首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Although the phylogeography of European mammals has been extensively investigated since the 1990s, many studies were limited in terms of sampling distribution, the number of molecular markers used and the analytical techniques employed, frequently leading to incomplete postglacial recolonisation scenarios. The broad-scale genetic structure of the European badger (Meles meles) is of interest as it may result from historic restriction to glacial refugia and/or recent anthropogenic impact. However, previous studies were based mostly on samples from western Europe, making it difficult to draw robust conclusions about the location of refugia, patterns of postglacial expansion and recent demography. In the present study, continent-wide sampling and analyses with multiple markers provided evidence for two glacial refugia (Iberia and southeast Europe) that contributed to the genetic variation observed in badgers in Europe today. Approximate Bayesian computation provided support for a colonisation of Scandinavia from both Iberian and southeastern refugia. In the whole of Europe, we observed a decline in genetic diversity with increasing latitude, suggesting that the reduced diversity in the peripheral populations resulted from a postglacial expansion processes. Although MSVAR v.1.3 also provided evidence for recent genetic bottlenecks in some of these peripheral populations, the simulations performed to estimate the method''s power to correctly infer the past demography of our empirical populations suggested that the timing and severity of bottlenecks could not be established with certainty. We urge caution against trying to relate demographic declines inferred using MSVAR with particular historic or climatological events.  相似文献   

2.
The current phylogeographic pattern of European brown bears (Ursus arctos) has commonly been explained by postglacial recolonization out of geographically distinct refugia in southern Europe, a pattern well in accordance with the expansion/contraction model. Studies of ancient DNA from brown bear remains have questioned this pattern, but have failed to explain the glacial distribution of mitochondrial brown bear clades and their subsequent expansion across the European continent. We here present 136 new mitochondrial sequences generated from 346 remains from Europe, ranging in age between the Late Pleistocene and historical times. The genetic data show a high Late Pleistocene diversity across the continent and challenge the strict confinement of bears to traditional southern refugia during the last glacial maximum (LGM). The mitochondrial data further suggest a genetic turnover just before this time, as well as a steep demographic decline starting in the mid‐Holocene. Levels of stable nitrogen isotopes from the remains confirm a previously proposed shift toward increasing herbivory around the LGM in Europe. Overall, these results suggest that in addition to climate, anthropogenic impact and inter‐specific competition may have had more important effects on the brown bear's ecology, demography, and genetic structure than previously thought.  相似文献   

3.
The phylogeographical structure of the European forest grass Hordelymus europaeus (Poaceae) was studied by sequencing three non-coding regions of chloroplast DNA. Forty-three populations within the entire natural distribution area were analysed. The greatest haplotype variation and divergence were revealed on Balkan and Apennine Peninsula, suggesting main glacial refugia in these regions. Among southern refugia, probably only the Balkans could have remarkably contributed to postglacial re-colonisation of the northern parts of Europe. A distinctly different haplotype group found on the Crimean Peninsula and in central Italy may represent either relicts of a previously more widespread ancestor or result of long-distance dispersal. The phylogeographical pattern found in H. europaeus is to certain extent similar with that found in Fagus sylvatica. This might imply a partly common postglacial colonisation history of these ecologically narrowly tied species. Nevertheless, unlike in the case of F. sylvatica, we did not found convincing evidence for the existence of Central European glacial refugia for H. europaeus.  相似文献   

