首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plant parasitic nematodes are major pests on upland cotton worldwide and in the United States. The reniform nematode, Rotylenchulus reniformis and the southern root-knot nematode Meloidogyne incognita are some of the most damaging nematodes on cotton in the United States. Current management strategies focus on reducing nematode populations with nematicides. The objective of this research was to integrate additional fertilizer and nematicide combinations into current practices to establish economical nematode management strategies while promoting cotton yield and profit. Microplot and field trials were run to evaluate fertilizer and nematicide combinations applied at the pinhead square (PHS) and first bloom (FB) plant growth stages to reduce nematode population density and promote plant growth and yield. Cost efficiency was evaluated based on profit from lint yields and chemical input costs. Data combined from 2019 and 2020 suggested a nematicide seed treatment (ST) ST + (NH4)2SO4 + Vydate® C-LV + Max-In® Sulfur was the most effective in increasing seed cotton yields in the R. reniformis microplot trials. In R. reniformis field trials, a nematicide ST + (NH4)2SO4 + Vydate® C-LV at PHS supported the largest lint yield and profit per hectare at $1176. In M. incognita field trials, a nematicide ST + 28-0-0-5 + Vydate® C-LV + Max-In® Sulfur at PHS and FB supported the largest lint yields and profit per hectare at $784. These results suggest that combinations utilizing fertilizers and nematicides applied together across the season in addition to current fertility management show potential to promote yield and profit in R. reniformis and M. incognita infested cotton fields.  相似文献   

2.
Field experiments in 1992 and 1994 were conducted to determine the effect of Rotylenchulus reniformis, reniform nematode, on lint yield and fiber quality of 10 experimental breeding lines of cotton (Gossypium hirsutum) in untreated plots or plots fumigated with 1,3-dichloropropene. Controls were La. RN 1032, a germplasm line possessing some resistance to R. reniformis, and Stoneville 453, a cultivar that is susceptible to reniform nematode. Several breeding lines produced greater lint yields than Stoneville 453 or La. RN 1032 in both fumigated and untreated plots. Average lint yield suppression due to R. reniformis for six of the 10 breeding lines was less than half of the 52% yield reduction sustained by Stoneville 453. In growth chamber experiments, R. reniformis multiplication factors for La. RN 1032 and breeding lines N222-1-91, N320-2-91, and N419-1-91 were significantly lower than on Deltapine 16 and Stoneville 453 at 6 weeks after inoculation. R. reniformis populations increased by more than 50-fold on all entries within 10 weeks. In growth chambers, the breeding lines N220-1-92, N222-1-91, and N320-2-91 were resistant to Meloidoglyne incognita race 3; multiplication factors were ≤1.0 at both 6 weeks and 10 weeks after inoculation compared with 25.8 and 26.5 for Deltapine 16 at 6 and 10 weeks after inoculation, respectively, and 9.1 and 2.6 for Stoneville 453. Thus, the results indicate that significant advances have been made in developing improved cotton germplasm lines with the potential to produce higher yields in soils infested with R. reniformis or M. incogaita. In addition to good yield potential, germplasm lines N222-1-91 and N320-2-91 appear to possess low levels of resistance to R. reniformis and a high level of resistance to M. incognita. This germplasm combines high yield potential with significant levels of resistance to both R. reniformis and M. incognita.  相似文献   

3.
Tioxazafen is a seed-applied nematicide used in row crops. Currently, there are no data on nematode toxicity, nematode recovery, or effects of low concentrations of tioxazafen on nematode infection of a host root for Meloidogyne incognita or Rotylenchulus reniformis. Nematode toxicity and recovery experiments were conducted in water solutions of tioxazafen, while root infection assays were conducted on tomato. Nematode paralysis was observed after 24 hr of exposure at 27.0 µg/ml tioxazafen for both the nematode species. Based on an assay of nematode motility, 24-hr EC50 values of 57.69 µg/ml and 59.64 µg/ml tioxazafen were calculated for M. incognita and R. reniformis, respectively. Tioxazafen rates of 2.7 µg/ml and 27.0 µg/ml reduced the nematode hatch after 3 d of exposure for both the nematode species. There was no recovery in nematode motility after the 24-hr exposure of M. incognita and R. reniformis to their corresponding 48-hr EC50 values of 47.15 µg/ml and 47.25 µg/ml tioxazafen, respectively. Mortality of M. incognita continued to increase after 24 hr exposure, whereas R. reniformis mortality remain unchanged after nematodes were rinsed and removed for 48 hr from the tioxazafen solution. A 24-hr exposure to low concentrations of 0.38 to 47.15 µg/ml for M. incognita and 47.25 µg/ml for R. reniformis reduced the infectivity of each nematode species on tomato roots. The toxicity of tioxazafen was similar between nematode species; however, a greater rate of tioxazafen was needed to suppress R. reniformis infection of tomato than for M. incognita.  相似文献   

