首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cross-feeding interactions, in which bacterial cells exchange costly metabolites to the benefit of both interacting partners, are very common in the microbial world. However, it generally remains unclear what maintains this type of interaction in the presence of non-cooperating types. We investigate this problem using synthetic cross-feeding interactions: by simply deleting two metabolic genes from the genome of Escherichia coli, we generated genotypes that require amino acids to grow and release other amino acids into the environment. Surprisingly, in a vast majority of cases, cocultures of two cross-feeding strains showed an increased Darwinian fitness (that is, rate of growth) relative to prototrophic wild type cells—even in direct competition. This unexpected growth advantage was due to a division of metabolic labour: the fitness cost of overproducing amino acids was less than the benefit of not having to produce others when they were provided by their partner. Moreover, frequency-dependent selection maintained cross-feeding consortia and limited exploitation by non-cooperating competitors. Together, our synthetic study approach reveals ecological principles that can help explain the widespread occurrence of obligate metabolic cross-feeding interactions in nature.  相似文献   

2.
This work was performed to establish a model describing bacterial surface structures involved in biofilm development, in curli-overproducing Escherichia coli K-12 strains, at 30°C, and in minimal growth medium. Using a genetic approach, in association with observations of sessile communities by light and electron microscopic techniques, the role of protein surface structures, such as flagella and curli, and saccharidic surface components, such as the E. coli exopolysaccharide, colanic acid, was determined. We show that, in the context of adherent ompR234 strains, (i) flagellar motility is not required for initial adhesion and biofilm development; (ii) both primary adhesion to inert surfaces and development of multilayered cell clusters require curli synthesis; (iii) curli display direct interactions with the substratum and form interbacterial bundles, allowing a cohesive and stable association of cells; and (iv) colanic acid does not appear critical for bacterial adhesion and further biofilm development but contributes to the biofilm architecture and allows for the formation of voluminous biofilms.  相似文献   

3.
The juxtaposition of highly productive coral reef ecosystems in oligotrophic waters has spurred substantial interest and progress in our understanding of macronutrient uptake, exchange, and recycling among coral holobiont partners (host coral, dinoflagellate endosymbiont, endolithic algae, fungi, viruses, bacterial communities). By contrast, the contribution of trace metals to the physiological performance of the coral holobiont and, in turn, the functional ecology of reef-building corals remains unclear. The coral holobiont's trace metal economy is a network of supply, demand, and exchanges upheld by cross-kingdom symbiotic partnerships. Each partner has unique trace metal requirements that are central to their biochemical functions and the metabolic stability of the holobiont. Organismal homeostasis and the exchanges among partners determine the ability of the coral holobiont to adjust to fluctuating trace metal supplies in heterogeneous reef environments. This review details the requirements for trace metals in core biological processes and describes how metal exchanges among holobiont partners are key to sustaining complex nutritional symbioses in oligotrophic environments. Specifically, we discuss how trace metals contribute to partner compatibility, ability to cope with stress, and thereby to organismal fitness and distribution. Beyond holobiont trace metal cycling, we outline how the dynamic nature of the availability of environmental trace metal supplies can be influenced by a variability of abiotic factors (e.g. temperature, light, pH, etc.). Climate change will have profound consequences on the availability of trace metals and further intensify the myriad stressors that influence coral survival. Lastly, we suggest future research directions necessary for understanding the impacts of trace metals on the coral holobiont symbioses spanning subcellular to organismal levels, which will inform nutrient cycling in coral ecosystems more broadly. Collectively, this cross-scale elucidation of the role of trace metals for the coral holobiont will allow us to improve forecasts of future coral reef function.  相似文献   

4.
The metabolic capabilities of the species and the local environment shape the microbial interactions in a community either through the exchange of metabolic products or the competition for the resources. Cells are often arranged in close proximity to each other, creating a crowded environment that unevenly reduce the diffusion of nutrients. Herein, we investigated how the crowding conditions and metabolic variability among cells shape the dynamics of microbial communities. For this, we developed CROMICS, a spatio-temporal framework that combines techniques such as individual-based modeling, scaled particle theory, and thermodynamic flux analysis to explicitly incorporate the cell metabolism and the impact of the presence of macromolecular components on the nutrients diffusion. This framework was used to study two archetypical microbial communities (i) Escherichia coli and Salmonella enterica that cooperate with each other by exchanging metabolites, and (ii) two E. coli with different production level of extracellular polymeric substances (EPS) that compete for the same nutrients. In the mutualistic community, our results demonstrate that crowding enhanced the fitness of cooperative mutants by reducing the leakage of metabolites from the region where they are produced, avoiding the resource competition with non-cooperative cells. Moreover, we also show that E. coli EPS-secreting mutants won the competition against the non-secreting cells by creating less dense structures (i.e. increasing the spacing among the cells) that allow mutants to expand and reach regions closer to the nutrient supply point. A modest enhancement of the relative fitness of EPS-secreting cells over the non-secreting ones were found when the crowding effect was taken into account in the simulations. The emergence of cell-cell interactions and the intracellular conflicts arising from the trade-off between growth and the secretion of metabolites or EPS could provide a local competitive advantage to one species, either by supplying more cross-feeding metabolites or by creating a less dense neighborhood.  相似文献   

