首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Autophagy is an intracellular degradation system, by which cytoplasmic contents are degraded in lysosomes. Autophagy is dynamically induced by nutrient depletion to provide necessary amino acids within cells, thus helping them adapt to starvation. Although it has been suggested that mTOR is a major negative regulator of autophagy, how it controls autophagy has not yet been determined. Here, we report a novel mammalian autophagy factor, Atg13, which forms a stable ~3-MDa protein complex with ULK1 and FIP200. Atg13 localizes on the autophagic isolation membrane and is essential for autophagosome formation. In contrast to yeast counterparts, formation of the ULK1–Atg13–FIP200 complex is not altered by nutrient conditions. Importantly, mTORC1 is incorporated into the ULK1–Atg13–FIP200 complex through ULK1 in a nutrient-dependent manner and mTOR phosphorylates ULK1 and Atg13. ULK1 is dephosphorylated by rapamycin treatment or starvation. These data suggest that mTORC1 suppresses autophagy through direct regulation of the ~3-MDa ULK1–Atg13–FIP200 complex.  相似文献   

2.
Autophagy-essential proteins are the molecular basis of protective or destructive autophagy machinery. However, little is known about the signaling mechanisms governing these proteins and the opposing consequences of autophagy in mammals. Here we report that a non-canonical MEK/ERK module, which is positioned downstream of AMP-activated protein kinase (AMPK) and upstream of tuberous sclerosis complex (TSC), regulates autophagy by regulating Beclin 1. Depletion of ERK partially inhibited autophagy, whereas specific inhibition on MEK completely inhibited autophagy. MEK could bypass ERK to promote autophagy. Basal MEK/ERK activity conferred basal Beclin 1 by preventing disassembly of mammalian target of rapamycin complex 1 (mTORC1) and mTORC2. Activation of MEK/ERK by AMPK upon autophagy stimuli disassembled mTORC1 via binding to and activating TSC but disassembled mTORC2 independently of TSC. Inhibition of mTORC1 or mTORC2 by transiently or moderately activated MEK/ERK caused moderately enhanced Beclin 1 resulting in cytoprotective autophagy, whereas inhibition of both mTORC1 and mTORC2 by sustained MEK/ERK activation caused strongly pronounced Beclin 1 leading to cytodestructive autophagy. Our findings thus propose that the AMPK-MEK/ERK-TSC-mTOR pathway regulation of Beclin 1 represents different thresholds responsible for a protective or destructive autophagy.Autophagy is an evolutionally conserved machinery involving the degradation and turnover of cytoplasmic material in lysosomes. Autophagy plays a role in cellular homeostasis (1), antiaging (24), development (1, 5), protection of the genome (6), and regulation of cell size (7). Autophagy may act as a means of defense against bacterium and virus invasion and be linked to various diseases including cancer (810), cardiomyopathy (11), and neurodegenerative disorders (12).Autophagy starts with the formation of an autophagosome, enclosed within a double membrane that engulfs part of the cytoplasm. During periods of autophagy stimuli, cells respond to either maintain the metabolism essential for survival or execute cell death. Autophagy-essential proteins (Atg)2 are the molecular basis of autophagy machinery. About 30 Atg proteins in yeast and 10 in mammals have been identified. In yeast, the protein kinase target of rapamycin (TOR) mediates autophagy via Atg1-Atg13 