4.
The effects of soil type and initial inoculum density (Pi) on the reproductive and damage potentials of Meloidogyne incognita and Rotylenchulus reniformis on cotton were evaluated in microplot experiments from 1991 to 1993. The equilibrium nematode population density for R. reniformis on cotton was much greater than that of M. incognita, indicating that cotton is a better host for R. reniformis than M. incognita. Reproduction of M. incognita was greater in coarse-textured soils than in fine-textured soils, whereas R. reniformis reproduction was greatest in a Portsmouth loamy sand with intermediate percentages of clay plus silt. Population densities of M. incognita were inversely related to the percentage of silt and clay, but R. reniformis was favored by moderate levels of clay plus silt (ca. 28%). Both M. incognita races 3 and 4 and R. reniformis effected suppression of seed-cotton yield in all soil types evaluated. Cotton-yield suppression was greatest in response to R. reniformis at high Pi. Cotton maturity, measured as percentage of open bolls at different dates, was affected by the presence of nematodes in all 3 years.  相似文献   

5.
Management of Meloidogyne incognita (root-knot nematode) in cotton in the United States was substantially affected by the decision to stop production of aldicarb by its principle manufacturer in 2011. The remaining commercially available tools to manage M. incognita included soil fumigation, nematicide seed treatments, postemergence nematicide application, and cultivars partially resistant to M. incognita. Small plot field studies were conducted on a total of nine sites from 2011–2013 to examine the effects of each of these tools alone or in combinations, on early season galling, late-season nematode density in soil, yield, and value ($/ha = lint value minus chemical costs/ha). The use of a partially resistant cultivar resulted in fewer galls/root system at 35 d after planting in eight of nine tests, lower root-knot nematode density late in the growing season for all test sites, higher lint yield in eight of nine sites, and higher value/ha in six of nine sites. Galls per root were reduced by aldicarb in three of nine sites and by 1,3-dichloropropene (1,3-D) in two of eight sites, relative to the nontreated control (no insecticide or nematicide treatment). Soil fumigation reduced M. incognita density late in the season in three of nine sites. Value/ha was not affected by chemical treatment in four of nine sites, but there was a cultivar × chemical interaction in four of nine sites. When value/ha was affected by chemical treatment, the nontreated control had a similar value to the treatment with the highest value/ha in seven of eight cultivar-site combinations. The next “best” value/ha were associated with seed treatment insecticide (STI) + oxamyl and aldicarb (similar value to the highest value/ha in six of eight cultivar-site combinations). The lowest valued treatment was STI + 1,3-D. In a semi-arid region, where rainfall was low during the spring for all three years, cultivars with partial resistance to M. incognita was the most profitable method of managing root-knot nematode in cotton.  相似文献   

6.
Predatory behavior of a nematode is usually determined through gut content observation or prey delimitation counts. In this experiment, Mononchus and Neoactinolaimus predation of Rotylenchulus reniformis or Meloidogyne incognita was determined using a PCR-based nematode gut content analysis. Soil samples naturally infested with Mononchus were placed in tubes and potential prey nematodes R. reniformis, M. incognita, or a mixture of both were introduced. The gut contents of Mononchus were assayed for the DNA from R. reniformis or M. incognita using PCR specific primers. A higher % of Mononchus tested positive for DNA of R. reniformis than for M. incognita when the prey were added alone. However, when provided with both prey species, Mononchus was tested positive for DNA of M. incognita more frequently than for R. reniformis. Percent Mononchus testing positive for DNA of R. reniformis correlated positively with the abundance of R. reniformis, but this relationship was not observed between Mononchus and M. incognita. Neoactinolaimus was added to aqueous solution containing a mixture of free-living nematodes and R. reniformis. More Neoactinolaimus tested positive for DNA of R. reniformis than other predatory or omnivorous nematodes in the same samples. Based on regression analysis, the presence of fungivorous and other predatory nematodes in the soil could distract Neoactinolaimus from predation on R. reniformis. Our results suggested that Prismatolaimus, Mesodiplogasteroides and Eudorylaimus could also prey on R. reniformis. Although less than 40% of the predatory or omnivorous nematodes tested preyed on R. reniformis, this level of predation could contribute to reducing the population densities of plant-parasitic nematodes in the soil.  相似文献   