4.
The role of glacial refugia in shaping contemporary species distribution is a long-standing question in phylogeography and evolutionary ecology. Recent studies are questioning previous paradigms on glacial refugia and postglacial recolonization pathways in Europe, and more flexible phylogeographic scenarios have been proposed. We used the widespread common vole Microtus arvalis as a model to investigate the origin, locations of glacial refugia, and dispersal pathways, in the group of “Continental” species in Europe. We used a Bayesian spatiotemporal diffusion analysis (relaxed random walk model) of cytochrome b sequences across the species range, including newly collected individuals from 10 Iberian localities and published sequences from 68 localities across 22 European countries. Our data suggest that the species originated in Central Europe, and we revealed the location of multiple refugia (in both southern peninsulas and continental regions) for this continental model species. Our results confirm the monophyly of Iberian voles and the pre-LGM divergence between Iberian and European voles. We found evidence of restricted postglacial dispersal from refugia in Mediterranean peninsulas. We inferred a complex evolutionary and demographic history of M. arvalis in Europe over the last 50,000 years that does not adequately fit previous glacial refugial scenarios. The phylogeography of M. arvalis provides a paradigm of ice-age survival of a temperate continental species in western and eastern Mediterranean peninsulas (sources of endemism) and multiple continental regions (sources of postglacial spread). Our findings also provide support for a major role of large European river systems in shaping geographic boundaries of M. arvalis in Europe.  相似文献   

5.
We studied the genetic population structure and phylogeography of the montane caddisfly Drusus discolor across its entire range in central and southern Europe. The species is restricted to mountain regions and exhibits an insular distribution across the major mountain ranges. Mitochondrial sequence data (COI) of 254 individuals from the entire species range is analysed to reveal population genetic structure. The data show little molecular variation within populations and regions, but distinct genetic differentiation between mountain ranges. Most populations are significantly differentiated based on F(ST) and exact tests of population differentiation and most haplotypes are unique to a single mountain range. Phylogenetic analyses reveal deep divergence between geographically isolated lineages. Combined, these results suggest that past fragmentation is the prominent process structuring the populations across Europe. We use tests of selective neutrality and mismatch distributions, to study the demographic population history of regions with haplotype overlap. The high level of genetic differentiation between mountain ranges and estimates of demographic history provide evidence for the existence of multiple glacial refugia, including several in central Europe. The study shows that these aquatic organisms reacted differently to Pleistocene cooling than many terrestrial species. They persisted in numerous refugia over multiple glacial cycles, allowing many local endemic clades to form.  相似文献   

6.
Documenting and preserving the genetic diversity of populations, which conditions their long‐term survival, have become a major issue in conservation biology. The loss of diversity often documented in declining populations is usually assumed to result from human disturbances; however, historical biogeographic events, otherwise known to strongly impact diversity, are rarely considered in this context. We apply a multilocus phylogeographic study to investigate the late‐Quaternary history of a tree frog (Hyla arborea) with declining populations in the northern and western part of its distribution range. Mitochondrial and nuclear polymorphisms reveal high genetic diversity in the Balkan Peninsula, with a spatial structure moulded by the last glaciations. While two of the main refugial lineages remained limited to the Balkans (Adriatic coast, southern Balkans), a third one expanded to recolonize Northern and Western Europe, loosing much of its diversity in the process. Our findings show that mobile and a priori homogeneous taxa may also display substructure within glacial refugia (‘refugia within refugia’) and emphasize the importance of the Balkans as a major European biodiversity centre. Moreover, the distribution of diversity roughly coincides with regional conservation situations, consistent with the idea that historically impoverished genetic diversity may interact with anthropogenic disturbances, and increase the vulnerability of populations. Phylogeographic models seem important to fully appreciate the risks of local declines and inform conservation strategies.  相似文献   