kinase complex. Atg1 interacts with multiple components of the autophagic machinery through direct association, phosphorylation, and/or intracellular localization (13, 14).In mammalian systems, autophagosomes fuse with lysosomes to generate autophagolysosomes, which undergo a maturation process by fusing with endocytic compartments and lysosomes (15). Because it is not known how the Atg1 homolog acts in mammals, a different mechanism may be involved in regulating autophagy. Beclin 1/Atg6, microtubule-associated protein 1 light chain 3 (LC3)/Atg8, Atg5, Atg12, and Atg13 are essential for autophagosome formation in mammalian species (5, 1620). Atg7 and Atg3 are required in the conjugation reaction between Atg12 and Atg5 and in the lipidation of LC3. During the formation of autophagosomes in mammalian cells, LC3 is lipidated via a ubiquitylation-like system (17, 21), generating a soluble form, LC3-I. LC3-I is further modified to a membrane-bound form, LC3-II, which is subsequently localized to autophagosomes and autolysosomes until being degraded by the lysosome.Beclin 1 was initially isolated as a B-cell lymphoma-2 (Bcl2)-interacting tumor suppressor in mammalian cells (22). Overexpression of Bcl2 attenuates the formation of the kinase complex Beclin 1-class III phosphatidylinositol 3-kinase (PI3KC3) essential for the formation of autophagosomes (23). The UV radiation resistance-associated gene tumor suppressor and the activating molecule in Beclin 1-regulated autophagy protein 1 (Ambra 1) were identified as new Beclin 1-binding partners that also regulate autophagy by regulating the Beclin 1-PI3KC3 kinase complex. Association of Beclin 1 with PI3KC3 is negatively regulated by Bcl2 (22) and positively regulated by UV radiation resistance-associated gene tumor suppressor and Ambra 1 (24, 25). Beclin 1 is homoallelically deleted in many human tumors. A decreased Beclin 1 level causes defective autophagy and breast cancer, but restoration of Beclin 1 induces autophagy and inhibits tumorigenicity of human breast cancer cells (18). These reports evidence the dependence on Beclin 1 for a functional autophagy mechanism.Diverse signaling pathways have been reported in the regulation of autophagy in mammalian cells (26, 27). In contrast to yeast, mammalian cells regulate autophagy via both class I and class III PI3K. Class I PI3K plays an inhibitory role, whereas class III PI3K kinase complex, which includes Beclin 1, plays a stimulatory role in autophagy by promoting the nucleation of autophagic vesicles (28, 29). A recent study also indicates that hVps15 is required in regulation of class III PI3K in mammalian cells (30). However, the signaling mechanisms controlling autophagy-essential proteins, in particular Beclin 1, and the opposing consequences of autophagy remain to be resolved.Our present studies identified and positioned a non-canonical MEK/ERK pathway downstream of AMPK and upstream of TSC and mTOR. This MEK/ERK module regulated autophagy via regulating the Beclin 1 level through the AMPK-MEK/ERK-TSC-mTOR pathway. Moderately enhanced Beclin 1 by transient or moderate activation of MEK/ERK and subsequent inhibition on mTORC1 and mTORC2 individually caused protective autophagy. Strongly pronounced Beclin 1 by sustained or strong activation of MEK/ERK followed by dual inhibition on mTORC1 and mTORC2 caused destructive autophagy. Our results thus reveal interesting Beclin 1 thresholds in regulating autophagy.  相似文献   

