首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Bhattacharya et al. (Bhattacharya, A., Sudha, S., Chandra, H. S. and Steward, R. (1999) Development 126, 5485-5493) reported that loss-of-function mutations in the flex (female-specific lethal on X) gene caused female-specific lethality because flex(+) acts as a positive regulator of the master switch gene Sex lethal (Sxl). Sxl is essential for female development. Key to their conclusion was the ability of flex mutations to suppress the male lethality caused by Sxl(M) mutations, which inappropriately activate Sxl female-specific expression. Here we report our contrary findings that flex mutations fail to suppress even the weakest Sxl(M )alleles, arguing against the proposed regulatory relationship between flex and Sxl. Instead we show that the lethal flex phenotype depends on the absence of a Y chromosome, not on the presence of two X chromosomes. flex lethality is caused by a defect in the functioning of the X-linked rDNA locus called bobbed, since this defect is complemented by the corresponding wild-type rDNA complex on the Y.  相似文献   

5.
6.
7.
8.
Faecal nitrogen (FN) – the combination of metabolic nitrogen and residual food nitrogen – has been used as a proxy for diet quality in wild and domestic ruminants for over half a century. However, a common misconception in some of these studies is that FN is a direct proxy for dietary N, in spite of experimental evidence that links FN to general diet digestibility. Additionally, gastrointestinal nematodes (GIN) can alter N metabolism and increase FN by various mechanisms. To clarify the role of dietary N, fibre and GIN as a factor in FN excretion, 10 naturally parasitised sheep were fed two different isocaloric diets (LPF: low-protein, low-fibre; HPF: high-protein, high-fibre). One month after these diets began, a single anthelmintic treatment was applied to remove GIN, after which the sheep were kept on the same diet for an additional 2 weeks. Throughout the experiment, individual faecal samples were obtained to estimate both FN and GIN intensity (using faecal egg counts, FEC). In addition, two blood samples were taken before and after deworming to measure serum total protein concentrations (TP) as a proxy for protein absorption. In spite of the difference in dietary protein, FN was higher on an LPF diet, supporting the overall digestibility concept. The influence of GIN on FN was later revealed by the anthelmintic treatment, which led to a decrease of FEC and FN in both dietary groups. Serum total protein showed a slight but non-significant increase in both groups after the anthelmintic treatment. Our study supports not only the concept that FN is a proxy for diet digestibility, and not directly for dietary N, but also that gastrointestinal nematodes limit its use as a proxy for diet quality in ruminants, especially under high parasite loads (e.g., 1000 faecal eggs per gram of faeces). Such limitations should be considered before using FN for wildlife nutrition monitoring. Some recommendations are given to avoid misinterpretations.  相似文献   

9.
Antibiotic resistance is a major public health problem globally. Particularly concerning amongst drug‐resistant human pathogens is Mycobacterium tuberculosis that causes the deadly infectious tuberculosis (TB) disease. Significant issues associated with current treatment options for drug‐resistant TB and the high rate of mortality from the disease makes the development of novel treatment options against this pathogen an urgent need. Antimicrobial peptides are part of innate immunity in all forms of life and could provide a potential solution against drug‐resistant TB. This review is a critical analysis of antimicrobial peptides that are reported to be active against the M tuberculosis complex exclusively. However, activity on non‐TB strains such as Mycobacterium avium and Mycobacterium intracellulare, whenever available, have been included at appropriate sections for these anti‐TB peptides. Natural and synthetic antimicrobial peptides of diverse sequences, along with their chemical structures, are presented, discussed, and correlated to their observed antimycobacterial activities. Critical analyses of the structure allied to the anti‐mycobacterial activity have allowed us to draw important conclusions and ideas for research and development on these promising molecules to realise their full potential. Even though the review is focussed on peptides, we have briefly summarised the structures and potency of the various small molecule drugs that are available and under development, for TB treatment.  相似文献   