7.
Aim Based on extensive range‐wide sampling, we address the phylogeographical history of one of the most widespread and taxonomically complex sedges in Europe, Carex nigra s. lat. We compare the genetic structure of the recently colonized northern areas (front edge) and the long‐standing southern areas (rear edge), and assess the potential genetic basis of suggested taxonomic divisions at the rank of species and below. Location Amphi‐Atlantic, central and northern Europe, circum‐Mediterranean mountain ranges, central Siberia, Himalayas. Methods A total of 469 individuals sampled from 83 populations, covering most of the species’ range, were analysed with amplified fragment length polymorphism (AFLP) and chloroplast DNA (cpDNA) markers. Bayesian clustering, principal coordinates analysis, and estimates of diversity and differentiation were used for the analysis of AFLP data. CpDNA data were analysed with statistical parsimony networks and maximum parsimony and Bayesian inference of phylogenetic trees. Results Overall genetic diversity was high, but differentiation among populations was limited. Major glacial refugia were inferred in the Mediterranean Basin and in western Russia; in addition, there may have been minor refugia in the North Atlantic region. In the southern part of the range, we found high levels, but geographically quite poorly structured genetic diversity, whereas the levels of genetic diversity varied among different areas in the north. North American populations were genetically very similar to the European populations. Main conclusions The data are consistent with extensive gene flow, which has obscured the recent history of the taxon. The limited differentiation in the south probably results from the mixing of lineages expanding from several local refugia. Northward post‐glacial colonization resulted in a leading‐edge pattern of low diversity in the Netherlands, Belgium, Scotland and Iceland, whereas the observed high diversity levels in Fennoscandia suggest broad‐fronted colonization from the south as well as from the east. The patterns found in the American populations are consistent with post‐glacial colonization, possibly even with anthropogenic introduction from Europe. Our data also suggest that the tussock‐forming populations of C. nigra, often referred to as a distinct species (Carex juncella), represent an ecotype that has originated repeatedly from different populations with creeping rhizomes.  相似文献   

8.
Clinal variation is paramount for understanding the factors shaping genetic diversity in space and time. During the last glacial maximum, northern Europe was covered by glacial ice that rendered the region uninhabitable for most taxa. Different evolutionary processes during and after the recolonisation of this area from different glacial refugia have affected the genetic landscape of the present day European flora and fauna. In this study, we focus on the common toad (Bufo bufo) in Sweden and present evidence suggesting that these processes have resulted in two separate lineages of common toad, which colonised Sweden from two directions. Using ddRAD sequencing data for demographic modelling, structure analyses, and analysis of molecular variance (AMOVA), we provide evidence of a contact zone located between Uppland and Västerbotten in central Sweden. Genetic diversity was significantly higher in southern Sweden compared to the north, in accordance with a pattern of decreased genetic diversity with increasing distance from glacial refugia. Candidate genes under putative selection are identified through outlier detection and gene–environment association methods. We provide evidence of divergent selection related to stress response and developmental processes in these candidate genes. The colonisation of Sweden by two separate lineages may have implications for how future conservation efforts should be directed by identifying management units and putative local adaptations.Subject terms: Evolutionary genetics, Genomics, Genetic variation  相似文献   

9.
The high mountain ranges of Western Europe had a profound effect on the biotic recolonization of Europe from glacial refugia. The Alps present a particularly interesting case because they form an absolute barrier to dispersal for most taxa, obstructing recolonization from multiple refugia in northern Italy. Here, we investigate the effect of the European Alps on the phylogeographic history of the European common frog Rana temporaria. Based on partial cytochrome b and COXI sequences from Switzerland, we find two mitochondrial lineages roughly north and south of the Alpine ridge, with contact zones between them in eastern and western Switzerland. The northern haplogroup falls within the previously identified Western European haplogroup, while the southern haplogroup is unique to Switzerland. We find that the lineages diverged ~110 kya, at approximately the onset of the last glacial glaciation; this indicates that they are from different glacial refugia. Phylogenetic analyses suggest that the northern and southern haplogroups colonized Switzerland via trans‐ and circum‐Alpine routes from at least two separate refugia in northern Italy. Our results illustrate how a complex recolonization history of the central European Alps can arise from the semi‐permeable barrier created by high mountains.  相似文献   