3.
4.
The multisubunit mTORC1 complex integrates signals from growth factors and nutrients to regulate protein synthesis, cell growth, and autophagy. To examine how endocytic trafficking might be involved in nutrient regulation of mTORC1, we perturbed specific endocytic trafficking pathways and measured mTORC1 activity using S6K1 as a readout. When early/late endosomal conversion was blocked by either overexpression of constitutively active Rab5 (Rab5CA) or knockdown of the Rab7 GEF hVps39, insulin- and amino acid–stimulated mTORC1/S6K1 activation were inhibited, and mTOR localized to hybrid early/late endosomes. Inhibition of other stages of endocytic trafficking had no effect on mTORC1. Overexpression of Rheb, which activates mTOR independently of mTOR localization, rescued mTORC1 signaling in cells expressing Rab5CA, whereas hyperactivation of endogenous Rheb in TSC2−/− MEFs did not. These data suggest that integrity of late endosomes is essential for amino acid– and insulin-stimulated mTORC1 signaling and that blocking the early/late endosomal conversion prevents mTOR from interacting with Rheb in the late endosomal compartment.  相似文献   

5.
6.
Alcohol consumption during pregnancy can cause foetal alcohol syndrome and congenital heart disease. Nonetheless, the underlying mechanism of alcohol‐induced cardiac dysplasia remains unknown. We previously reported that alcohol exposure during pregnancy can cause abnormal expression of cardiomyogenesis‐related genes, and histone H3K9me3 hypomethylation was observed in alcohol‐treated foetal mouse heart. Hence, an imbalance in histone methylation may be involved in alcohol‐induced cardiac dysplasia. In this study, we investigated the involvement of G9α histone methyltransferase in alcohol‐induced cardiac dysplasia in vivo and in vitro using heart tissues of foetal mice and primary cardiomyocytes of neonatal mice. Western blotting revealed that alcohol caused histone H3K9me3 hypomethylation by altering G9α histone methyltransferase expression in cardiomyocytes. Moreover, overexpression of cardiomyogenesis‐related genes (MEF2C, Cx43, ANP and β‐MHC) was observed in alcohol‐exposed foetal mouse heart. Additionally, we demonstrated that G9α histone methyltransferase directly interacted with histone H3K9me3 and altered its methylation. Notably, alcohol did not down‐regulate H3K9me3 methylation after G9α suppression by short hairpin RNA in primary mouse cardiomyocytes, preventing MEF2C, Cx43, ANP and β‐MHC overexpression. These findings suggest that G9α histone methyltransferase‐mediated imbalance in histone H3K9me3 methylation plays a critical role in alcohol‐induced abnormal expression cardiomyogenesis‐related genes during pregnancy. Therefore, G9α histone methyltransferase may be an intervention target for congenital heart disease.  相似文献   

7.
Conditional knockout mice for Atg9a, specifically in brain tissue, were generated to understand the roles of ATG9A in the neural tissue cells. The mice were born normally, but half of them died within one wk, and none lived beyond 4 wk of age. SQSTM1/p62 and NBR1, receptor proteins for selective autophagy, together with ubiquitin, accumulated in Atg9a-deficient neurosoma at postnatal d 15 (P15), indicating an inhibition of autophagy, whereas these proteins were significantly decreased at P28, as evidenced by immunohistochemistry, electron microscopy and western blot. Conversely, degenerative changes such as spongiosis of nerve fiber tracts proceeded in axons and their terminals that were occupied with aberrant membrane structures and amorphous materials at P28, although no clear-cut degenerative change was detected in neuronal cell bodies. Different from autophagy, diffusion tensor magnetic resonance imaging and histological observations revealed Atg9a-deficiency-induced dysgenesis of the corpus callosum and anterior commissure. As for the neurite extensions of primary cultured neurons, the neurite outgrowth after 3 d culturing was significantly impaired in primary neurons from atg9a-KO mouse brains, but not in those from atg7-KO and atg16l1-KO brains. Moreover, this tendency was also confirmed in Atg9a-knockdown neurons under an atg7-KO background, indicating the role of ATG9A in the regulation of neurite outgrowth that is independent of autophagy. These results suggest that Atg9a deficiency causes progressive degeneration in the axons and their terminals, but not in neuronal cell bodies, where the degradations of SQSTM1/p62 and NBR1 were insufficiently suppressed. Moreover, the deletion of Atg9a impaired nerve fiber tract formation.  相似文献   

8.
Atg6/Beclin 1 is an evolutionarily conserved protein family that has been shown to function in vacuolar protein sorting (VPS) in yeast; in autophagy in yeast, Drosophila, Dictyostelium, C.elegans, and mammals; and in tumor suppression in mice. Atg6/Beclin 1 is thought to function as a VPS and autophagy protein as part of a complex with Class III phosphatidylinositol 3'-kinase (PI3K)/Vps34. However, nothing is known about which domains of Atg6/Beclin 1 are required for its functional activity and binding to Vps34. We hypothesized that the most highly conserved region of human Beclin 1 spanning from amino acids 244-337 is essential for Vps34 binding, autophagy, and tumor suppressor function. To investigate this hypothesis, we evaluated the effects of wild-type and mutant beclin 1 gene transfer in autophagy-deficient MCF7 human breast carcinoma cells. We found that, unlike wild-type Beclin 1, a Beclin 1 mutant lacking aa 244-337 (Beclin 1DeltaECD), is unable to enhance starvation-induced autophagy in low Beclin 1-expressing MCF7 human breast carcinoma cells. In contrast to wild-type Beclin 1, mutant Beclin 1DeltaECD is unable to immunoprecipitate Vps34, has no Beclin 1-associated Vps34 kinase activity, and lacks tumor suppressor function in an MCF7 scid mouse xenograft tumor model. The maturation of cathepsin D, which requires intact Vps34-dependent VPS function, is comparable in autophagy-deficient low-Beclin 1 expressing MCF7 cells, autophagy-deficient MCF7 cells transfected with Beclin 1DeltaECD, and autophagy-competent MCF7 cells transfected with wild-type Beclin 1. These findings identify an evolutionarily conserved domain of Beclin 1 that is essential for Vps34 interaction, autophagy function, and tumor suppressor function. Furthermore, they suggest a connection between Beclin 1-associated Class III PI3K/Vps34-dependent autophagy, but not VPS, function and the mechanism of Beclin 1 tumor suppressor action in human breast cancer cells.  相似文献   