5.
Many plants and animals are defended from predation or herbivory by inhibitory secondary metabolites, which in the marine environment are very common among sessile organisms. Among bacteria, where there is the greatest metabolic potential, little is known about chemical defenses against bacterivorous consumers. An emerging hypothesis is that sessile bacterial communities organized as biofilms serve as bacterial refuge from predation. By testing growth and survival of two common bacterivorous nanoflagellates, we find evidence that chemically mediated resistance against protozoan predators is common among biofilm populations in a diverse set of marine bacteria. Using bioassay-guided chemical and genetic analysis, we identified one of the most effective antiprotozoal compounds as violacein, an alkaloid that we demonstrate is produced predominately within biofilm cells. Nanomolar concentrations of violacein inhibit protozoan feeding by inducing a conserved eukaryotic cell death program. Such biofilm-specific chemical defenses could contribute to the successful persistence of biofilm bacteria in various environments and provide the ecological and evolutionary context for a number of eukaryote-targeting bacterial metabolites.  相似文献   

6.
7.
Assembly of microbial communities is shaped by various physical and chemical factors deriving from their environment, including other microbes inhabiting the certain niche. In addition to direct cell–cell contacts, primary and secondary metabolites impact the growth of microbial community members. Metabolites might act as growth-promoting (e.g., cross-feeding), growth-inhibiting (e.g., antimicrobials) or signalling molecules. In multi-species microbial assemblies, secreted metabolites might influence specific members of the community, altering species abundances and therefore the functioning of these microcosms. In the current issue, Cosetta and colleagues describe a unique volatile metabolite-mediated cross-kingdom interaction that shapes the cheese rind community assembly. The study paves the way of our understanding how fungus-produced volatile compounds promote the growth of a certain bacterial genus, a principal connection between community members of the cheese rind.  相似文献   

8.
莫冉  宋卫信  李群  张锋 《生态学报》2021,41(16):6506-6512
互养关系(cross-feeding)是微生物物种之间普遍存在的一种相互关系,其中物种利用环境中其他成员的代谢产物以促进自身生长的情形称为代谢互养关系,这种关系对物种间的竞争结果往往有很大影响,甚至会改变种群结构。为了研究代谢互养关系在维持微生物物种多样性中的作用,构建包含不同代谢互养关系的资源竞争模型,这些模型既体现了微生物物种竞争资源时种群密度及资源量的动态,也展示了物种利用其他竞争者的代谢资源对自身生存状况的影响。数值模拟结果显示:(1)考虑微生物中不同的代谢互养关系结构:两物种间单向互养、双向互养以及多物种间的互养,不同的互养关系都可以促进竞争物种稳定共存,竞争中处于劣势的物种通过利用其他竞争成员的代谢产物,打破外界资源量对其生长的限制,改变原本消亡的命运;而处于优势的物种则通过利用其他竞争成员的代谢产物,增大种群密度。(2)多物种竞争同一种有限资源时,不是所有物种都能共存,在四物种模拟中,原本处于最劣势的物种灭绝,其余三者共存。物种产生代谢资源对其本身是"不利"的,如果在模拟中物种利用代谢资源的能力相同,那么物种竞争外界资源的劣势就很可能无法被抵消。通过改变资源利用率发现只有互养关系中代谢资源的利用可以弥补劣势种在竞争外界资源时的不足,多物种才可以全部共存。(3)验证数值模拟结果的普遍性,分析参数变化对共存的影响,结果表明代谢互养关系促进的共存对代谢资源相关参数不敏感,参数的改变只影响平衡态时物种的种群密度。所以,代谢互养关系可以促进相互竞争的微生物物种共存,即微生物之间的互养关系很可能是维持物种多样性的一种机制。  相似文献   

