首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The elite Indian rice hybrid, DRRH3 is highly susceptible to two major diseases, bacterial blight (BB) and blast, which limit its productivity significantly. In the present study, we have introgressed two major genes, viz., Xa21 and Pi54 conferring resistance against BB and blast, respectively into RPHR-1005, the male parent of DRRH3 through marker-assisted backcross breeding (MABB) and analyzed the backcross derived plants for their resistance against BB and blast. RPBio Patho-2 was used as a donor for both the resistance genes. Gene-specific markers were used for the foreground selection of Xa21 and Pi54 at each stage of backcrossing and markers specific for the major fertility restorer genes, Rf3 and Rf4 were used only at BC1F1 generation for foreground selection. Background selection was done using 62 polymorphic SSR markers and marker-assisted backcrossing was continued till BC3 generation. At BC3F4, through intensive phenotype-based selections 15 promising lines (ABLs) possessing high level of resistance against BB and blast, high yield, fine-grain type, complete fertility restoration along with better panicle exsertion and taller plant type as compared to RPHR-1005 were identified and test crossed with APMS 6 A, the female parent of DRRH3. The newly derived hybrids (i.e. improved versions of DRRH3) were observed to possess high level of resistance against BB and blast along with medium-slender grain type and yield level better than or equivalent to that of DRRH3. Our study exemplifies the utility of MABB for targeted improvement of multiple traits in hybrid rice.  相似文献   

2.
Improved Samba Mahsuri (ISM) is a popular, high-yielding, bacterial blight resistant rice variety possessing medium-slender grain type. As ISM is highly susceptible to blast disease of rice, through the present study we have transferred two major blast resistance genes, Pi2 and Pi54 into the elite variety by marker-assisted backcross breeding. The two blast resistance genes were transferred to ISM through sets of backcrosses. In every backcross generation, PCR-based markers, specific for the blast resistance genes (Pi2 and Pi54) and bacterial blight resistance genes (Xa21, xa13 and xa5) were utilized for foreground selection, while a set of 144 parental polymorphic SSR markers were used for background selection and backcrossing was carried out until BC2 generation. A solitary BC2F1 plant possessing Pi2 or Pi54 along with Xa21, xa13 and xa5 and >?90% recovery of ISM genome was selected from the two sets of backcrosses were crossed and the intercross F1s (ICF1s) thus obtained were selfed to generate ICF2s. Homozygous ICF2 plants carrying all the five resistance genes were identified through markers and advanced through selfing till ICF5 generation by adopting pedigree method of selection. Three best lines at ICF5, possessing excellent resistance against bacterial blight and blast and closely resembling or superior to ISM in terms of grain quality: yield and agro-morphological traits have been identified and advanced for multi-location trials.  相似文献   

3.
APMS 6B is the stable maintainer of the CMS line APMS 6A, which is the female parent of the popular Indian rice hybrid DRRH 3. APMS 6B has good combining ability and plant stature but is highly susceptible to bacterial blight (BB) disease. In order to improve the BB resistance of APMS 6B, we pyramided two major, dominant BB resistance genes, Xa21 and Xa38, through marker-assisted backcross breeding (MABB). Improved Samba Mahsuri (ISM) was used as the donor for Xa21 while PR 114 (Xa38) served as the donor for Xa38. Individual crosses [APMS 6B/ISM and APMS 6B/PR 114 (Xa38)] were performed, and true F1 plants were then backcrossed with APMS 6B and the MABB process was continued till BC3. A single positive BC3F1 plant identified from both the crosses with maximum genotypic and phenotypic similarity with APMS 6B was selfed to generate BC3F2s. At BC3F2 generation, plants homozygous for either Xa21 or Xa38 were identified and further confirmed for the absence of two major fertility restorer genes, Rf3 and Rf4. A single such homozygous BC3F2 plant, each from both the crosses, was then inter-mated to generate ICF1s (inter-cross F1s). Selected ICF1 plants possessing both the BB resistance genes were selfed to generate ICF2s. A total of 42 ICF2 plants homozygous for both Xa21 and Xa38 were identified and screened with parental polymorphic SSR markers to identify the best F2 plants having the maximum recurrent parent genome recovery. Twelve best ICF2 plants were advanced up to ICF5. The ICF5 lines displayed very high level of BB resistance and were similar to APMS 6B in terms of agro-morphological characters. Further, most of these lines also showed complete maintenance ability and such lines are being advanced for conversion to WA-CMS lines.  相似文献   

