首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Recently the protein myozap, a 54-kD polypeptide which is not a member of any of the known cytoskeletal and junctional protein multigene families, has been identified as a constituent of the plaques of the composite junctions in the intercalated disks connecting the cardiomyocytes of mammalian hearts. Using a set of novel, highly sensitive and specific antibodies we now report that myozap is also a major constituent of the cytoplasmic plaques of the adherens junctions (AJs) connecting the endothelial cells of the mammalian blood and lymph vascular systems, including the desmoplakin-containing complexus adhaerentes of the virgultar cells of lymph node sinus. In light and electron microscopic immunolocalization experiments we show that myozap colocalizes with several proteins of desmosomal plaques as well as with AJ-specific transmembrane molecules, including VE-cadherin. In biochemical analyses, rigorous immunoprecipitation experiments have revealed N-cadherin, desmoplakin, desmoglein-2, plakophilin-2, plakoglobin and plectin as very stably bound complex partners. We conclude that myozap is a general component of cell-cell junctions not only in the myocardium but also in diverse endothelia of the blood and lymph vascular systems of adult mammals, suggesting that this protein not only serves a specific role in the heart but also a broader set of functions in the vessel systems. We also propose to use myozap as an endothelial cell type marker in diagnoses.  相似文献   

2.
The sry‐related high‐mobility box (SOX)‐2 protein has recently been proven to play a significant role in progression, metastasis, and clinical prognosis spanning several cancer types. Research on the role of SOX2 in melanoma is limited and currently little is known about the mechanistic function of this gene in this context. Here, we observed high expression of SOX2 in both human melanoma cell lines and primary melanomas in contrast to melanocytic nevi. This overexpression in melanoma can, in part, be explained by extra gene copy numbers of SOX2 in primary samples. Interestingly, we were able to induce SOX2 expression, mediated by SOX4, via TGF‐β1 stimulation in a time‐dependent manner. Moreover, the knockdown of SOX2 impaired TGF‐β‐induced invasiveness. This phenotype switch can be explained by SOX2‐mediated cross talk between TGF‐β and non‐canonical Wnt signaling. Thus, we propose that SOX2 is involved in the critical TGF‐β signaling pathway, which has been shown to correlate with melanoma aggressiveness and metastasis. In conclusion, we have identified a novel downstream factor of TGF‐β signaling in melanoma, which may have further implications in the clinic.  相似文献   

3.
4.
5.
Vitamin B6 is necessary to maintain normal metabolism and immune response, especially the anti‐inflammatory immune response. However, the exact mechanism by which vitamin B6 plays the anti‐inflammatory role is still unclear. Here, we report a novel mechanism of preventing excessive inflammation by vitamin B6 via reduction in the accumulation of sphingosine‐1‐phosphate (S1P) in a S1P lyase (SPL)‐dependent manner in macrophages. Vitamin B6 supplementation decreased the expression of pro‐inflammatory cytokines by suppressing nuclear factor‐κB and mitogen‐activated protein kinases signalling pathways. Furthermore, vitamin B6–reduced accumulation of S1P by promoting SPL activity. The anti‐inflammatory effects of vitamin B6 were inhibited by S1P supplementation or SPL deficiency. Importantly, vitamin B6 supplementation protected mice from lethal endotoxic shock and attenuated experimental autoimmune encephalomyelitis progression. Collectively, these findings revealed a novel anti‐inflammatory mechanism of vitamin B6 and provided guidance on its clinical use.  相似文献   

6.
7.
8.
The purpose of this study was to figure out the effect of ciRS‐7/miR‐7/NF‐κB axis on the development of non‐small cell lung cancer (NSCLC). In response, the expressions of ciRS‐7, miR‐7 and NF‐κB subunit (ie RELA) within NSCLC tissues and cell lines were determined with real‐time polymerase chain reaction (RT‐PCR) and Western blot. Moreover, the NSCLC cells were transfected with pcDNA3‐ciRS‐7‐ir, pcDNA3‐ciRS‐7, miR‐NC and miR‐7 mimic. Furthermore, the targeted relationships between ciRS‐7 and miR‐7, as well as between miR‐7 and RELA, were confirmed by luciferase reporter assay. The proliferation, migration and apoptosis of NSCLC cells were, successively, measured using CCK‐8 assay, wound‐healing assay and flow cytometry test. Consequently, ciRS‐7, miR‐7, histopathological grade, lymph node metastasis and histopathological stage could independently predict the prognosis of patients with NSCLC (all P < .05). Moreover, remarkably up‐regulated ciRS‐7 and RELA expressions, as along with down‐regulated miR‐7 expressions, were found within NSCLC tissues and cells in comparison with normal ones (P < .05). Besides, overexpressed ciRS‐7 and underexpressed miR‐7 were correlated with increased proliferation, migration and invasion, yet reduced apoptosis rate of NSCLC cells (P < .05). More than that, ciRS‐7 specifically targeted miR‐7 to reduce its expressions (P < .05). Ultimately, the NSCLC cells within miR‐7 + RELA group were observed with superior proliferative, migratory and invasive capabilities than those within miR‐7 group (P < .05), and RELA expression was also significantly modified by both ciRS‐7 and miR‐7 (P < .05). In conclusion, the ciRS‐7/miR‐7/NF‐kB axis could exert pronounced impacts on the proliferation, migration, invasion and apoptosis of NSCLC cells.  相似文献   