9.
Investigations of interbacterial adhesion in dental plaque development are currently limited by the lack of a convenient assay to screen the multitude of species present in oral biofilms. To overcome this limitation, we developed a solid-phase fluorescence-based screening method to detect and identify coadhesive partner organisms in mixed-species biofilms. The applicability of this method was demonstrated using coaggregating strains of type 2 fimbrial adhesin-bearing actinomyces and receptor polysaccharide (RPS)-bearing streptococci. Specific adhesin/receptor-mediated coadhesion was detected by overlaying bacterial strains immobilized to a nitrocellulose membrane with a suspended, fluorescein-labeled bacterial partner strain. Coadhesion was comparable regardless of which cell type was labeled and which was immobilized. Formaldehyde treatment of bacteria, either in suspension or immobilized on nitrocellulose, abolished actinomyces type 2 fimbrial adhesin but not streptococcal RPS function, thereby providing a simple method for assigning complementary adhesins and glycan receptors to members of a coadhering pair. The method''s broader applicability was shown by overlaying colony lifts of dental plaque biofilm cultures with fluorescein-labeled strains of type 2 fimbriated Actinomyces naeslundii or RPS-bearing Streptococcus oralis. Prominent coadhesion partners included not only streptococci and actinomyces, as expected, but also other bacteria not identified in previous coaggregation studies, such as adhesin- or receptor-bearing strains of Neisseria pharyngitis, Rothia dentocariosa, and Kingella oralis. The ability to comprehensively screen complex microbial communities for coadhesion partners of specific microorganisms opens a new approach in studies of dental plaque and other mixed-species biofilms.  相似文献   

10.
11.
A growing body of evidence suggests that microplastics may be colonized with a unique microbiome, termed ‘plastisphere’, in aquatic environments. However, the deep mechanisms (deterministic and/or stochastic processes) underlying the community assembly on microplastics are still poorly understood. Here, we took the estuary of Hangzhou Bay (Zhejiang, China) as an example and examined the assembly mechanisms of bacterial communities in water and microplastic samples. Results from high-throughput sequencing showed that Proteobacteria, Firmicutes, and Actinobacteria were the dominant phyla across all samples. Additionally, microorganisms from plastisphere and planktonic communities exhibited contrasting taxonomic compositions, with greater within-group variation for microplastic samples. The null model analysis indicated the plastisphere bacterial communities were dominantly driven by the stochastic process of drift (58.34%) and dispersal limitation (23.41%). The normalized stochasticity ratio (NST) also showed that the community assembly on microplastics was more stochastic (NST > 50%). Based on the Sloan neutral community model, the migration rate for plastisphere communities (0.015) was significantly lower than that for planktonic communities (0.936), potentially suggesting that it is the stochastic balance between loss and gain of bacteria (e.g., stochastic births and deaths) critically shaping the community assembly on microplastics and generating the specific niches. This study greatly enhanced our understanding of the ecological patterns of microplastic-associated microbial communities in aquatic environments.  相似文献   

12.
Terrestrial and aquatic environments are linked through hydrological networks that transport abiotic components from upslope environments into aquatic ecosystems. However, our understanding of how bacteria are transported through these same networks is limited. Here, we applied 16S rRNA gene sequencing to over 500 soil, stream water and stream sediment samples collected within a native forest catchment to determine the extent to which bacterial communities in these habitats are connected. We provide evidence that while the bacterial communities in each habitat were significantly distinct from one another (PERMANOVA pairwise P < 0.001), the bacterial communities in soil and stream samples were weakly connected to each other when stream sediment sample locations were downhill of surface runoff flow paths. This pattern decreased with increasing distance between the soil and sediment samples. The connectivity between soil and stream water samples was less apparent and extremely transient; the greatest similarity between bacterial communities in soil and stream water overall was when comparing stream samples collected 1 week post soil sampling. This study shows how bacterial communities in soil, stream water and stream sediments are connected at small spatial scales and provides rare insights into the temporal dynamics of terrestrial and aquatic bacterial community connectivity.  相似文献   

13.
Photosynthetic microalgae are responsible for 50% of the global atmospheric CO2 fixation into organic matter and hold potential as a renewable bioenergy source. Their metabolic interactions with the surrounding microbial community (the algal microbiome) play critical roles in carbon cycling, but due to methodological limitations, it has been challenging to examine how community development is influenced by spatial proximity to their algal host. Here we introduce a copolymer-based porous microplate to co-culture algae and bacteria, where metabolites are constantly exchanged between the microorganisms while maintaining physical separation. In the microplate, we found that the diatom Phaeodactylum tricornutum accumulated to cell abundances ~20 fold higher than under normal batch conditions due to constant replenishment of nutrients through the porous structure. We also demonstrate that algal-associated bacteria, both single isolates and complex communities, responded to inorganic nutrients away from their host as well as organic nutrients originating from the algae in a spatially predictable manner. These experimental findings coupled with a mathematical model suggest that host proximity and algal culture growth phase impact bacterial community development in a taxon-specific manner through organic and inorganic nutrient availability. Our novel system presents a useful tool to investigate universal metabolic interactions between microbes in aquatic ecosystems.Subject terms: Microbial ecology, Microbial ecology, Microbial ecology  相似文献   