4.
This study was carried out to improve the RPHR-1005, a stable restorer line of the popular medium slender grain type rice hybrid, DRRH-3 for bacterial blight (BB) and blast resistance through marker-assisted backcross breeding (MABB). Two major BB resistance genes, Xa21 and Xa33 and a major blast resistance gene, Pi2 were transferred to RPHR-1005 as two individual crosses. Foreground selection for Xa21, Xa33, Pi2, Rf3 and Rf4 was done by using gene-specific functional markers, while 59 simple sequence repeat (SSR) markers polymorphic between the donors and recipient parents were used to select the best plant possessing target resistance genes at each backcross generation. Backcrossing was continued till BC 2 F 2 and a promising homozygous backcross derived line possessing Xa21 + Pi2 and another possessing Xa33 were intercrossed to stack the target resistance genes into the genetic background of RPHR-1005. At ICF 4, 10 promising lines possessing three resistance genes in homozygous condition along with fine-grain type, complete fertility restoration, better panicle exertion and taller plant type (compared to RPHR-1005) were identified.  相似文献   

5.

To combat the dreaded diseases in rice like bacterial blight (BB) and blast, host plant resistance has been advocated as the most suitable and sustainable method. Through the present study, we have successfully incorporated three major BB resistance genes, namely Xa21, xa13 and xa5 into NLR3449, a high yielding, blast resistant, fine-grain type, popular rice variety through marker-assisted backcross breeding. Foreground selection was carried out using polymerase chain reaction based, gene-specific markers, namely pTA248 (Xa21), xa13prom (xa13) and xa5FM (xa5) at each generation of backcrossing, while 127 polymorphic SSR markers spanning on 12 chromosomes were used for background selection and backcrossing was limited to two rounds. At BC2F1 generation, a single plant (NLR-87-10) with 89.9% recovery, possessing all the three BB resistance genes was forwarded to BC2F2 generation. A solitary BC2F2 plant, namely NLR-87-10-106 possessing all the three resistance genes and 96% genome recovery was identified and advanced through selfing until BC2F4 generation by adopting pedigree-method of selection. Three best BC2F4 lines, possessing high level of resistance against BB and blast, and equivalent or superior to NLR 34449 in terms of yield, grain quality and agro-morphological traits were identified and advanced for multi-location trials.

  相似文献   

6.
Blast caused by Magnaporthe oryzae is the most devastating disease causing significant loss in rice production. The destructive nature of the disease is mainly due to the genetic plasticity of M. oryzae which complicates the breeding strategies. Blast can be effectively managed by the deployment of R genes. In this study, broad‐spectrum blast resistance genes Pi2 and Pi5 were introgressed independently into popular but blast susceptible rice variety, Samba Mahsuri (BPT5204) by applying marker‐assisted backcross breeding approach. Tightly linked markers AP5930 for Pi2 and 40N23r for Pi5 gene were used in foreground selection. Background selection helped to identify the lines with maximum recovery of recurrent parent genome (RPG). The RPG recovery in Pi2 introgression lines was up to 90.17 and 91.46% in Pi5 lines. Homozygous introgression lines in BC3F4 generation carrying Pi2 and Pi5 gene were field evaluated for blast resistance, yield per se and yield‐related traits. The lines showed resistance to leaf and neck blast in multilocation field evaluation. Improved BPT5204 lines with improvement for blast resistance were on par with original BPT5204 in terms of grain yield and grain features.  相似文献   

7.
Blast disease caused by the pathogen Pyricularia oryzae is a serious threat to rice production. Six generations viz., P1, P2, F1, F2, B1 and B2 of a cross between blast susceptible high-yielding rice cultivar ADT 43 and resistant near isogenic line (NIL) CT13432-3R, carrying four blast resistance genes Pi1, Pi2, Pi33 and Pi54 in combination were used to study the nature and magnitude of gene action for disease resistance and yield attributes. The epistatic interaction model was found adequate to explain the gene action in most of the traits. The interaction was complementary for number of productive tillers, economic yield, lesion number, infected leaf area and potential disease incidence but duplicate epistasis was observed for the remaining traits. Among the genotypes tested under epiphytotic conditions, gene pyramided lines were highly resistant to blast compared to individuals with single genes indicating that the nonallelic genes have a complementary effect when present together. The information on genetics of various contributing traits of resistance will further aid plant breeders in choosing appropriate breeding strategy for blast resistance and yield enhancement in rice.  相似文献   

