首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
ATP-stimulated P2X1 and ADP-stimulated P2Y1 receptors play important roles in platelet activation. An increase in intracellular Ca2+ represents a key signalling event coupled to both of these receptors, mediated via direct gating of Ca2+-permeable channels in the case of P2X1 and phospholipase-C-dependent Ca2+ mobilisation for P2Y1. We show that disruption of cholesterol-rich membrane lipid rafts reduces P2X1 receptor-mediated calcium increases by approximately 80%, while P2Y1 receptor-dependent Ca2+ release is unaffected. In contrast to artery, vas deferens, bladder smooth muscle, and recombinant expression in cell lines, where P2X1 receptors show almost exclusive association with lipid rafts, only approximately 20% of platelet P2X1 receptors are co-expressed with the lipid raft marker flotillin-2. We conclude that lipid rafts play a significant role in the regulation of P2X1 but not P2Y1 receptors in human platelets and that a reserve of non-functional P2X1 receptors may exist.  相似文献   

3.
Extracellular nucleotides are ubiquitous signalling molecules, acting via the P2 class of surface receptors. Platelets express three P2 receptor subtypes, ADP-dependent P2Y1 and P2Y12 G-protein-coupled receptors and the ATP-gated P2X1 non-selective cation channel. Platelet P2X1 receptors can generate significant increases in intracellular Ca2+, leading to shape change, movement of secretory granules and low levels of αIIbβ3 integrin activation. P2X1 can also synergise with several other receptors to amplify signalling and functional events in the platelet. In particular, activation of P2X1 receptors by ATP released from dense granules amplifies the aggregation responses to low levels of the major agonists, collagen and thrombin. In vivo studies using transgenic murine models show that P2X1 receptors amplify localised thrombosis following damage of small arteries and arterioles and also contribute to thromboembolism induced by intravenous co-injection of collagen and adrenaline. In vitro, under flow conditions, P2X1 receptors contribute more to aggregate formation on collagen-coated surfaces as the shear rate is increased, which may explain their greater contribution to localised thrombosis in arterioles compared to venules within in vivo models. Since shear increases substantially near sites of stenosis, anti-P2X1 therapy represents a potential means of reducing thrombotic events at atherosclerotic plaques.  相似文献   

4.
Atherosclerosis is an immunoinflammatory process that involves complex interactions between the vessel wall and blood components and is thought to be initiated by endothelial dysfunction [13]. Extracellular nucleotides that are released from a variety of arterial and blood cells [4] can bind to P2 receptors and modulate proliferation and migration of smooth muscle cells (SMC), which is known to be involved in intimal hyperplasia that accompanies atherosclerosis and postangioplasty restenosis [5]. In addition, P2 receptors mediate many other functions, including platelet aggregation, leukocyte adherence, and arterial vasomotoricity. A direct pathological role of P2 receptors is reinforced by recent evidence showing that up-regulation and activation of P2Y2 receptors in rabbit arteries mediates intimal hyperplasia [6]. In addition, up-regulation of functional P2Y receptors also has been demonstrated in the basilar artery of the rat double-hemorrhage model [7] and in coronary arteries of diabetic dyslipidemic pigs [8]. It has been proposed that up-regulation of P2Y receptors may be a potential diagnostic indicator for the early stages of atherosclerosis [9]. Therefore, particular effort must be made to understand the consequences of nucleotide release from cells in the cardiovascular system and the subsequent effects of P2 nucleotide receptor activation in blood vessels, which may reveal novel therapeutic strategies for atherosclerosis and restenosis after angioplasty.  相似文献   

5.
Vascular endothelial cells that are in direct contact with blood flow are exposed to fluid shear stress and regulate vascular homeostasis. Studies report endothelial cells to release ATP in response to shear stress that in turn modulates cellular functions via P2 receptors with P2X4 mediating shear stress-induced calcium signaling and vasodilation. A recent study shows that a loss-of-function polymorphism in the human P2X4 resulting in a Tyr315>Cys variant is associated with increased pulse pressure and impaired endothelial vasodilation. Although the importance of shear stress-induced Krüppel-like factor 2 (KLF2) expression in atheroprotection is well studied, whether ATP regulates KLF2 remains unanswered and is the objective of this study. Using an in vitro model, we show that in human umbilical vein endothelial cells (HUVECs), apyrase decreased shear stress-induced KLF2, KLF4, and NOS3 expression but not that of NFE2L2. Exposure of HUVECs either to shear stress or ATPγS under static conditions increased KLF2 in a P2X4-dependent manner as was evident with both the receptor antagonist and siRNA knockdown. Furthermore, transient transfection of static cultures of human endothelial cells with the Tyr315>Cys mutant P2X4 construct blocked ATP-induced KLF2 expression. Also, P2X4 mediated the shear stress-induced phosphorylation of extracellular regulated kinase-5, a known regulator of KLF2. This study demonstrates a major physiological finding that the shear-induced effects on endothelial KLF2 axis are in part dependent on ATP release and P2X4, a previously unidentified mechanism.