9.
Mitochondrial dynamics maintains normal mitochondrial function by degrading damaged mitochondria and generating newborn mitochondria. The accumulation of damaged mitochondria influences the intracellular environment by promoting mitochondrial dysfunction, and thus initiating a vicious cycle. Oxidative stress induces mitochondrial malfunction, which is involved in many cardiovascular diseases. However, the mechanism of mitochondrial accumulation in cardiac myoblasts remains unclear. We observed mitochondrial dysfunction and an increase in mitochondrial mass under the oxidative conditions produced by tert‐butyl hydroperoxide (tBHP) in cardiac myoblast H9c2 cells. However, in contrast to the increase in mitochondrial mass, mitochondrial DNA (mtDNA) decreased, suggesting that enhanced mitochondrial biogenesis may be not the primary cause of the mitochondrial accumulation. Therefore, we investigated changes in a number of proteins involved in autophagy. Beclin1, Atg12–Atg5 conjugate, Atg7 contents decreased but LC3‐II accumulated in tBHP‐treated H9c2 cells. Moreover, the capacity for acid hydrolysis decreased in H9c2 cells. We also demonstrated a decrease in DJ‐1 protein under the oxidative conditions that deregulate mitochondrial dynamics. These results reveal that autophagy became defective under oxidative stress. We therefore suggest that defects in autophagy mediate mitochondrial accumulation under these conditions. J. Cell. Biochem. 114: 212–219, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

10.
11.
Impairment of glucose-stimulated insulin secretion caused by the lipotoxicity of palmitate was found in β-cells. Recent studies have indicated that defects in autophagy contribute to pathogenesis in type 2 diabetes. Here, we report that autophagy-related 7 (Atg7) induced excessive autophagic activation in INS-1(823/13) cells exposed to saturated fatty acids. Atg7-induced cathepsin B (CTSB) overexpression resulted in an unexpected significant increase in proinflammatory chemokine and cytokine production levels of IL-1β, monocyte chemotactic protein-1, IL-6, and TNF-α. Inhibition of receptor-interacting protein did not affect the inflammatory response, ruling out involvement of necrosis. CTSB siRNA suppressed the inflammatory response but did not affect apoptosis significantly, suggesting that CTSB was a molecular linker between autophagy and the proinflammatory response. Blocking caspase-3 suppressed apoptosis but did not affect the inflammatory response, suggesting that CTSB induced inflammatory effects independently of apoptosis. Silencing of Nod-like receptor 3 (NLRP3) completely abolished both IL-1β secretion and the down-regulation effects of Atg7-induced CTSB overexpression on glucose-stimulated insulin secretion impairment, thus identifying the NLRP3 inflammasome as an autophagy-responsive element in the pancreatic INS-1(823/13) cell line. Combined together, our results indicate that CTSB contributed to the Atg7-induced NLRP3-dependent proinflammatory response, resulting in aggravation of lipotoxicity, independently of apoptosis in the pancreatic INS-1(823/13) cell line.  相似文献   