8.
Bacterial blight (BB) is a serious disease of rice in India. We have used molecular marker-assisted selection in a backcross breeding program to introgress three genes (Xa21, xa13, and xa5) for BB resistance into Triguna, a mid-early duration, high yielding rice variety that is susceptible to BB. At each generation in the backcross program, molecular markers were used to select plants possessing these resistance genes and to select plants that have maximum contribution from the Triguna genome. A selected BC3F1 plant was selfed to generate homozygous BC3F2 plants with different combinations of BB resistance genes. Plants containing the two-gene combination, Xa21 and xa13, were found to exhibit excellent resistance against BB. Single plant selections for superior agronomic characteristics were performed on the progeny of these plants, from BC3F3 generation onwards. The selected plants were subjected to yield trials at the BC3F8 generation and were found to have a significant yield advantage over Triguna. The newly developed lines are being entered into national multi-location field trials. This work represents a successful example of the application of molecular marker-assisted selection for BB resistance breeding in rice.  相似文献   

9.
MTU 1010 is a high-yielding mega-variety of rice grown extensively in India. However, it does not perform well in soils with low phosphorus (P) levels. With an objective to improve MTU 1010 for tolerance to low soil P, we have transferred Pup1, a major quantitative trait locus (QTL) associated with tolerance from another mega-variety, Swarna, through marker-assisted backcross breeding (MABB). Foreground selection of the F1 and backcross plants was performed with the co-dominant, closely linked CAPS marker, K20-2, while two flanking markers RM28011 and RM28157 were utilized for recombinant selection. At each backcross generation, positive plants were also analyzed with a set of 85 parental polymorphic SSR markers to identify the QTL-positive plants possessing maximum introgression of MTU 1010 genome. At BC2F1, the best backcross plant was selfed to generate BC2F2s. Among them, the plants homozygous for Pup1 (n?=?22) were reconfirmed using the functional marker for Pup1, viz., K46-1, and they were advanced through pedigree method of selection until BC2F6 generation. A total of five elite BC2F6 lines, possessing Pup1 and phenotypically similar to MTU 1010, were screened in the low soil P plot and normal plot (with optimum soil P levels) during wet season, 2016. All the selected lines showed better performance under low P soil with more number of productive tillers, better root system architecture, and significantly higher yield (>?390%) as compared to MTU 1010. Further, under normal soil, the lines were observed to be similar to or better than MTU 1010 for most of the agro-morphological traits and yield. This study represents the successful application of marker-assisted selection for improvement of tolerance to low soil P in a high-yielding Indian rice variety.  相似文献   

10.
Bacterial blight (BB) of rice caused by the pathogen Xanthomonas oryzae pv. oryzae and the insect gall midge (GM) (Orseolia oryzae) are two major constraints of rice production. The present study was carried out to improve RPHR-1005, a stable restorer line of the fine-grain-type rice hybrid DRRH-3, for BB and GM resistance through marker-assisted backcross breeding (MABB). Two major GM resistance genes, Gm4 and Gm8, and a major BB resistance gene, Xa21, were selected as target genes for transfer to RPHR-1005. Two sets of backcrosses were carried out to combine either Xa21 + Gm4 or Xa21+ Gm8 into RPHR-1005 using breeding lines in the genetic background of ISM possessing either Gm4 or Gm8 along with Xa21. Foreground selection was performed for Xa21, Gm4, Gm8, and the major fertility restorer genes Rf3 and Rf4 using gene-specific markers, while 61 polymorphic simple sequence repeat (SSR) markers were used for background selection and marker-assisted backcrossing was continued until BC2 generation. A promising homozygous backcross-derived plant at the BC2F2 generation possessing Xa21 + Gm4, and another possessing Xa21 + Gm8, were intercrossed to stack the target resistance genes. At ICF 4 (inter-crossed F4) , three promising lines possessing the three target resistance genes in a homozygous condition along with fine-grain type, complete fertility restoration, and better panicle exsertion than RPHR-1005 have been identified. Among these, a single line, # RPIC-16-65-125, showed better yield, was highly resistant to BB and GM, was of medium–slender grain type, and had complete fertility restoration along with better panicle exsertion and taller plant type than RPHR-1005. This is the first report of combining resistance against BB and GM in the genetic background of a hybrid rice parental line.  相似文献   

