grasses are ferulates (trans-4-hydroxy-3-methoxycinnamate) and p-coumarates (trans-4-hydroxycinnamate). These two hydroxycinnamates are synthesized by the phenylpropanoid pathway. Though structurally related, they seem to have different functional roles within the cell wall. Ferulates have been shown to have a critical role in cross-linking cell wall components; forming links between structural polysaccharides and links between structural polysaccharides and lignin. They are incorporated into the cell wall by distinctly different mechanisms. Ferulic acid is incorporated into cell walls as ester linked substituents on arabinoxylans. The exact role p-coumarates play in plant cell walls is unknown, but it has been shown that p-coumaric acid is ester-linked to monolignols and shuttled out to the wall to become incorporated into newly forming lignin polymers. Both processes require the activity of specific hydroxycinnamoyl transferases utilizing CoA derivatives to drive the transferase reactions.  相似文献   

14.
An extensive search for maize (Zea mays) genes involved in cell wall biosynthesis and assembly has been performed and 735 sequences have been centralized in a database, MAIZEWALL (http://www.polebio.scsv.ups-tlse.fr/MAIZEWALL). MAIZEWALL contains a bioinformatic analysis for each entry and gene expression data that are accessible via a user-friendly interface. A maize cell wall macroarray composed of a gene-specific tag for each entry was also constructed to monitor global cell wall-related gene expression in different organs and during internode development. By using this macroarray, we identified sets of genes that exhibit organ and internode-stage preferential expression profiles. These data provide a comprehensive fingerprint of cell wall-related gene expression throughout the maize plant. Moreover, an in-depth examination of genes involved in lignin biosynthesis coupled to biochemical and cytological data from different organs and stages of internode development has also been undertaken. These results allow us to trace spatially and developmentally regulated, putative preferential routes of monolignol biosynthesis involving specific gene family members and suggest that, although all of the gene families of the currently accepted monolignol biosynthetic pathway are conserved in maize, there are subtle differences in family size and a high degree of complexity in spatial expression patterns. These differences are in keeping with the diversity of lignified cell types throughout the maize plant.  相似文献   

15.
The gelatinous type of secondary cell wall is present in tension wood and in phloem fibers of many plants. It is characterized by the absence of xylan and lignin, a high cellulose content and axially orientated microfibrils in the huge S2 layer. In flax phloem fiber, the major non-cellulosic component of such cell walls is tissue-specific galactan, which is tightly bound to cellulose. Ultrastructural analysis of flax fiber revealed that initiation of gelatinous secondary cell wall formation was accompanied by the accumulation of specific Golgi vesicles, which had a characteristic bicolor (dark-light) appearance and were easily distinguishable from vesicles made in different tissues and during the other stages of fiber development. Many of the bicolor vesicles appeared to fuse with each other, forming large vacuoles. The largest observed was 4 mum in diameter. Bicolor vesicles and vacuoles fused with the plasma membrane and spread their content in a characteristic "syringe-like" manner, covering a significant area of periplasm and forming "dark" stripes on the inner wall surface. Both Golgi derivatives and cell wall layers were labeled by LM5 antibody, indicating the presence of tissue- and stage-specific (1-->4)-beta-galactan. We suggest that this specific type of galactan secretion, which allows coverage of a large area of periplasm, is designed to increase the chance of the galactan meeting the cellulose microfibrils while they are still in the process of construction. The membrane fusion machinery of flax fiber must possess special components, which may be crucial for the formation of the gelatinous type cell wall.  相似文献   

16.
Using tobacco transgenic lines altered in the monolignol biosynthetic pathway and which differ in their lignin profiles we have evaluated lignin deposition at the cellular and subcellular levels using several microanalytical techniques. Surprisingly, whereas a Cinnamoyl CoA reductase (CCR) down-regulated line with a strong decrease in lignin content exhibited an overall reduction in lignin deposition in the walls of the different xylem cell types, this reduction was selectively targeted to the fibers in a double transformant (down-regulated for both CCR and Cinnamyl alcohol dehydrogenase (CAD)) displaying a similar degree of global lignin content decrease. Fiber and vessel secondary walls of the transgenic tobacco line homozygous for the ccr antisense gene (CCR.H) down-regulated plants were dramatically destructured, particularly in the S2 sublayer, whereas the deposition of lignins in the S1 sublayer was not significantly modified. In contrast, cell wall organization was slightly altered in xylem cells of the double transformant. The relative distribution of non-condensed and condensed units in lignin, evaluated microscopically with specific antibodies, was differentially affected in the transgenics studied and, in a general way, a drop in non-condensed lignin units (beta- 0-4 interunit linkages) was associated with a loss of cohesion and extensive disorganization of the secondary wall. These results demonstrate that lignification is tightly and independently regulated in individual cell types and cell wall sublayers. They also show that down-regulation of specific genes may induce targeted changes in lignin structure and in spatial deposition patterns of the polymer.  相似文献   