10.
Phylogeographic analyses can help to reveal the refugial structure of plants during and after the ice ages, but the detailed history of regional refugial isolation and differentiation in Central Europe is still poorly understood. A recent study of Meum athamanticum in its total range of occurrences revealed persistence of this temperate montane plant species in Central Europe north of the Alps, without going into details. We therefore aimed to study differentiation and migration processes of this plant species in more detail throughout Central Europe. We used high resolution amplified fragment length polymorphisms (AFLP) markers and analyzed 210 plant individuals of 14 Central European populations with three pairs of primer combinations (128 loci, 111 of which polymorphic). The data show genetic differentiation and varying levels of molecular diversity within populations and groups of populations. Altogether, the studied populations did not show a gradient in molecular variation along presumptive postglacial migration routes across Central Europe. Rather, they reveal a genetic division into seven major groups. Four of them are characterised by high genetic diversity, private fragments and higher than average number of rare and sparse fragments, leading to the assumption that they are descendants of independent populations which survived in glacial refugia. In combination with information from paleoclimate and paleovegetation, it is likely that microclimatically favoured habitats at (i) the eastern flank of the Black Forest, (ii) the southern margin of the Cologne basin, (iii) the foothills of the Erzgebirge, and (iv) the foothills of the Jura Mountains acted as sources for the postglacial recolonisation of this species to the other mountains of Central Europe. As some of the populations analysed show intermixed gene-pools (i.e. including genetic information from different groups) and partly have exceptionally high genetic diversity, but no private and only relatively few rare or sparse fragments, they might represent contact zones. On the other hand, genetic pauperization and isolation of two other populations in connection with extremely small population sizes and unfavourable habitat conditions seem to reflect recent bottlenecks. Consequently, the genetic structure of M. athamanticum in Central Europe is shaped by (i) extra-Mediterranean glacial refugia in situ, (ii) following postglacial hybridization along emerging contact zones and (iii) genetic bottlenecks in thereafter isolated small populations. All results provide evidences for small scale migration of the species between Central European valleys and surrounding highlands. Therefore, our study provides molecular evidence for both climate dependent wide ranging periglacial tabula rasa, but some small refugia in locally buffered areas. We hereby show that the environmental heterogeneity of cold stage landscapes in Central Europe is generally underestimated.  相似文献   

11.
Despite not having been fully recognized, the cryptic northern refugia of temperate forest vegetation in Central and Western Europe are one of the most important in the Holocene history of the vegetation on the subcontinent. We have studied a forest grass Bromus benekenii in 39 populations in Central, Western and Southern Europe with the use of PCR-ISSR fingerprinting. The indices of genetic population diversity, multivariate, and Bayesian analyses, supplemented with species distribution modelling have enabled at least three putative cryptic northern refugial areas to be recognized: in Western Europe—the Central and Rhenish Massifs, in Central Europe—the Bohemia–Moravia region and in the Eastern/Western Carpathians. Central Poland is the regional genetic melting-pot where several migratory routes might have met. Southern Poland had a different postglacial history and was under the influence of an Eastern/Western Carpathian cryptic refugium. More forest species should be checked in a west–east gradient in Europe to corroborate the hypothesis on the Western European glacial refugia.  相似文献   

12.
Historical evolutionary events highly affect the modern-day genetic structure of natural populations. Scots pine (Pinus sylvestris L.), as a dominant tree species of the Eurasian taiga communities following the glacial cycles of the Pleistocene, has survived in small, scattered populations at the range limits of its south-eastern European distribution. In this study, we examined genetic relationships, genetic divergence and demographic history of peripheral populations from central-eastern Europe, the Carpathian Mountains and the Pannonian Basin. Four hundred twenty-one individuals from 20 populations were sampled and characterized with both nuclear and chloroplast simple sequence repeat (SSR) markers. Standard population genetic indices, the degree of genetic differentiation and spatial genetic structure were analysed. Our results revealed that peripheral Scots pine populations retained high genetic diversity despite the recently ongoing fragmentation and isolation of the persisting relict populations. Analysis of molecular variance (AMOVA) showed 7% among-population genetic differentiation, and there was no isolation by distance among the island-like occurrences. Genetic discontinuities with strong barriers (99–100% bootstrap support) were identified in the Carpathians. Based on both marker types, populations of the Western Carpathians were delimited from those inhabiting the Eastern Carpathians, and two main genetic lineages were traced that most probably originate from two main refugia. One refugium presumably existed in the region of the Eastern Alps with the Hungarian Plain, while the other was probably found in the Eastern Carpathians. These findings are supported by recent palynological records. The strongest genetic structure was revealed within the Romanian Carpathians on the basis of both marker types. With only some exceptions, no signs of recent bottlenecks or inbreeding were detected. However, Carpathian natural populations of Scots pine are highly fragmented and have a small census size, though they have not yet been affected by genetic erosion induced by isolation.  相似文献   