7.
A replicated field study was conducted from 1972 to 1980 involving soybeans grown in 2-, 3-, and 4-year rotations with maize in soil infested with Meloidogyne incognita. Monocultured soybeans were maintained as controls. Cropping regimes involved root-knot nematode susceptible and resistant soybean cultivars and soybeans treated and not treated with nematicides. Yields of susceptible cultivars declined with reduced length of rotation. Nematicide treatment significantly increased yields of susceptible cultivars when monocultured, but bad little influence on yield when susceptible cultivars were grown in rotation. Yields of monocultured resistant cultivars were significantly lower than yields of resistant cultivars grown in rotation. However, yields of resistant cultivars grown in rotation were not influenced by the length of the rotation. Nematicide treatment significantly increased yields of monocultured resistant cultivars over the latter years of the study.  相似文献   

8.
Avermectins are macrocyclic lactones produced by Streptomyces avermitilis. Abamectin is a blend of B1a and B1b avermectins that is being used as a seed treatment to control plant-parasitic nematodes on cotton and some vegetable crops. No LD50 values, data on nematode recovery following brief exposure, or effects of sublethal concentrations on infectivity of the plant-parasitic nematodes Meloidogyne incognita or Rotylenchulus reniformis are available. Using an assay of nematode mobility, LD50 values of 1.56 μg/ml and 32.9 μg/ml were calculated based on 2 hr exposure for M. incognita and R. reniformis, respectively. There was no recovery of either nematode after exposure for 1 hr. Mortality of M. incognita continued to increase following a 1 hr exposure, whereas R. reniformis mortality remained unchanged at 24 hr after the nematodes were removed from the abamectin solution. Sublethal concentrations of 1.56 to 0.39 μg/ml for M. incognita and 32.9 to 8.2 μg/ml for R. reniformis reduced infectivity of each nematode on tomato roots. The toxicity of abamectin to these nematodes was comparable to that of aldicarb.  相似文献   

9.
Rotylenchulus reniformis resistant LONREN-1×FM966 breeding lines developed at Auburn University have demonstrated that the nematode resistance is accompanied by severe stunting, limited growth, and low yields. The objectives of this study were to evaluate the effects of applying nematicides to selected LONREN breeding lines on R. reniformis nematode populations, plant stunting, and yield. Four resistant breeding lines from the LONREN-1×FM966 cross, one susceptible line from the LONREN-1×FM966 cross, as well as LONREN-1, BARBREN-713, and the susceptible cultivar DP393 were evaluated with and without nematicides in the presence of R. reniformis. In the greenhouse, nematicides increased plant height across all genotypes compared with no nematicide. Rotylenchulus reniformis populations were 50% lower in the resistant lines compared with the susceptible lines at 45 days after planting (DAP). In microplot and field trials, the phenotypic stunting of all genotypes was reduced by aldicarb with increases in plant heights at 30 and 75 DAP. Increases in yields were evident across all genotypes treated with aldicarb. In all three trial environments, BARBREN-713 outperformed the LONREN-derived lines as well as ‘DP393’ in seed cotton yields, while having significantly lower R. reniformis egg densities than the susceptible genotypes.  相似文献   

