首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The majority of Crenarchaeota utilize the cell division system (Cdv) to divide. This system consists of three highly conserved genes, cdvA, cdvB and cdvC that are organized in an operon. CdvC is homologous to the AAA-type ATPase Vps4, involved in multivesicular body biogenesis in eukaryotes. CdvA is a unique archaeal protein that interacts with the membrane, while CdvB is homologous to the eukaryal Vps24 and forms helical filaments. Most Crenarcheota contain additional CdvB paralogs. In Sulfolobus acidocaldarius these are termed CdvB1–3. We have used a gene inactivation approach to determine the impact of these additional cdvB genes on cell division. Independent deletion mutants of these genes were analyzed for growth and protein localization. One of the deletion strains (ΔcdvB3) showed a severe growth defect on plates and delayed growth on liquid medium. It showed the formation of enlarged cells and a defect in DNA segregation. Since these defects are accompanied with an aberrant localization of CdvA and CdvB, we conclude that CdvB3 fulfills an important accessory role in cell division.  相似文献   

3.
4.
Mutations in DNA repair/cell cycle checkpoint genes can lead to the development of cancer. The cloning of human homologs of yeast DNA repair/cell cycle checkpoint genes should yield candidates for human tumor suppressor genes as well as identifying potential targets for cancer therapy. TheSchizosaccharomyces pombegenesrad17, rad1,andhus1have been identified as playing roles in DNA repair and cell cycle checkpoint control pathways. We have cloned the cDNA for the human homolog ofS. pombe rad17,RAD17, which localizes to chromosomal location 5q13 by fluorescencein situhybridization and radiation hybrid mapping; the cDNA for the human homolog ofS. pombe rad1,RAD1, which maps to 5p14–p13.2; and the cDNA for the human homolog ofS. pombe hus1,HUS1, which maps to 7p13–p12. The human gene loci have previously been identified as regions containing tumor suppressor genes. In addition, we report the cloning of the cDNAs for genes related toS. pombe rad17, rad9, rad1,andhus1from mouse,Caenorhabditis elegans,andDrosophila melanogaster.These includeRad17andRad9fromD. melanogaster,hpr-17 and hpr-1 fromC. elegans,and RAD1 and HUS1 from mouse. The identification of homologs of theS. pomberad checkpoint genes from mammals, arthropods, and nematodes indicates that this cell cycle checkpoint pathway is conserved throughout eukaryotes.  相似文献   

5.
6.
7.
8.
9.
10.
《Genomics》1999,55(2):219-228
TheSchizosaccharomyces pombe rad17+cell cycle checkpoint control gene is required for S-phase and G2/M arrest in response to both DNA damage and incomplete DNA replication. We isolated and characterized the putative human (RAD17Sp) and mouse (mRAD17Sp) homologs of theS. pombeRad17 (Rad17Sp) protein. The humanRAD17Spopen reading frame (ORF) encodes a protein of 681 amino acids; themRAD17SpORF codes for a protein of 688 amino acids. ThemRAD17Spmessenger is highly expressed in the testis as a single 3-kb mRNA species. The human RAD17Sp and mRAD17Sp proteins are 24% identical and 46% similar to theS.pombeRad17Sp protein. Sequence homology was also noted with theSaccharomyces cerevisiaeRad24Sc (which is the structural counterpart ofS.pombeRad17Sp) and structurally related polypeptides fromCaenorhabditis elegans, Arabidopsis thaliana, Pyrococcus horikoshii,andDrosophila melanogaster.The degree of conservation between the mammalian RAD17Sp proteins and those of the other species is consistent with the evolutionary distance between the species, indicating that these proteins are most likely true counterparts. In addition, homology was found between the Rad17Sp homologs and proteins identified as components of mammalian replication factor C (RF-C)/activator 1, especially in several highly conserved RF-C-like domains including a “Walker A” motif. Using FISH and analysis of a panel of rodent–human cell hybrids, the humanRAD17Spgene (HGMW-approved symbolRAD17could be localized on human chromosome 5q13–q14, a region implicated in the etiology of small cell lung carcinoma, non-small-cell lung carcinoma, duodenal adenocarcinoma, and head and neck squamous cell carcinoma. Our results suggest that the structure and function of the checkpoint “rad” genes in the G2/M checkpoint pathway are evolutionary conserved between yeast and higher eukaryotes.  相似文献   

11.
12.
13.
14.
Research in yeast and animals has resulted in a well-supported consensus model for eukaryotic cell cycle control. The fit of this model to early diverging eukaryotes, such as the plant kingdom, remains unclear. Using the green alga Chlamydomonas reinhardtii, we developed an efficient pipeline, incorporating robotics, semiautomated image analysis, and deep sequencing, to molecularly identify >50 genes, mostly conserved in higher plants, specifically required for cell division but not cell growth. Mutated genes include the cyclin-dependent kinases CDKA (resembling yeast and animal Cdk1) and the plant-specific CDKB. The Chlamydomonas cell cycle consists of a long G1 during which cells can grow >10-fold, followed by multiple rapid cycles of DNA replication and segregation. CDKA and CDKB execute nonoverlapping functions: CDKA promotes transition between G1 and entry into the division cycle, while CDKB is essential specifically for spindle formation and nuclear division, but not for DNA replication, once CDKA-dependent initiation has occurred. The anaphase-promoting complex is required for similar steps in the Chlamydomonas cell cycle as in Opisthokonts; however, the spindle assembly checkpoint, which targets the APC in Opisthokonts, appears severely attenuated in Chlamydomonas, based on analysis of mutants affecting microtubule function. This approach allows unbiased integration of the consensus cell cycle control model with innovations specific to the plant lineage.  相似文献   

15.

Background

Despite the enormous importance of diatoms in aquatic ecosystems and their broad industrial potential, little is known about their life cycle control. Diatoms typically inhabit rapidly changing and unstable environments, suggesting that cell cycle regulation in diatoms must have evolved to adequately integrate various environmental signals. The recent genome sequencing of Thalassiosira pseudonana and Phaeodactylum tricornutum allows us to explore the molecular conservation of cell cycle regulation in diatoms.

Results

By profile-based annotation of cell cycle genes, counterparts of conserved as well as new regulators were identified in T. pseudonana and P. tricornutum. In particular, the cyclin gene family was found to be expanded extensively compared to that of other eukaryotes and a novel type of cyclins was discovered, the diatom-specific cyclins. We established a synchronization method for P. tricornutum that enabled assignment of the different annotated genes to specific cell cycle phase transitions. The diatom-specific cyclins are predominantly expressed at the G1-to-S transition and some respond to phosphate availability, hinting at a role in connecting cell division to environmental stimuli.

Conclusion

The discovery of highly conserved and new cell cycle regulators suggests the evolution of unique control mechanisms for diatom cell division, probably contributing to their ability to adapt and survive under highly fluctuating environmental conditions.  相似文献   

16.
17.
18.
19.
《Gene》1996,168(1):77-80
A type-II topoisomerase (Topo-IV) encoded by the parC and parE genes in Escherichia coli and Salmonella typhimurium is thought to be involvd in cell septation and in the decatenation of newly replicated chromosomes. We have identified parC and parE homologs in the pleomorphic, wall-less organism Mycoplasma genitalium. Since the mechanics of cell septation in conventional eubacterial species is believed to be mediated by cell-wall constituents, there is no clear understanding of what coordinates that process in wall-less species. The presence of par genes in this bacterium, which has the smallest genome of any free-living organism, suggests that Top-IV has been evolutionarily conserved because of an essential role in mediating cell division.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号