11.
Rice blast is one of the most serious diseases in rice (Oryza sativa L.) worldwide. Jin 23B is the maintainer line, a parent for a number of hybrid rice varieties used widely in China. However, Jin 23B is highly susceptible to rice blast. In this study, Pi1, Pi2, and D12 were introgressed to improve the blast resistance of Jin 23B and its derived hybrids, Jinyou 402 and Jinyou 207, by marker-assisted selection (MAS). The improved Jin 23B, which carried single, two, and three genes, were evaluated for their resistance to rice blast using natural inoculation methods in disease nursery of Xianfeng, Hubei, China. The results showed that, the greater the number of genes contained in the improved Jin 23B and hybrids, the higher the resistance to rice blast. Pi1, Pi2, and D12 showed a strong dosage effect on the resistance to blast in the hybrid background during the entire growth duration in the field condition, being very useful for breeding blast-resistant hybrids. The result of examining agronomic traits showed that the improved Jin 23B and its derived hybrid rice were taller than or similar to controls, when there was no disease stress.  相似文献   

12.
The major quantitative trait locus qBR9.1 confers broad-spectrum resistance to rice blast, and was mapped to a ~69.1 kb region on chromosome 9 that was inherited from resistant variety Sanhuangzhan No 2 (SHZ-2). Within this region, only one predicted disease resistance gene with nucleotide binding site and leucine-rich repeat (NBS-LRR) domains was found. Specific markers corresponding to this gene cosegregated with blast resistance in F2 and F3 populations derived from crosses of susceptible variety Texianzhan 13 (TXZ-13) to SHZ-2 and the resistant backcross line BC-10. We tentatively designate the gene as Pi56(t). Sequence analysis revealed that Pi56(t) encodes an NBS-LRR protein composed of 743 amino acids. Pi56(t) was highly induced by blast infection in resistant lines SHZ-2 and BC-10. The corresponding allele of Pi56(t) in the susceptible line TXZ-13 encodes a protein with an NBS domain but without LRR domain, and it was not induced by Magnaporthe oryzae infection. Three new cosegregating gene-specific markers, CRG4-1, CRG4-2 and CRG4-3, were developed. In addition, we evaluated polymorphism of the gene-based markers among popular varieties from national breeding programs in Asia and Africa. The presence of the CRG4-2 SHZ-2 allele cosegregated with a blast-resistant phenotype in two BC2F1 families of SHZ-2 crossed to recurrent parents IR64-Sub1 and Swarna-Sub1. CRG4-1 and CRG4-3 showed clear polymorphism among 19 varieties, suggesting that they can be used in marker-assisted breeding to combine Pi56(t) with other target genes in breeding lines.  相似文献   

13.
水稻抗稻瘟病基因Pi25是一个遗传传递能力强的广谱抗性基因。本研究以携带抗稻瘟病基因Pi25的BL27为抗源供体,与优质、配合力强、感稻瘟病的水稻保持系臻达B为受体亲本进行杂交、回交创制水稻抗病保持系新种质,再与臻达A测交和回交进行不育系转育,结合分子标记辅助选择和农艺性状筛选,获得3个抗性基因纯合、农艺性状和开花习性均与臻达A相似的改良不育系株系。利用福建省近年来致病性代表的22个稻瘟病菌株对3个改良不育系及其15个杂交种进行抗性鉴定,3个改良不育系的抗性频率为95.45%~100%,15个杂交种的抗性频率均达75%以上,而原始对照臻达A及其杂交种的抗性频率仅为54.55%和40.91%~63.64%。自然病圃诱发鉴定表明,3个改良不育系的叶瘟和穗颈瘟均为0级,表现高抗,而对照臻达A的叶瘟为5级,穗颈瘟为7级,表现感病;15个杂交种均表现良好的稻瘟病抗性。进一步分析比较15个杂交种的产量、农艺性状和稻米品质表现,结果表明臻达A-Pi25-3改良不育系的综合性状表现最优,继续回交转育,于2015年育成了稻瘟病抗性强、配合力好、群体整齐和性状稳定的不育系,命名为157A。研究表明,抗稻瘟病基因Pi25不仅在水稻不育系臻达A的遗传背景下的抗性表达完全,且在不同水稻恢复系测交种的背景下同样表现出较高水平的抗性,说明抗性基因Pi25对不育系稻瘟病改良的效果明显。创制的新不育系157A的稻瘟病抗性显著提高,还基本保留了原来不育系高配合力等优良特性,为选育高产、优质、抗病杂交稻新品种提供了不育系新种质。  相似文献   