10.
Fluopyram is a succinate dehydrogenase inhibitor (SDHI) fungicide that is being evaluated as a seed treatment and in-furrow spray at planting on row crops for management of fungal diseases and its effect on plant-parasitic nematodes. Currently, there are no data on nematode toxicity, nematode recovery, or effects on nematode infection for Meloidogyne incognita or Rotylenchulus reniformis after exposure to low concentrations of fluopyram. Nematode toxicity and recovery experiments were conducted in aqueous solutions of fluopyram, while root infection assays were conducted on tomato. Nematode paralysis was observed after 2 hr of exposure at 1.0 µg/ml fluopyram for both nematode species. Using an assay of nematode motility, 2-hr EC50 values of 5.18 and 12.99 µg/ml fluopyram were calculated for M. incognita and R. reniformis, respectively. Nematode recovery in motility was greater than 50% for M. incognita and R. reniformis 24 hr after nematodes were rinsed and removed from a 1-hr treatment of 5.18 and 12.99 µg/ml fluopyram, respectively. Nematode infection of tomato roots was reduced and inversely proportional to 1-hr treatments with water solutions of fluopyram at low concentrations, which ranged from 1.3 to 5.2 µg/ml for M. incognita and 3.3 to 13.0 µg/ml for R. reniformis. Though fluopyram is nematistatic, low concentrations of the fungicide were effective at reducing the ability of both nematode species to infect tomato roots.  相似文献   

11.
Southern root-knot nematode (SRKN, Meloidogyne incognita) is a major pest of sweet potato, and nematicides are needed to manage this nematode. The objectives of this study were to assess the efficacy of fluazaindolizine, a new non-fumigant nematicide, in comparison with the fumigant nematicide 1,3-dichloropropene (1,3-D) and non-fumigant nematicides fluopyram and oxamyl for (1) SRKN management, (2) impacts on free-living nematodes, and (3) sweet potato yield in field trials. Among all nematicides, 1,3-D at 84 kg/ha most consistently (2 of 3 years) managed SRKN soil populations and improved yield. Fluazaindolizine at 2.24 kg/ha and fluazindolizine at 1.12 kg/ha plus oxamyl at 2.14 kg/ha managed SRKN populations and improved yield in 1 of 3 years, whereas fluazaindolizine alone at 1.12 kg/ha only decreased SRKN populations. Fluopyram at 238 g/ha did not affect SRKN or yield. Nematicide application also had non-target effects on free-living nematodes with 1,3-D reducing abundances relative to untreated most frequently (2018 and 2020), but other nematicides also reducing free-living nematode abundances in 2020. In summary, 1,3-D is the most consistent option for SRKN control on sweet potato, but fluazaindolizine, oxamyl or combinations of the two products can also be effective.  相似文献   

12.
An increase in the inoculum level of root‐knot nematode, Meloidogyne incognita and the reniform nematode, Rotylenchulus reniformis resulted in a relative decrease in plant growth parameters of chickpea. Consequently water absorption capability of roots was impaired. M. incognita caused greater reduction than R. reniformis at the same inoculum level. In concomitant inoculation of M. incognita and R. reniformis there was greater suppression in plant growth of chickpea. The suppression in concomitant inoculations was less than the sum of the suppression caused by the same levels of inoculations of the individual species. The multiplication rate of the nematodes decreased as the inoculum level increased. The results also suggest competition for feeding sites between the two nematode species. The multiplication rate of one species progressively decrease with the increase in the inoculum levels of the other nematode.  相似文献   

13.
It has been hypothesized Rotylenchulus reniformis (Rr) has a competitive advantage over Meloidogyne incognita (Mi) in the southeastern cotton production region of the United States. This study examines the reproduction and development of Meloidogyne incognita (Mi) and Rotylenchulus reniformis (Rr) in separate and concomitant infections on cotton. Under greenhouse conditions, cotton seedlings were inoculated simultaneously with juveniles (J2) of M. incognita and vermiform adults of R. reniformis in the following ratios (Mi:Rr): 0:0, 100:0, 75:25, 50:50, 25:75, and 0:100. Soil populations of M. incognita and R. reniformis were recorded at 3, 6, 9, 14, 19, 25, 35, 45, and 60 days after inoculations. At each date, samples were taken to determine the life stage of development, number of egg masses, eggs per egg mass, galls, and giant cells or syncytia produced by the nematodes. Meloidogyne incognita and R. reniformis were capable of initially inhibiting each other when the inoculum ratio of one species was higher than the other. In concomitant infections, M. incognita was susceptible to the antagonistic effect of R. reniformis. Rotylenchulus reniformis affected hatching of M. incognita eggs, delayed secondary infection of M. incognita J2, reduced the number of egg masses produced by M. incognita, and reduced J2 of M. incognita 60 days after inoculations. In contrast, M. incognita reduced R. reniformis soil populations only when its proportion in the inoculum ratio was higher than that of R. reniformis. Meloidogyne incognita reduced egg masses produced by R. reniformis, but not production of eggs and secondary infection.  相似文献   