14.
Glaciers represent important biomes of Earth and are recognized as key species pools for downstream aquatic environments. Worldwide, rapidly receding glaciers are driving shifts in hydrology, species distributions and threatening microbial diversity in glacier-fed aquatic ecosystems. However, the impact of glacier surface snow-originating taxa on the microbial diversity in downstream aquatic environments has been little explored. To elucidate the contribution of glacier surface snow-originating taxa to bacterial diversity in downstream aquatic environments, we collected samples from glacier surface snows, downstream streams and lakes along three glacier-fed hydrologic continuums on the Tibetan Plateau. Our results showed that glacier stream acts as recipients and vectors of bacteria originating from the glacier environments. The contributions of glacier surface snow-originating taxa to downstream bacterial communities decrease from the streams to lakes, which was consistently observed in three geographically separated glacier-fed ecosystems. Our results also revealed that some rare snow-originating bacteria can thrive along the hydrologic continuums and become dominant in downstream habitats. Finally, our results indicated that the dispersal patterns of bacterial communities are largely determined by mass effects and increasingly subjected to local sorting of species along the glacier-fed hydrologic continuums. Collectively, this study provides insights into the fate of bacterial assemblages in glacier surface snow following snow melt and how bacterial communities in aquatic environments are affected by the influx of glacier snow-originating bacteria.  相似文献   

15.
Decades after incorporating plastics into consumer markets, research shows that these polymers have spread worldwide. Fragmentation of large debris leads to smaller particles, collectively called microplastics (MPs), which have become ubiquitous in aquatic environments. A fundamental aspect of understanding the implications of MP contamination on ecosystems is resolving the complex interactions of these artificial substrates with microbial cells. Using polystyrene microparticles as model polymers, we conducted an exploratory study where these interactions are quantitatively analyzed using an in vitro system consisting of single-bacterial species capturing and aggregating MPs in water. Here we show that the production of Psl exopolysaccharide by Pseudomonas aeruginosa (PA) does not alter MPs colloidal stability but plays a key role in microspheres adhesion to the cell surface. Further aggregation of MPs by PA cells depends on bacterial mobility and the presence of sufficient flow to prevent rapid sedimentation of early MP-PA assembles. Surprisingly, cells in MP-PA aggregates are not in a sessile state despite the production of Psl, enhancing the motility of the aggregates by an order of magnitude relative to passive diffusion. The generated data could inform the creation of predictive models that accurately describe the dynamics and influence of bacterial growth on plastics debris.  相似文献   

16.
Cocktail combinations of bacteria-infecting viruses (bacteriophages) can suppress pathogenic bacterial growth. However, predicting how phage cocktails influence microbial communities with complex ecological interactions, specifically cross-feeding interactions in which bacteria exchange nutrients, remains challenging. Here, we used experiments and mathematical simulations to determine how to best suppress a model pathogen, E. coli, when obligately cross-feeding with S. enterica. We tested whether the duration of pathogen suppression caused by a two-lytic phage cocktail was maximized when both phages targeted E. coli, or when one phage targeted E. coli and the other its cross-feeding partner, S. enterica. Experimentally, we observed that cocktails targeting both cross-feeders suppressed E. coli growth longer than cocktails targeting only E. coli. Two non-mutually exclusive mechanisms could explain these results: (i) we found that treatment with two E. coli phage led to the evolution of a mucoid phenotype that provided cross-resistance against both phages, and (ii) S. enterica set the growth rate of the coculture, and therefore, targeting S. enterica had a stronger effect on pathogen suppression. Simulations suggested that cross-resistance and the relative growth rates of cross-feeders modulated the duration of E. coli suppression. More broadly, we describe a novel bacteriophage cocktail strategy for pathogens that cross-feed.  相似文献   