14.
A study on mode of inheritance and mapping of fertility restorer (Rf) gene(s) using simple sequence repeat (SSR) markers was conducted in a cross of male sterile line 2041A having Triticum timopheevi cytoplasm and a restorer line PWR4099 of common wheat (Triticum aestivum L.). The F1 hybrid was completely fertile indicating that fertility restoration is a dominant trait. Based on the pollen fertility and seed set of bagged spikes in F2 generation, the individual plants were classified into fertile and sterile groups. Out of 120 F2 plants, 97 were fertile and 23 sterile (based on pollen fertility) while 98 plants set ≥5 seeds/spike and 22 produced ≤4 or no seed. The observed frequency fits well into Mendelian ratio of 3 fertile: 1 sterile with χ2 value of 2.84 for pollen fertility and 2.17 for seed setting indicating that the fertility restoration is governed by a single dominant gene in PWR4099. The three linked SSR markers, Xwmc503, Xgwm296 and Xwmc112 located on the chromosome 2DS were placed at a distance of 3.3, 5.8 and 6.7 cM, respectively, from the Rf gene. Since, no known Rf gene is located on the chromosome arm 2DS, the Rf gene in PWR4099 is a new gene and proposed as Rf8. The closest SSR marker, Xwmc503, linked to the Rf8 was validated in a set of Rf, maintainer and cytoplasmic male sterile lines. The closely linked SSR marker Xwmc503 may be used in marker-assisted backcross breeding facilitating the transfer of fertility restoration gene Rf8 into elite backgrounds with ease.  相似文献   

15.
Nilaparvata lugens Stål (brown planthopper, BPH), is one of the major insect pests of rice (Oryza sativa L.) in the temperate rice-growing region. In this study, ASD7 harboring a BPH resistance gene bph2 was crossed to a susceptible cultivar C418, a japonica restorer line. BPH resistance was evaluated using 134 F2:3 lines derived from the cross between “ASD7” and “C418”. SSR assay and linkage analysis were carried out to detect bph2. As a result, the resistant gene bph2 in ASD7 was successfully mapped between RM7102 and RM463 on the long arm of chromosome 12, with distances of 7.6 cM and 7.2 cM, respectively. Meanwhile, both phenotypic selection and marker-assisted selection (MAS) were conducted in the BC1F1 and BC2F1 populations. Selection efficiencies of RM7102 and RM463 were determined to be 89.9% and 91.2%, respectively. It would be very beneficial for BPH resistance improvement by using MAS of this gene.  相似文献   

16.
Rice blast, caused by the fungal pathogen Magnaporthe oryzae, severely threatens rice production worldwide. A new resistance gene, Pi-Da(t), was found in Dacca6, a local upland rice variety from the Philippines. It was mapped into a region between RM5529 and RM211 on chromosome 2, where no blast resistance gene has been reported, by bulk segregant analysis (BSA) in a BC1F2 population from a cross between Dacca6 and Jin23B. The presence of Pi-Da(t) in Jin23B background, an elite parental line preferred for its good grain quality and widely adopted in China??s three-line hybrid rice breeding program over the past 20?years, was verified by BSA and graphical genotyping with additional eight BC1F2 bulks. This work presents an example of combining gene mapping work and gene introgression with BSA and graphical genotyping methods in a backcross (BC) breeding scheme. Both the resistant Jin23B line and the linked markers will provide useful information and materials for marker-assisted breeding against blast disease in rice.  相似文献   

17.
Bacterial Blight (BB) caused by Xanthomonas oryzae pv. oryzae is a major disease of rice in tropical Asia. Since all the Basmati varieties are highly susceptible and the disease is prevalent in the entire Basmati growing region of India, BB is a severe constraint in Basmati rice production. The present study was undertaken with the objective of combining the important Basmati quality traits with resistance to BB by a combination of phenotypic and molecular marker-assisted selection (MAS). Screening of 13 near-isogenic lines of rice against four isolates of the pathogen from Basmati growing regions identified the Xa4, xa8, xa13 and Xa21 effective against all the isolates tested. Two or more of these genes in combination imparted enhanced resistance as expressed by reduced average lesion length in comparison to individual genes. The two-gene pyramid line IRBB55 carrying xa13 and Xa21 was found equally effective as three/four gene pyramid lines. The two BB resistance genes present in IRBB55 were combined with the Basmati quality traits of Pusa Basmati-1 (PB-1), the most popular high yielding Basmati rice variety used as recurrent parent. Phenotypic selection for disease resistance, agronomic and Basmati quality characteristics and marker-assisted selection for the two resistance genes were carried out in BC1F1, BC1F2 and BC1F3 generations. Background analysis using 252 polymorphic amplified fragment length polymorphism (AFLP) markers detected 80.4 to 86.7% recurrent parent alleles in BC1F3 selections. Recombinants having enhanced resistance to BB, Basmati quality and desirable agronomic traits were identified, which can either be directly developed into commercial varieties or used as immediate donors of BB resistance in Basmati breeding programs.  相似文献   