14.
Resistance to the southern root-knot nematode, Meloidogyne incognita races 1 and 3, has been identified, incorporated, and deployed into commercial cultivars of tobacco, Nicotiana tabacum. Cultivars with resistance to other economically important root-knot nematode species attacking tobacco, M. arenaria, M. hapla, M. javanica, and other host-specific races of M. incognita, are not available in the United States. Twenty-eight tobacco genotypes of diverse origin and two standard cultivars, NC 2326 (susceptible) and Speight G 28 (resistant to M. incognita races 1 and 3), were screened for resistance to eight root-knot nematode populations of North Carolina origin. Based on root gall indices at 8 to 12 weeks after inoculation, all genotypes except NC 2326 and Okinawa were resistant to M. arenaria race 1, and races 1 and 3 of M. incognita. Except for slight root galling, genotypes resistant to M. arenaria race 1 responded similarly to races 1 and 3 of M. incognita. All genotypes except NC 2326, Okinawa, and Speight G 28 showed resistance to M. javanica. Okinawa, while supporting lower reproduction of M. javanica than NC 2326, was rated as moderately susceptible. Tobacco breeding lines 81-R-617A, 81-RL- 2K, SA 1213, SA 1214, SA 1223, and SA 1224 were resistant to M. arenaria race 2, and thus may be used as sources of resistance to this pathogen. No resistance to M. hapla and only moderate resistance to races 2 and 4 of M. incognita were found in any of the tobacco genotypes. Under natural field infestations of M. arenaria race 2, nematode development on resistant tobacco breeding lines 81-RL-2K, SA 1214, and SA 1215 was similar to a susceptible cultivar with some nematicide treatments; however, quantity and quality of yield were inferior compared to K 326 plus nematicides.  相似文献   

15.
The interrelationships between reniform nematode (Rotylenchulus reniformis) and the cotton (Gossypium hirsutum) seedling blight fungus (Rhizoctonia solani) were studied using three isolates of R. solani, two populations of R. reniformis at multiple inoculum levels, and the cotton cultivars Dehapine 90 (DP 90) and Dehapine 41 (DP 41). Colonization of cotton hypocotyl tissue by R. solani resulted in increases (P ≤ 0.05) in nematode population densities in soil and in eggs recovered from the root systems in both 40- and 90-day-duration experiments. Increases in soil population densities resulted mainly from increases in juveniles. Enhanced reproduction of R. reniformis in the presence of R. solani was consistent across isolates (1, 2, and 3) of R. solani and populations (1 and 2) and inoculum levels (0.5, 2, 4, and 8 individuals/g of soil) of R. reniformis, regardless of cotton cultivar (DP 90 or DP 41). Severity of seedling blight was not influenced by the nematode. Rhizoctonia solani caused reductions (P ≤ 0.05) in cotton growth in 40- and 90-day periods. Rotylenchulus reniformis reduced cotton growth at 90 days. The relationship between nematode inoculum levels and plant growth reductions was linear. At 90 days, the combined effects of these pathogens were antagonistic to plant growth.  相似文献   