9.
SIRT1, a nicotinamide adenine dinucleotide (NAD+)‐dependent histone/protein deacetylase, has been extensively studied recently for its critical role in the regulation of physiology, calorie restriction and aging. Studies on laboratory mice showed that expression of SIRT1 can be induced by starvation in a p53‐dependent manner and requires the p53‐binding sites present in the Sirt1 promoter. However, it remains to be determined whether these findings based on rodents apply to human beings. In this paper, we characterized a putative p53‐binding element in the human SIRT1 promoter that might be required for the up‐regulation of SIRT1 in response to nutritional stress. The p53‐binding site in the promoter of human SIRT1 is more deviant from the consensus sequence than the corresponding sequence in the mouse Sirt1. There is a C to A change at the second half site in human SIRT1, thus disrupting the core‐binding element CWWG in the canonical RRRCWWGYYY. To test whether such sequence change would affect its binding with p53 and the SIRT1 expression under stress, we studied various human cell lines with different p53 status and cells with ectopic expression of functionally distinct p53. We found that serum withdrawal also up‐regulates human SIRT1 gene expression in a p53‐dependent manner and that the p53‐binding element in SIRT1 is required for the up‐regulation. Thus, the mechanism responsible for the regulation of SIRT1 expression by p53 is conserved between mice and human beings.  相似文献   

10.
Acute kidney injury (AKI) is a substantial worldwide public health concern with no specific and effective therapies in clinic. NAD+ is a pivotal determinant of cellular energy metabolism involved in the progression of AKI; however, its mechanism in kidney injury remains poorly understood. Sirtuin 1 (SIRT1) is an NAD+‐dependent deacetylase associated with renal protection and acute stress resistance. In this study, we have investigated the role of NAD+ in AKI and the potential mechanism(s) involved in its renoprotective effect. NAD+ was notably decreased and negatively correlated with kidney dysfunction in AKI, restoring NAD+ with NMN significantly ameliorates LPS‐induced oxidative stress and apoptosis and attenuates renal damage. We also found that the protection of NAD+ is associated with SIRT1 expressions and performs in a SIRT1‐dependent manner. Inhibition of SIRT1 blunted the protective effect of NAD+ and up‐regulated the activity of glycogen synthase kinase‐3β (GSK‐3β) that was concomitant with mitigated Nrf2 nuclear accumulation, thereby exacerbates AKI. These findings suggest that NAD+/SIRT1/GSK‐3β/Nrf2 axis is an important mechanism that can protect against AKI which might be a potential therapeutic target for the treatment of AKI.  相似文献   

11.
Lymphatic vessels guide interstitial fluid, modulate immune responses by regulating leukocyte and antigen trafficking to lymph nodes, and in a cancer setting enable tumor cells to track to regional lymph nodes. The aim of the study was to determine whether primary murine lymphatic endothelial cells (mLECs) show conserved vascular endothelial growth factor (VEGF) signaling pathways with human LECs (hLECs). LECs were successfully isolated from murine dermis and prostate. Similar to hLECs, vascular endothelial growth factor (VEGF) family ligands activated MAPK and pAkt intracellular signaling pathways in mLECs. We describe a robust protocol for isolation of mLECs which, by harnessing the power of transgenic and knockout mouse models, will be a useful tool to study how LEC phenotype contributes to alterations in lymphatic vessel formation and function.  相似文献   

12.
13.
Progression of Bacillus subtilis through a series of morphological changes is driven by a cascade of sigma (σ) factors and results in formation of a spore. Recent work has provided new insights into the location and function of proteins that control σ factor activity, and has suggested that multiple mechanisms allow one σ factor to replace another in the cascade.  相似文献   

14.
15.
16.
17.
18.
The PR domain containing 1a, with ZNF domain factor, gene (prdm1a) plays an integral role in the development of a number of different cell types during vertebrate embryogenesis, including neural crest cells, Rohon‐Beard (RB) sensory neurons and the cranial neural crest‐derived craniofacial skeletal elements. To better understand how Prdm1a regulates the development of various cell types in zebrafish, we performed a microarray analysis comparing wild type and prdm1a mutant embryos and identified a number of genes with altered expression in the absence of prdm1a. Rescue analysis determined that two of these, sox10 and islet1, lie downstream of Prdm1a in the development of neural crest cells and RB neurons, respectively. In addition, we identified a number of other novel downstream targets of Prdm1a that may be important for the development of diverse tissues during zebrafish embryogenesis. genesis 48:656–666, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号