13.
Fairy shrimp (Crustacea: Anostraca) are specialist inhabitants of temporary aquatic habitats. In many parts of the world and particularly in Western Europe, however, populations are declining while the development of adequate conservation strategies is impeded by a poor knowledge of the genetic structure and taxonomic status of remaining lineages. We reconstructed a phylogeography of the species Chirocephalus diaphanus Prévost, 1803 using partial sequences of the mitochondrial COI gene and discuss the importance of different Pleistocene refugia to explain current diversity patterns. In addition to 20 C. diaphanus populations, we also included populations of six presumably closely related chirocephalids to evaluate their taxonomic status. Based on molecular data, the Eastern European subspecies C. diaphanus romanicus deserves species status while the species status of two Italian chirocephalids, C. salinus and C. ruffoi is questionable. Results indicate European C. diaphanus lineages diverged well before the last glacial maximum and survived the Pleistocene glaciations in multiple (sub)refugia along the Iberian, Italian, and Balkan peninsula. Northern Europe was subsequently recolonized from Southern France, resulting in high levels of cryptic diversity around glacial refugia but also in more widespread haplotypes in mainland Europe.  相似文献   

14.
The West Antarctic Peninsula (WAP) has been suffering an increase in its atmospheric temperature during the last 50 years, mainly associated with global warming. This increment of temperature trend associated with changes in sea-ice dynamics has an impact on organisms, affecting their phenology, physiology and distribution range. For instance, rapid demographic changes in Pygoscelis penguins have been reported over the last 50 years in WAP, resulting in population expansion of sub-Antarctic Gentoo penguin (P. papua) and retreat of Antarctic Adelie penguin (P. adeliae). Current global warming has been mainly associated with human activities; however these climate trends are framed in a historical context of climate changes, particularly during the Pleistocene, characterized by an alternation between glacial and interglacial periods. During the last maximal glacial (LGM∼21,000 BP) the ice sheet cover reached its maximum extension on the West Antarctic Peninsula (WAP), causing local extinction of Antarctic taxa, migration to lower latitudes and/or survival in glacial refugia. We studied the HRVI of mtDNA and the nuclear intron βfibint7 of 150 individuals of the WAP to understand the demographic history and population structure of P. papua. We found high genetic diversity, reduced population genetic structure and a signature of population expansion estimated around 13,000 BP, much before the first paleocolony fossil records (∼1,100 BP). Our results suggest that the species may have survived in peri-Antarctic refugia such as South Georgia and North Sandwich islands and recolonized the Antarctic Peninsula and South Shetland Islands after the ice sheet retreat.  相似文献   