16.
The level of resistance to root-knot nematode, Meloidogyne incognita, in NemX, a new cultivar of the Acala-type upland cotton, was evaluated in relation to four resistant breeding lines (N6072, N8577, N901, and N903) and four susceptible cultivars (Maxxa, SJ2, Royale, and Prema). In growth pouch tests, an average of only 4 nematode egg masses was produced on roots of NemX or the resistant lines, compared to a significantly higher average of 21 on the susceptible cultivars. In pot tests, the nematode reproduction factor (RF = Pf/Pi) in NemX and the resistant lines averaged 0.7, compared to a significantly higher average of 10 on the susceptible cultivars. Root galling in NemX or other resistant cotton averaged 15%, compared to 74% on the susceptible cultivars, in either pot or field tests. In plots with low levels of nematode infestation (Pi ≤ 150 second-stage juveniles [J2]/500 g soil), lint yield of NemX averaged 1,370 kg/ha and was less than the yield of susceptible Maxxa (1,450 k g /h a ). However, in plots with medium or high levels of nematode infestation (Pi = 151-300 or >300 J2/500 g soil, respectively), yields of NemX decreased only slightly and averaged 1,300 or 1,050 kg/ha, respectively, whereas yields of Maxxa were severely reduced to 590 or 503 kg/ha, respectively. Fusarium wih symptoms were observed on both NemX and Maxxa, and percent occurrence increased with increasing preplant nematode density. In plots with the highest nematode densities, 22% of NemX and 65% of Maxxa plants were wilted. NemX was highly effective against five M. incognita isolates and moderately effective against a sixth isolate that had been exposed to resistant cotton over several seasons. These results showed that NemX is as resistant to M. incognita as the four breeding lines, and much more resistant than the tested susceptible cultivars of cotton.  相似文献   

17.
A series of controlled-environment experiments were conducted to elucidate the effects of Meloidogyne incognita on host physiology and plant-water relations of two cotton (Gossypium hirsutum) cultivars that differed in their susceptibility to nematode infection. Inoculation of M. incognita-resistant cultivar Auburn 634 did not affect growth, stomatal resistance, or components of plant-water potential relative to uninoculated controls. However, nematode infection of the susceptible cultivar Stoneville 506 greatly suppressed water flow through intact roots. This inhibition exceeded 28% on a root-length basis and was similar to that observed as a consequence of severe water stress in a high evaporative demand environment. Nematodes did not affect the components of leaf water potential, stomatal resistance, transpiration, or leaf temperature. However, these factors were affected by the interaction of M. incognita and water stress. Our results indicate that M. incognita infection may alter host-plant water balance and may be a significant factor in early-season stress on cotton seedlings.  相似文献   

18.
The influence of Chloris gayana, Crotalaria juncea, Digitaria decumbens, Tagetes patula, and a chitin-based soil amendment on Hawaiian populations of Rotylenchulus reniformis was examined. Chloris gayana was a nonhost for R. reniformis. The nematode did not penetrate the roots, and in greenhouse and field experiments, C. gayana reduced reniform nematode numbers at least as well as fallow. Tagetes patula was a poor host for reniform nematode and reduced reniform nematode numbers in soil better than did fallow. Crotalaria juncea was a poor host for R. reniformis, and only a small fraction of the nematode population penetrated the roots. Crotalaria juncea and D. decumbens reduced reniform nematode populations at least as well as fallow. A chitin-based soil amendment, applied at 2.24 t/ha to fallow soil, did not affect the population decline of reniform nematode.  相似文献   

19.
Low populations (200 specimens per plant) of Pratylenchus cofl''eae, Scutellonema bradys, Meloidogyne incognita, and Rotylenchulus reniformis stimulated the development of tops, roots, and tubers of Dioscorea rotundata "Guinea" yam. We demonstrated experimentally that P. coffeae was responsible for the deterioration in quality of the yam tuber in Puerto Rico, a condition known as a dry rot of yam. Initial populations of 600 P. coffeae, S. bradys, or M. incognita, and populations of 1,000 P. coffeae or S. bradys per plant were high enough to induce dry rot of the yam tubers. P. coffeae and S. bradys were pathogenic to yam cultivar Guinea, but M. incognita and R. reniformis did not cause necrosis or cracking of the tuber cortex in our experiments.  相似文献   

20.
Gossypium arboreum ''Nanking CB 1402'' possessed a high level of resistance to Rotylenchulus reniformis. Within 16 h, the nematode penetrated roots of resistant and susceptible cottons equally. After 36 h, significantly fewer nematodes were found in resistant roots. Larvae fed in either an endodermal or pericyclic cell and had no specificity for root tissue of a particular age. In roots of resistant G. arboreum ''1402,'' wall breakdown of pericyclic cells was evident after 3 d, endodermal and cortical cells collapsed, and the hypertrophied pericyclic cells disintegrated within 12 d. Cell walls immediately adjacent to the nematode''s head were thickened and more safranin positive in resistant than in susceptible cotton cultivars. Several other cultivars of G. arboreum were also resistant to R. reniformis, based on nematode fecundity and percent egg reduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号