12.
13.
The main reason for poor prognosis in hepatocellular carcinoma (HCC) patients is high metastasis and recurrence. Cancer progression depends on a tumor-supportive microenvironment. Therefore, illustrating the mechanisms of tumor immunity in underlying HCC metastasis is essential. Here, we report a novel role of solute carrier family 7 member 2 (SLC7A2), a member of the solute carrier family, in HCC metastasis. The reduction of SLC7A2 was an independent and significant risk factor for the survival of HCC patients. Upregulation of SLC7A2 decreased HCC invasion and metastasis, whereas downregulation of SLC7A2 promoted HCC invasion and metastasis. We further found that deficient SLC7A2 medicated the upregulation of CXCL1 through PI3K/Akt/NF-kκB pathway to recruit myeloid-derived suppressor cells (MDSCs), exerting tumor immunosuppressive effect. Moreover, we found that G9a-mediated di-methylation of H3K9 (H3K9me2) silenced the expression of SLC7A2 to suppress HCC metastasis and immune escape. In conclusion, G9a-mediated silencing of SLC7A2 exerts unexpected functions in cancer metastasis by fostering a tumor-supportive microenvironment through CXCL1 secretion and MDSCs recruitment. Thus, SLC7A2 may provide new mechanistic insight into the cancer-promoting property of MDSCs.Subject terms: Cancer microenvironment, Cancer immunotherapy, Metastasis  相似文献   

14.
G9a (also known as KMT1C or EHMT2) is initially identified as a H3K9 methyltransferase that specifically mono- and dimethylates 'Lys-9’ of histone H3 (H3K9me1 and H3K9me2, respectively) in euchromatin. It is overexpressed in various human cancers and employed as a promising target in cancer therapy. We discovered a benzoxazole scaffold through virtual high-throughput screening, and designed, synthesized 24 derivatives and investigated for inhibition of G9a. After several rounds of kinase and anti-proliferative activity screening, we discovered a potent G9a antagonist (GA001) with an IC50 value of 1.32 μM that could induce autophagy via AMPK in MCF7 cells. In addition, we found high concentration of GA001 could induce apoptosis via p21-Bim signal cascades in MCF7 cells. Our results highlight a new approach for the development of a novel drug targeting G9a with a potential to induce autophagy and apoptosis for future breast cancer therapy.  相似文献   

15.
CRISPR–Cas9-mediated genome editing has been widely adopted for basic and applied biological research in eukaryotic systems. While many studies consider DNA sequences of CRISPR target sites as the primary determinant for CRISPR mutagenesis efficiency and mutation profiles, increasing evidence reveals the substantial role of chromatin context. Nonetheless, most prior studies are limited by the lack of sufficient epigenetic resources and/or by only transiently expressing CRISPR–Cas9 in a short time window. In this study, we leveraged the wealth of high-resolution epigenomic resources in Arabidopsis (Arabidopsis thaliana) to address the impact of chromatin features on CRISPR–Cas9 mutagenesis using stable transgenic plants. Our results indicated that DNA methylation and chromatin features could lead to substantial variations in mutagenesis efficiency by up to 250-fold. Low mutagenesis efficiencies were mostly associated with repressive heterochromatic features. This repressive effect appeared to persist through cell divisions but could be alleviated through substantial reduction of DNA methylation at CRISPR target sites. Moreover, specific chromatin features, such as H3K4me1, H3.3, and H3.1, appear to be associated with significant variation in CRISPR–Cas9 mutation profiles mediated by the non-homologous end joining repair pathway. Our findings provide strong evidence that specific chromatin features could have substantial and lasting impacts on both CRISPR–Cas9 mutagenesis efficiency and DNA double-strand break repair outcomes.

Epigenetic features substantially influence genome editing efficiency and DNA repair outcomes.  相似文献   