Electronic supplementary material

The online version of this article (doi:10.1007/s11302-014-9442-3) contains supplementary material, which is available to authorized users.  相似文献   

6.
Extracellular nucleotides induce cellular responses in the central nervous system (CNS) through the activation of ionotropic P2X and metabotropic P2Y nucleotide receptors. Activation of these receptors regulates a wide range of physiological and pathological processes. In this review, we present an overview of the current literature regarding P2X and P2Y receptors in the CNS with a focus on the contribution of P2X7 and P2Y(2) receptor-mediated responses to neuroinflammatory and neuroprotective mechanisms.  相似文献   

7.
Secretomotor reflexes in the gastrointestinal (GI) tract are important in the lubrication and movement of digested products, absorption of nutrients, or the diarrhea that occurs in diseases to flush out unwanted microbes. Mechanical or chemical stimulation of mucosal sensory enterochromaffin (EC) cells triggers release of serotonin (5-HT) (among other mediators) and initiates local reflexes by activating intrinsic primary afferent neurons of the submucous plexus. Signals are conveyed to interneurons or secretomotor neurons to stimulate chloride and fluid secretion. Inputs from myenteric neurons modulate secretory rates and reflexes, and special neural circuits exist to coordinate secretion with motility. Cellular components of secretomotor reflexes variably express purinergic receptors for adenosine (A1, A2a, A2b, or A3 receptors) or the nucleotides adenosine 5'-triphosphate (ATP), adenosine diphosphate (ADP), uridine 5'-triphosphate (UTP), or uridine diphosphate (UDP) (P2X(1-7), P2Y(2), P2Y(4), P2Y(6), P2Y(12) receptors). This review focuses on the emerging concepts in our understanding of purinergic regulation at these receptors, and in particular of mechanosensory reflexes. Purinergic inhibitory (A(1), A(3), P2Y(12)) or excitatory (A(2), P2Y(1)) receptors modulate mechanosensitive 5-HT release. Excitatory (P2Y(1), other P2Y, P2X) or inhibitory (A(1), A(3)) receptors are involved in mechanically evoked secretory reflexes or "neurogenic diarrhea." Distinct neural (pre- or postsynaptic) and non-neural distribution profiles of P2X(2), P2X(3), P2X(5), P2Y(1), P2Y(2), P2Y(4), P2Y(6), or P2Y(12) receptors, and for some their effects on neurotransmission, suggests their role in GI secretomotor function. Luminal A(2b), P2Y(2), P2Y(4), and P2Y(6) receptors are involved in fluid and Cl(-), HCO(3) (-), K(+), or mucin secretion. Abnormal receptor expression in GI diseases may be of clinical relevance. Adenosine A(2a) or A(3) receptors are emerging as therapeutic targets in inflammatory bowel diseases (IBD) and gastroprotection; they can also prevent purinergic receptor abnormalities and diarrhea. Purines are emerging as fundamental regulators of enteric secretomotor reflexes in health and disease.  相似文献   