10.
Calmodulin (CaM) is the major Ca2+ sensor in eukaryotic cells. It consists of four EF-hand Ca2+ binding motifs, two in its N-terminal domain and two in its C-terminal domain. Through a negative feedback loop, CaM inhibits Ca2+ influx through N-methyl-D-aspartate-type glutamate receptors in neurons by binding to the C0 region in the cytosolic tail of the NR1 subunit. Ca2+ -depleted (apo)CaM is pre-associated with a variety of ion channels for fast and effective regulation of channel activities upon Ca2+ influx. Using the NR1 C0 region for fluorescence and circular dichroism spectroscopy studies we found that not only Ca2+ -saturated CaM but also apoCaM bound to NR1 C0. In vitro interaction assays showed that apoCaM also binds specifically to full-length NR1 solubilized from rat brain and to the complete C terminus of the NR1 splice form that contains the C0 plus C2' domain. The Ca2+ -independent interaction of CaM was also observed with the isolated C-but not N-terminal fragment of calmodulin in the independent spectroscopic assays. Fluorescence polarization studies indicated that apoCaM associated via its C-terminal domain with NR1 C0 in an extended conformation and collapsed to adopt a more compact conformation of faster rotational mobility in its complex with NR1 C0 upon addition of Ca2+. Our results indicate that apoCaM is associated with NR1 and that the complex of CaM bound to NR1 C0 undergoes a dramatic conformational change when Ca2+ binds to CaM.  相似文献   

11.
RBM10 is an RNA binding motif (RBM) protein expressed in most, if not all, human and animal cells. Interest in RBM10 is rapidly increasing and its clinical importance is highlighted by its identification as the causative agent of TARP syndrome, a developmental condition that significantly impacts affected children. RBM10's cellular functions are beginning to be explored, with initial studies demonstrating a tumor suppressor role. Very recently, however, contradictory results have emerged, suggesting a tumor promoter role for RBM10. In this review, we describe the current state of knowledge on RBM10, and address this dichotomy in RBM10 function. Furthermore, we discuss what may be regulating RBM10 function, particularly the importance of RBM10 alternative splicing, and the relationship between RBM10 and its paralogue, RBM5. As RBM10‐related work is gaining momentum, it is critical that the various aspects of RBM10 molecular biology revealed by recent studies be considered moving forward. It is only if these recent advances in RBM10 structure and function are considered that a clearer insight into RBM10 function, and the disease states with which RBM10 mutation is associated, will be gained.  相似文献   

12.
NMDA receptors (NMDARs), fundamental to learning and memory and implicated in certain neurological disorders, are heterotetrameric complexes composed of two NR1 and two NR2 subunits. The function of synaptic NMDARs in postnatal principal forebrain neurons is typically attributed to diheteromeric NR1/NR2A and NR1/NR2B receptors, despite compelling evidence for triheteromeric NR1/NR2A/NR2B receptors. In synapses, the properties of triheteromeric NMDARs could thus far not be distinguished from those of mixtures of diheteromeric NMDARs. To find a signature of NR1/NR2A/NR2B receptors, we have employed two gene-targeted mouse lines, expressing either NR1/NR2A or NR1/NR2B receptors without NR1/NR2A/NR2B receptors, and compared their synaptic properties with those of wild type. In acute hippocampal slices of mutants older than 4 weeks we found a distinct voltage dependence of NMDA R-mediated excitatory postsynaptic current (NMDA EPSC) decay time for the two diheteromeric NMDARs. In wild-type mice, NMDA EPSCs unveiled the NR1/NR2A characteristic for this voltage-dependent deactivation exclusively, indicating that the contribution of NR1/NR2B receptors to evoked NMDA EPSCs is negligible in adult CA3-to-CA1 synapses. The presence of NR1/NR2A/NR2B receptors was obvious from properties that could not be explained by a mixture of diheteromeric NR1/NR2A and NR1/NR2B receptors or by the presence of NR1/NR2A receptors alone. The decay time for NMDA EPSCs in wild type was slower than that for NR1/NR2A receptors, and the sensitivity of NMDA EPSCs to NR2B-directed NMDAR antagonists was 50%. Thus, NR2B is prominent in adult hippocampal synapses as an integral part of NR1/NR2A/NR2B receptors.  相似文献   