16.
《Autophagy》2013,9(10):1115-1131
Neuronal autophagy is enhanced in many neurological conditions, such as cerebral ischemia and traumatic brain injury, but its role in associated neuronal death is controversial, especially under conditions of apoptosis. We therefore investigated the role of autophagy in the apoptosis of primary cortical neurons treated with the widely used and potent pro-apoptotic agent, staurosporine (STS). Even before apoptosis, STS enhanced autophagic flux, as shown by increases in autophagosomal (LC3-II level, LC3 punctate labeling) and lysosomal (cathepsin D, LAMP1, acid phosphatase, β-hexasominidase) markers. Inhibition of autophagy by 3-methyladenine, or by lentivirally-delivered shRNAs against Atg5 and Atg7, strongly reduced the STS-induced activation of caspase-3 and nuclear translocation of AIF, and gave partial protection against neuronal death. Pan-caspase inhibition with Q-VD-OPH likewise protected partially against neuronal death, but failed to affect autophagy. Combined inhibition of both autophagy and caspases gave strong synergistic neuroprotection. The autophagy contributing to apoptosis was Beclin 1-independent, as shown by the fact that Beclin 1 knockdown failed to reduce it but efficiently reduced rapamycin-induced autophagy. Moreover the Beclin 1 knockdown sensitized neurons to STS-induced apoptosis, indicating a cytoprotective role of Beclin 1 in cortical neurons. Caspase-3 activation and pyknosis induced by two other pro-apoptotic stimuli, MK801 and etoposide, were likewise found to be associated with Beclin 1-independent autophagy and reduced by the knockdown of Atg7 but not Beclin 1. In conclusion, Beclin 1-independent autophagy is an important contributor to both the caspase-dependent and -independent components of neuronal apoptosis and may be considered as an important therapeutic target in neural conditions involving apoptosis.  相似文献   

17.
18.
Our previous studies showed that silent mating-type information regulation 2 homologue-1 (SIRT1, a deacetylase) upregulation could attenuate sepsis-induced acute kidney injury (SAKI). Upregulated SIRT1 can deacetylate certain autophagy-related proteins (Beclin1, Atg5, Atg7 and LC3) in vitro. However, it remains unclear whether the beneficial effect of SIRT1 is related to autophagy induction and the underlying mechanism of this effect is also unknown. In the present study, caecal ligation and puncture (CLP)-induced mice, and an LPS-challenged HK-2 cell line were established to mimic a SAKI animal model and a SAKI cell model, respectively. Our results demonstrated that SIRT1 activation promoted autophagy and attenuated SAKI. SIRT1 deacetylated only Beclin1 but not the other autophagy-related proteins in SAKI. SIRT1-induced autophagy and its protective effect against SAKI were mediated by the deacetylation of Beclin1 at K430 and K437. Moreover, two SIRT1 activators, resveratrol and polydatin, attenuated SAKI in CLP-induced septic mice. Our study was the first to demonstrate the important role of SIRT1-induced Beclin1 deacetylation in autophagy and its protective effect against SAKI. These findings suggest that pharmacologic induction of autophagy via SIRT1-mediated Beclin1 deacetylation may be a promising therapeutic approach for future SAKI treatment.Subject terms: Macroautophagy, Acetylation  相似文献   

19.
Neuronal autophagy is enhanced in many neurological conditions, such as cerebral ischemia and traumatic brain injury, but its role in associated neuronal death is controversial, especially under conditions of apoptosis. We therefore investigated the role of autophagy in the apoptosis of primary cortical neurons treated with the widely used and potent pro-apoptotic agent, staurosporine (STS). Even before apoptosis, STS enhanced autophagic flux, as shown by increases in autophagosomal (LC3-II level, LC3 punctate labeling) and lysosomal (cathepsin D, LAMP1, acid phosphatase, β-hexasominidase) markers. Inhibition of autophagy by 3-methyladenine, or by lentivirally-delivered shRNAs against Atg5 and Atg7, strongly reduced the STS-induced activation of caspase-3 and nuclear translocation of AIF, and gave partial protection against neuronal death. Pan-caspase inhibition with Q-VD-OPH likewise protected partially against neuronal death, but failed to affect autophagy. Combined inhibition of both autophagy and caspases gave strong synergistic neuroprotection. The autophagy contributing to apoptosis was Beclin 1-independent, as shown by the fact that Beclin 1 knockdown failed to reduce it but efficiently reduced rapamycin-induced autophagy. Moreover the Beclin 1 knockdown sensitized neurons to STS-induced apoptosis, indicating a cytoprotective role of Beclin 1 in cortical neurons. Caspase-3 activation and pyknosis induced by two other pro-apoptotic stimuli, MK801 and etoposide, were likewise found to be associated with Beclin 1-independent autophagy and reduced by the knockdown of Atg7 but not Beclin 1. In conclusion, Beclin 1-independent autophagy is an important contributor to both the caspase-dependent and -independent components of neuronal apoptosis and may be considered as an important therapeutic target in neural conditions involving apoptosis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号