17.
Some effects of the xylanase treatment on the separate birch ORGANOSOLV pulp fibre wall morphological layers were examined. These investigations were focused on the outer layers, i.e. the primary wall (P) and the outer layer of the secondary wall (S1), as well as the central layers, i.e. the central layer of the secondary wall (S2) and the tertiary wall (T). Step by step, the fractionation of the pulp components in the polar solvents N,N-dimethylformamide (DMFA), dimethylsulphoxide (DMSO) and DMSO/H3PO4 was used as a mild technique for the isolation of the lignin-carbohydrate complexes. The different residual amounts of lignin and hemicelluloses in the outer and central pulp fibre wall layers as well as the different lignin-hemicellulose ratios were determined. The size-exclusion chromatographical (SEC) analysis showed a higher initial lignin content in the region of the high molecular mass (MM) fibre wall fraction extracted with “DMSO/H3PO4” than the outer cell wall layers. In the central layers, the amounts of soluble lignin (calculated on the mass of total dissolved substance) were approximately the same for all the three solvents. The xylanase treatment brought the most considerable changes in the high MM part of the residual lignin (the lignin carbohydrate complex). This was true for both the P-S1 and S2-T layers. The careful brightness comparison of the outer and central fractions after the X-E-P-P bleaching sequence showed a surprisingly low bleachability of the outer layer fraction. The xylanase action depended on the composition of the lignin-carbohydrate complex (LCC) and the extent of the maintenance of the outer layers during the pulping process.  相似文献   

18.
Despite the importance of extracellular events in cell wall organization and biogenesis, the mechanisms and related factors are largely unknown. We isolated an allele of the shaven3 (shv3) mutant of Arabidopsis thaliana, which exhibits ruptured root hair cells during tip growth. SHV3 encodes a novel protein with two tandemly repeated glycerophosphoryl diester phosphodiesterase-like domains and a glycosylphosphatidylinositol anchor, and several of its paralogs are found in Arabidopsis. Here, we report the detailed characterization of mutants of SHV3 and one of its paralogs, SVL1. The shv3 and svl1 double mutant exhibited additional defects, including swollen guard cells, aberrant expansion of the hypocotyl epidermis and ectopic lignin deposits, suggesting decreased rigidity of the cell wall. Fourier-transform infrared spectroscopy and measurement of the cell wall components indicated an altered cellulose content and pectin modification with cross-linking in the double mutant. Furthermore, we found that the ruptured root hair phenotype of shv3 was suppressed by increasing the amount of borate, which is supposed to be involved in pectic polysaccharide cross-linking, in the medium. These findings indicate that SHV3 and its paralogs are novel important factors involved in primary cell wall organization.  相似文献   

19.
Plant laccases are thought to function in the oxidation of monolignols which leads to higher order lignin formation. Only a hand‐full of laccases in plants have been functionally evaluated, and as such little is known about the breadth of their impact on cell wall chemistry or structure. Here, we describe a previously uncharacterized laccase from Populus, encoded by locus Potri.008G064000, whose reduced expression resulted in transgenic Populus trees with changes in syringyl/guaiacyl ratios as well as altered sugar release phenotypes. These phenotypes are consistent with plant biomass exhibiting reduced recalcitrance. Interestingly, the transgene effect on recalcitrance is dependent on a mild pretreatment prior to chemical extraction of sugars. Metabolite profiling suggests the transgene modulates phenolics that are associated with the cell wall structure. We propose that this particular laccase has a range of functions related to oxidation of phenolics and conjugation of flavonoids that interact with lignin in the cell wall.  相似文献   

20.
Plant cell walls are composed primarily of cellulose, hemicelluloses, lignins, and pectins. Of these components, lignins exhibit unique chemistry and physiological functions. Although lignins can be used as a product feedstock or as a fuel, lignins are also generally seen as a barrier to efficient enzymatic breakdown of biomass to sugars. Indeed, many pretreatment strategies focus on removing a significant fraction of lignin from biomass to better enable saccharification. In order to better understand the fate of biomass lignins that remain with the solids following dilute acid pretreatment, we undertook a structural investigation to track lignins on and in biomass cell walls. SEM and TEM imaging revealed a range of droplet morphologies that appear on and within cell walls of pretreated biomass; as well as the specific ultrastructural regions that accumulate the droplets. These droplets were shown to contain lignin by FTIR, NMR, antibody labeling, and cytochemical staining. We provide evidence supporting the idea that thermochemical pretreatments reaching temperatures above the range for lignin phase transition cause lignins to coalesce into larger molten bodies that migrate within and out of the cell wall, and can redeposit on the surface of plant cell walls. This decompartmentalization and relocalization of lignins is likely to be at least as important as lignin removal in the quest to improve the digestibility of biomass for sugars and fuels production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号