13.
This article focuses on the role of PAPP‐A in mammalian aging. It introduces PAPP‐A and a little of its history, briefly discusses the function of PAPP‐A in the insulin‐like growth factor (IGF) system and the regulators of PAPP‐A expression, and then reviews data concerning PAPP‐A in aging and age‐related diseases especially in regard to the PAPP‐A knockout (KO) mouse. The PAPP‐A KO mouse is a valuable new model to test hypotheses concerning the control of the tissue availability of IGF, independent from systemic levels, on healthspan as well as lifespan.  相似文献   

14.
Translocation of endangered species to habitats where exotic predators have been removed is now a common conservation practice around the world. Many of these translocated populations have thrived, and they are often used as sources for the harvesting of individuals for translocations to sites where exotic predators still exist, albeit at reduced densities. This study investigates how isolation from exotic predators affects the ability of individuals to recognize such predators using the North Island robin (Petroica longipes) as a model. The study was carried out in three robin populations in the North Island, New Zealand: a translocated population on Tiritiri Matangi Island, where exotic mammalian predators are absent; a population reintroduced from Tiritiri Matangi Island to Wenderholm Regional Park, a mainland site where these mammals are controlled to low densities; and a mainland population at Benneydale where exotic predatory mammals are common. The response intensity of robins to a model stoat was high at Benneydale and low at Tiritiri Matangi and Wenderholm. This result indicates that isolation from mammalian predators on Tiritiri Matangi has suppressed the ability of North Island robins to recognize these predators. It is possible that the low predatory mammal densities at Wenderholm have reduced robin contact with stoats, therefore reduced the opportunity for robins to learn to recognize stoats. Thus, translocation of individuals from populations without predators to places where key predators still exist could be unsuccessful if translocated individuals fail to perform appropriate anti‐predator behaviours.  相似文献   

15.
The genomes of RNA viruses present an astonishing source of both sequence and structural diversity. From intracellular viral RNA-host interfaces to interactions between the RNA genome and structural proteins in virus particles themselves, almost the entire viral lifecycle is accompanied by a myriad of RNA–protein interactions that are required to fulfill their replicative potential. It is therefore important to characterize such rich and dynamic collections of viral RNA–protein interactions to understand virus evolution and their adaptation to their hosts and environment. Recent advances in next-generation sequencing technologies have allowed the characterization of viral RNA–protein interactions, including both transient and conserved interactions, where molecular and structural approaches have fallen short. In this review, we will provide a methodological overview of the high-throughput techniques used to study viral RNA–protein interactions, their biochemical mechanisms, and how they evolved from classical methods as well as one another. We will discuss how different techniques have fueled virus research to characterize how viral RNA and proteins interact, both locally and on a global scale. Finally, we will present examples on how these techniques influence the studies of clinically important pathogens such as HIV-1 and SARS-CoV-2.  相似文献   