18.
Cytoplasmic male sterility (CMS) of rice (Oryza sativa L.) was first reported using the cytoplasm of a Chinese wild rice, Oryza rufipogon Griff. strain W1. However, it was not possible to characterize this ms-CW-type CMS in more detail until a restorer line had been developed due to the lack of restorer genes among cultivars thus far tested. The breeding of a restorer line (W1-R) was eventually achieved by transferring the restorer gene(s) of W1 to a cultivar. We report here the characterization of the ms-CW pollen grains and mapping of the restorer gene for ms-CW-type CMS. Pollen grains of the male-sterile plants appeared to be normal and viable based on the fluorochromatic reaction test, but they did not germinate on normal stigmas. The 1:1 segregation of fertile and sterile plants in a BC1F1 population from a cross between W1-R and a maintainer line demonstrated that fertility restoration is controlled by a single gene. The fertile seed set of all the F2 plants examined indicated that the fertility restoration functions gametophytically. We designated the fertility restorer gene Rfcw. Using cleaved amplified polymorphic sequence (CAPS) and simple sequence repeat (SSR) markers, we localized Rfcw to chromosome 4 with a genetic distance of 0.6 cM from the nearest SSR marker.  相似文献   

19.
The japonica rice cultivar Hokkai 188 shows a high level of partial resistance to leaf blast. For mapping genes conferring the resistance, a set of 190 F2 progeny/F3 families was developed from the cross between the indica rice cultivar Danghang-Shali, with a low level of partial resistance, and Hokkai 188. Partial resistance to leaf blast in the F3 families was assessed in upland nurseries. From a primary microsatellite (SSR) linkage map and QTL analysis using a subset of 126 F2 progeny/F3 families randomly selected from the above set, one major QTL located on chromosome 1 was detected in the vicinity of SSR marker RM1216. This QTL was responsible for 69.4% of the phenotypic variation, and Hokkai 188 contributed the resistance allele. Segregation analysis in the F3 families for partial resistance to leaf blast was in agreement with the existence of a major gene, and the gene was designated as Pi35(t). Another QTL detected on chromosome 8 was minor, explained 13.4% of the phenotypic variation, and an allele of Danghang-Shali increased the level of resistance in this QTL. Additional SSR markers of the targeted Pi35(t) region were further surveyed in the 190 F2 plants, and Pi35(t) was placed in a 3.5-cM interval flanked by markers RM1216 and RM1003.  相似文献   

20.

Background

The coupling of biotic and abiotic stresses leads to high yield losses in rainfed rice (Oryza sativa L.) growing areas. While several studies target these stresses independently, breeding strategies to combat multiple stresses seldom exist. This study reports an integrated strategy that combines QTL mapping and phenotypic selection to develop rice lines with high grain yield (GY) under drought stress and non-stress conditions, and tolerance of rice blast.

Methodology

A blast-tolerant BC2F3-derived population was developed from the cross of tropical japonica cultivar Moroberekan (blast- and drought-tolerant) and high-yielding indica variety Swarna (blast- and drought-susceptible) through phenotypic selection for blast tolerance at the BC2F2 generation. The population was studied for segregation distortion patterns and QTLs for GY under drought were identified along with study of epistatic interactions for the trait.

Results

Segregation distortion, in favour of Moroberekan, was observed at 50 of the 59 loci. Majority of these marker loci co-localized with known QTLs for blast tolerance or NBS-LRR disease resistance genes. Despite the presence of segregation distortion, high variation for DTF, PH and GY was observed and several QTLs were identified under drought stress and non-stress conditions for the three traits. Epistatic interactions were also detected for GY which explained a large proportion of phenotypic variance observed in the population.

Conclusions

This strategy allowed us to identify QTLs for GY along with rapid development of high-yielding purelines tolerant to blast and drought with considerably reduced efforts. Apart from this, it also allowed us to study the effects of the selection cycle for blast tolerance. The developed lines were screened at IRRI and in the target environment, and drought and blast tolerant lines with high yield were identified. With tolerance to two major stresses and high yield potential, these lines may provide yield stability in rainfed rice areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号