15.
Aim The southern European peninsulas (Iberian, Italian and Balkan) are considered to have been refugia for many European species of plants and animals during the climatic extremes of the Pleistocene ice ages. A number of recent studies (fossil and genetic), however, have provided evidence for full‐glacial survival of some species beyond these peninsulas. Here we explore the biogeographical traits of these species, and ask whether they possessed certain characteristics that enabled them to persist in more northerly refugia. Location Europe. Methods Fossil and genetic evidence for refugial localities of species that survived in Europe during the last full‐glacial was obtained from the literature (totalling 90 species: 34 woody plants and 56 vertebrates). Forty‐seven of these species (23 woody plants and 24 vertebrates) had fossil evidence, whereas the remaining 43 species (11 woody plants and 32 vertebrates) had only genetic evidence. All species were scored according to their present geographical distribution, habitat preference and life‐history traits. The species were classified on the basis of these traits using hierarchical cluster analysis. Analysis of similarities was used to examine differences in vertebrate and woody plant species groups that survived only in southerly refugia and those that also persisted in more northerly locations. Non‐metric multi‐dimensional scaling was used to examine patterns observed between and within groups. Results Results from our analysis of species with fossil and genetic evidence for survival in refugia reveal that species that survived only in southerly refugia were large‐seeded trees or thermophilous vertebrates. In contrast, species that had a full‐glacial distribution, including more northerly locations, were wind‐dispersed, habitat‐generalist trees with the ability to reproduce vegetatively, and habitat‐generalist mammals with present‐day northerly distributions. Main conclusions Analysis of the geographical distribution, habitat preference and life‐history traits of the species studied suggests that underlying biogeographical traits may have determined their response to Pleistocene glaciation. The traits most commonly found in present populations with a northerly distribution in Europe enabled the same species to exist much farther north than the southern European peninsulas during the full‐glacial. It is possible that many of these species are now in restricted populations, within the ‘warm‐stage’ refugia of the current interglacial. The northerly full‐glacial survival of a number of woody plants and vertebrate species has significant implications for understanding migration rates of these species in response to climate change. It also has important implications for understanding current patterns of genetic diversity of European species. We suggest that both fossil and genetic evidence should be used to identify and prioritize for conservation of refugial localities in southern and northern Europe.  相似文献   

16.
The European sea bass Dicentrarchus labrax represents a historically and commercially valuable species in the north‐east Atlantic, although the demographic history and the patterns of geographical structure of the species in the north‐east Atlantic remain poorly understood. The present study investigates the population genetic structure of sea bass in north‐western European waters, employing different genetic markers [a portion of the mitochondrial (mt)DNA control region and 13 nuclear microsatellites] aiming to unravel demographic history and population connectivity. The results obtained show a previously unrecognized pattern of population divergence at mtDNA, with three strikingly different lineages identified. Extant sea bass populations, including the Mediterranean lineage, derive from an Atlantic ancestor. A much increased number of nuclear microsatellite loci (comparatively to previous studies) still fail to detect biologically meaningful patterns of spatial genetic structuring in the North Atlantic. Past Pleistocene glacial and interglacial events and some degree of female philopatry might be at the basis of the current geographical separation of the Atlantic lineages that has been identified. Signatures of sudden demographic expansions are more evident in the most recent mitochondrial lineages, and their slight, yet significant, geographical segregation leads to the hypothesis that present‐day spawning grounds for European sea bass may still to some extent be linked to their most recent glacial refugia. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 104 , 364–377.  相似文献   

17.
To understand the demographic history of Arabidopsis thaliana within its native geographical range, we have studied its genetic structure in the Iberian Peninsula region. We have analyzed the amount and spatial distribution of A. thaliana genetic variation by genotyping 268 individuals sampled in 100 natural populations from the Iberian Peninsula. Analyses of 175 individuals from 7 of these populations, with 20 chloroplast and nuclear microsatellite loci and 109 common single nucleotide polymorphisms, show significant population differentiation and isolation by distance. In addition, analyses of one genotype from 100 populations detected significant isolation by distance over the entire Iberian Peninsula, as well as among six Iberian subregions. Analyses of these 100 genotypes with different model-based clustering algorithms inferred four genetic clusters, which show a clear-cut geographical differentiation pattern. On the other hand, clustering analysis of a worldwide sample showed a west–east Eurasian longitudinal spatial gradient of the commonest Iberian genetic cluster. These results indicate that A. thaliana genetic variation displays significant regional structure and consistently support the hypothesis that Iberia has been a glacial refugium for A. thaliana. Furthermore, the Iberian geographical structure indicates a complex regional population dynamics, suggesting that this region contained multiple Pleistocene refugia with a different contribution to the postglacial colonization of Europe.  相似文献   