16.
17.
18.
BackgroundTetanus, a vaccine-preventable disease, is still occurring in the elderly population of low- and middle-income countries with a high case-fatality rate. The objective of the study was to elucidate the factors associated with in-hospital mortality of tetanus in Bangladesh.MethodsThis prospective observational study, conducted in two specialized infectious disease hospitals, conveniently selected adult tetanus patients (≥18 years) for inclusion. Data were collected through a preformed structured questionnaire. Kaplan Meier survival analysis and univariate and multivariable Cox regression analysis were carried out to assess factors associated with in-hospital mortality among patients. All analysis was done using Stata (version 16) and SPSS (version 26).ResultsA total of 61 tetanus cases were included, and the overall in-hospital mortality rate was 34.4% (n = 21). Patients had an average age of 46.49 ±15.65 years (SD), and the majority were male (96.7%), farmers (57.4%), and came from rural areas (93.4%). Survival analysis revealed that the probability of death was significantly higher among patients having an age of ≥ 40 years, incubation time of ≤12 days, onset time of ≤ 4 days, and having complication(s). However, on multivariable Cox regression analysis, age (adjusted hazard ratio [aHR] 4.03, 95% Confidence Interval [CI] 1.07–15.17, p = 0.039) and onset time (≤4 days) (aHR 3.33; 95% CI 1.05–10.57, p = 0.041) came as significant predictors of in-hospital mortality after adjusting for incubation period and complications.ConclusionOlder age and short onset time are the two most important determinants of in-hospital mortality of tetanus patients. Hence, these patients require enhanced emphasis and care.  相似文献   

19.
Well-orchestrated maternal–fetal cross talk occurs via secreted ligands, interacting receptors, and coupled intracellular pathways between the conceptus and endometrium and is essential for successful embryo implantation. However, previous studies mostly focus on either the conceptus or the endometrium in isolation. The lack of integrated analysis impedes our understanding of early maternal–fetal cross talk. Herein, focusing on ligand–receptor complexes and coupled pathways at the maternal–fetal interface in sheep, we provide the first comprehensive proteomic map of ligand–receptor pathway cascades essential for embryo implantation. We demonstrate that these cascades are associated with cell adhesion and invasion, redox homeostasis, and the immune response. Candidate interactions and their physiological roles were further validated by functional experiments. We reveal the physical interaction of albumin and claudin 4 and their roles in facilitating embryo attachment to endometrium. We also demonstrate a novel function of enhanced conceptus glycolysis in remodeling uterine receptivity by inducing endometrial histone lactylation, a newly identified histone modification. Results from in vitro and in vivo models supported the essential role of lactate in inducing endometrial H3K18 lactylation and in regulating redox homeostasis and apoptotic balance to ensure successful implantation. By reconstructing a map of potential ligand–receptor pathway cascades at the maternal–fetal interface, our study presents new concepts for understanding molecular and cellular mechanisms that fine-tune conceptus–endometrium cross talk during implantation. This provides more direct and accurate insights for developing potential clinical intervention strategies to improve pregnancy outcomes following both natural and assisted conception.  相似文献   

20.
Knowledge of the structural properties of linker histones is important to the understanding of their role in higher-order chromatin structure and gene regulation. Here we study the conformational properties of the peptide Ac-EKTPVKKKARKAAGGAKRKTSG-NH(2) (NE-1) by circular dichroism and (1)H-NMR. This peptide corresponds to the positively charged region of the N-terminal domain, adjacent to the globular domain, of mouse histone H1e (residues 15-36). This is the most abundant H1 subtype in many kinds of mammalian somatic cells. NE-1 is mainly unstructured in aqueous solution, but in the presence of the secondary-structure stabilizer trifluoroethanol (TFE) it acquires an alpha-helical structure. In 90% TFE solution the alpha-helical population is approximately 40%. In these conditions, NE-1 is structured in two alpha-helices that comprise almost all the peptide, namely, from Thr17 to Ala27 and from Gly29 to Thr34. Both helical regions are highly amphipathic, with the basic residues on one face of the helix and the apolar ones on the other. The two helical elements are separated by a Gly-Gly motif. Gly-Gly motifs at equivalent positions are found in many vertebrate H1 subtypes. Structure calculations show that the Gly-Gly motif behaves as a flexible linker between the helical regions. The wide range of relative orientations of the helical axes allowed by the Gly-Gly motif may facilitate the tracking of the phosphate backbone by the helical elements or the simultaneous binding of two nonconsecutive DNA segments in chromatin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号