17.
Cell-cell recognition is a fundamental process that allows cells to coordinate multicellular behaviors. Some microbes, such as myxobacteria, build multicellular fruiting bodies from free-living cells. However, how bacterial cells recognize each other by contact is poorly understood. Here we show that myxobacteria engage in recognition through interactions between TraA cell surface receptors, which leads to the fusion and exchange of outer membrane (OM) components. OM exchange is shown to be selective among 17 environmental isolates, as exchange partners parsed into five major recognition groups. TraA is the determinant of molecular specificity because: (i) exchange partners correlated with sequence conservation within its polymorphic PA14-like domain and (ii) traA allele replacements predictably changed partner specificity. Swapping traA alleles also reprogrammed social interactions among strains, including the regulation of motility and conferred immunity from inter-strain killing. We suggest that TraA helps guide the transition of single cells into a coherent bacterial community, by a proposed mechanism that is analogous to mitochondrial fusion and fission cycling that mixes contents to establish a homogenous population. In evolutionary terms, traA functions as a rare greenbeard gene that recognizes others that bear the same allele to confer beneficial treatment.  相似文献   

18.
Bacteriophages are very abundant in the biosphere, and viral infection is believed to affect the activity and genetic diversity of bacterial communities in aquatic environments. Lysogenic conversion, for example, can improve host fitness and lead to phage-mediated horizontal gene transfer. However, little is known about lysogeny and transduction in the soil environment. In this study we employed atrazine-impregnated Bio-Sep beads (a cell immobilization matrix) to sample active microbiota from soils with prior pesticide exposure history. Once recovered from soil, the bead communities were induced with mitomycin C (MC), and viral and bacterial abundances were determined to evaluate the incidence of inducible prophage in soil bacteria. The inducible fraction calculated within bead communities was high (ca. 85%) relative to other studies in aquatic and sedimentary environments. Moreover, the bacterial genes encoding 16S rRNA and trzN, a chlorohydrolase gene responsible for dehalogenation of atrazine, were detected by PCR in the viral DNA fraction purified from MC-induced bead communities. A diverse collection of actinobacterial 16S rRNA gene sequences occurred within the viral DNA fraction of induced, water-equilibrated beads. Similar results were observed in induced atrazine-equilibrated beads, where 77% of the cloned sequences were derived from actinobacterial lineages. Heterogeneous 16S rRNA gene sequences consisting of fragments from two different taxa were detected in the clone libraries. The results suggest that lysogeny is a prevalent reproductive strategy among soil bacteriophages and that the potential for horizontal gene transfer via transduction is significant in soil microbial communities.  相似文献   

19.
Cross-feeding is the exchange of nutrients among species of microbes. It has two potential evolutionary origins, one as an exchange of metabolic wastes or byproducts among species, the other as a form of cooperation known as reciprocal altruism. This paper explores the conditions favoring the origin of cooperative cross-feeding between two species. There is an extensive literature on the evolution of cooperation, and some of the requirements for the evolution of cooperative cross-feeding follow from this prior work–specifically the requirement that interactions be limited to small groups of individuals, such as colonies in a spatially structured environment. Evolution of cooperative cross-feeding by a species also requires that cross-feeding from the partner species already exists, so that the cooperating mutant will automatically be reciprocated for its actions. Beyond these considerations, some unintuitive dynamical constraints apply. In particular, the benefit of cooperative cross-feeding applies only in the range of intermediate cell densities. At low density, resource concentrations are too low to offset the cost of cooperation. At high density, resources shared by both species become limiting, and the two species become competitors. These considerations suggest that the evolution of cooperative cross-feeding in nature may be more challenging than for other types of cooperation. However, the principles identified here may enable the experimental evolution of cross-feeding, as born out by a recent study.  相似文献   

20.
In animals with separate sexes, male fitness usually increases with the number of matings, whereas female fitness more directly depends on the amount of accessible reproductive resources. In simultaneous hermaphrodites, such differences in fitness pay‐offs between male and female sexual function can result in a preference to copulate in one particular sex role, generating conflicts over mating roles if mates share the same preference. Sperm trading, i.e. the conditional exchange of sperm between mates as found in some hermaphrodites, is often considered a possible solution for the conflict over mating roles. Conditional sperm exchange has recently been demonstrated in Chelidonura hirundinina (Opisthobranchia, Aglajidae), but its functional causes remain obscure. Based on a detailed characterization of mating in this species, we here assess two potential benefits of sperm trading, the balancing of sperm exchange between partners, and the acquisition of information about the partner’s fecundity. We found that the number of sperm droplets exchanged between partners varied more between than within pairs, supporting the first hypothesis. Moreover, larger individuals donated more sperm droplets and are known to produce more eggs. As body size is tightly linked to fecundity, a sperm recipient may use the number of received sperm droplets as an honest signal of the female quality of the sperm donor. Our findings thus help to elucidate how sperm trading may contribute to optimizing the investment of costly sperm in response to partner quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号