18.
European wolves (Canis lupus) show population genetic structure in the absence of geographic barriers, and across relatively short distances for this highly mobile species. Additional information on the location of and divergence between population clusters is required, particularly because wolves are currently recolonizing parts of Europe. We evaluated genetic structure in 177 wolves from 11 countries using over 67K single nucleotide polymorphism (SNP) loci. The results supported previous findings of an isolated Italian population with lower genetic diversity than that observed across other areas of Europe. Wolves from the remaining countries were primarily structured in a north-south axis, with Croatia, Bulgaria, and Greece (Dinaric-Balkan) differentiated from northcentral wolves that included individuals from Finland, Latvia, Belarus, Poland and Russia. Carpathian Mountain wolves in central Europe had genotypes intermediate between those identified in northcentral Europe and the Dinaric-Balkan cluster. Overall, individual genotypes from northcentral Europe suggested high levels of admixture. We observed high diversity within Belarus, with wolves from western and northern Belarus representing the two most differentiated groups within northcentral Europe. Our results support the presence of at least three major clusters (Italy, Carpathians, Dinaric-Balkan) in southern and central Europe. Individuals from Croatia also appeared differentiated from wolves in Greece and Bulgaria. Expansion from glacial refugia, adaptation to local environments, and human-related factors such as landscape fragmentation and frequent killing of wolves in some areas may have contributed to the observed patterns. Our findings can help inform conservation management of these apex predators and the ecosystems of which they are part.  相似文献   

19.
The barbastelle (Barbastella barbastellus) is a rare forest bat with a wide distribution in Europe. Here, we combine results from the analysis of two mtDNA fragments with species distribution modelling to determine glacial refugia and postglacial colonization routes. We also investigated whether niche conservatism occurs in this species. Glacial refugia were identified in the three southern European peninsulas: Iberia, Italy and the Balkans. These latter two refugia played a major role in the postglacial colonization process, with their populations expanding to England and central Europe, respectively. Palaeo‐distribution models predicted that suitable climatic conditions existed in the inferred refugia during the last glacial maximum (LGM). Nevertheless, the overlap between the current and the LGM distributions was almost inexistent in Italy and in the Balkans, meaning that B. barbastellus populations were forced to shift range between glacial and interglacial periods, a process that probably caused some local extinctions. In contrast, Iberian populations showed a ‘refugia within refugium’ pattern, with two unconnected areas containing stable populations (populations that subsisted during both glacial and interglacial phases). Moreover, the match between LGM models and the refugial areas determined by molecular analysis supported the hypothesis of niche conservatism in B. barbastellus. We argue that geographic patterns of genetic structuring, altogether with the modelling results, indicate the existence of four management units for conservation: Morocco, Iberia, Italy and UK, and Balkans and central Europe. In addition, all countries sampled possessed unique gene pools, thus stressing the need for the conservation of local populations.  相似文献   

20.
Despite recent advances in the understanding of the interplay between a dynamic physical environment and phylogeography in Europe, the origins of contemporary Irish biota remain uncertain. Current thinking is that Ireland was colonized post-glacially from southern European refugia, following the end of the last glacial maximum (LGM), some 20 000 years BP. The Leisler''s bat (Nyctalus leisleri), one of the few native Irish mammal species, is widely distributed throughout Europe but, with the exception of Ireland, is generally rare and considered vulnerable. We investigate the origins and phylogeographic relationships of Irish populations in relation to those across Europe, including the closely related species N. azoreum. We use a combination of approaches, including mitochondrial and nuclear DNA markers, in addition to approximate Bayesian computation and palaeo-climatic species distribution modelling. Molecular analyses revealed two distinct and diverse European mitochondrial DNA lineages, which probably diverged in separate glacial refugia. A western lineage, restricted to Ireland, Britain and the Azores, comprises Irish and British N. leisleri and N. azoreum specimens; an eastern lineage is distributed throughout mainland Europe. Palaeo-climatic projections indicate suitable habitats during the LGM, including known glacial refugia, in addition to potential novel cryptic refugia along the western fringe of Europe. These results may be applicable to populations of many species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号