8.
Accumulating findings indicate that nucleotides play an important role in cell-to-cell communication through P2 purinoceptors, even though ATP is recognized primarily to be a source of free energy and nucleotides are key molecules in cells. P2 purinoceptors are divided into two families, ionotropic receptors (P2X) and metabotropic receptors (P2Y). P2X receptors (7 types; P2X(1)-P2X(7)) contain intrinsic pores that open by binding with ATP. P2Y (8 types; P2Y(1, 2, 4, 6, 11, 12, 13,) and (14)) are activated by nucleotides and couple to intracellular second-messenger systems through heteromeric G-proteins. Nucleotides are released or leaked from non-excitable cells as well as neurons in physiological and pathophysiological conditions. One of the most exciting cells in non-excitable cells is the glia cells, which are classified into astrocytes, oligodendrocytes, and microglia. Astrocytes express many types of P2 purinoceptors and release the 'gliotransmitter' ATP to communicate with neurons, microglia and the vascular walls of capillaries. Microglia also express many types of P2 purinoceptors and are known as resident macrophages in the CNS. ATP and other nucleotides work as 'warning molecules' especially through activating microglia in pathophysiological conditions. Microglia play a key role in neuropathic pain and show phagocytosis through nucleotide-evoked activation of P2X(4) and P2Y(6) receptors, respectively. Such strong molecular, cellular and system-level evidence for extracellular nucleotide signaling places nucleotides in the central stage of cell communications in glia/CNS.  相似文献   

9.
10.
Ma B  Yu LH  Fan J  Ni X  Burnstock G 《Life sciences》2008,83(5-6):185-191
  相似文献   

11.
Arterial hemodynamic shear stress and blood vessel stiffening both significantly influence the arterial endothelial cell (EC) phenotype and atherosclerosis progression, and both have been shown to signal through cell-matrix adhesions. However, the cooperative effects of fluid shear stress and matrix stiffness on ECs remain unknown. To investigate these cooperative effects, we cultured bovine aortic ECs on hydrogels matching the elasticity of the intima of compliant, young, or stiff, aging arteries. The cells were then exposed to laminar fluid shear stress of 12 dyn/cm2. Cells grown on more compliant matrices displayed increased elongation and tighter EC-cell junctions. Notably, cells cultured on more compliant substrates also showed decreased RhoA activation under laminar shear stress. Additionally, endothelial nitric oxide synthase and extracellular signal-regulated kinase phosphorylation in response to fluid shear stress occurred more rapidly in ECs cultured on more compliant substrates, and nitric oxide production was enhanced. Together, our results demonstrate that a signaling cross talk between stiffness and fluid shear stress exists within the vascular microenvironment, and, importantly, matrices mimicking young and healthy blood vessels can promote and augment the atheroprotective signals induced by fluid shear stress. These data suggest that targeting intimal stiffening and/or the EC response to intima stiffening clinically may improve vascular health.  相似文献   

12.
Endothelial cells control vascular tone, permeability and leukocyte transmigration and are modulated by pro-inflammatory mediators. Schistosomiasis is an intravascular disease associated with inflammation, therefore altering endothelial cells’ phenotype. Purinergic P2X7 receptors (P2X7R) play an important role in inflammation; however, the impact of the disease upon endothelial P2X7R function or expression has not been explored. Using ethidium bromide uptake to investigate P2X7R function, we observed that the effects of ATP (3 mM) and the P2X7R agonist 3′-O-(4-benzoyl)-ATP (BzATP) were smaller in mesenteric endothelial cells from the Schistosoma mansoni-infected group than in the control group. In the control group, BzATP induced endothelial nitric oxide production, which was blocked by the P2X7R antagonists KN-62 and A740003. However, in the infected group, we observed a reduced effect of BzATP and no effect of both P2X7R antagonists, suggesting a downregulation of endothelial P2X7R in schistosomiasis. We observed similar results in both infected and P2X7R−/− groups, which were also comparable to data obtained with KN-62- or A740004-treated control cells. Data from Western blot and immunocytochemistry assays confirmed the reduced expression of P2X7R in the infected group. In conclusion, our data show a downregulation of P2X7R in schistosomiasis infection, which likely limits the infection-related endothelial damage.  相似文献   

13.
Under normal and pathological conditions, brain cells release nucleotides that regulate a wide range of cellular responses due to activation of P2 nucleotide receptors. In this study, the effect of extracellular nucleotides on IFN gamma-induced NO release in murine BV-2 microglial cells was investigated. BV-2 cells expressed mRNA for metabotropic P2Y and ionotropic P2X receptors. Among the P2 receptor agonists tested, ATP, ADP, 2',3'-O-(4-benzoylbenzoyl)-ATP (BzATP), and 2-methylthio-ATP (2-MeSATP), but not UTP, enhanced IFN gamma-induced iNOS expression and NO production, suggesting that the uridine nucleotide receptors P2Y2 and P2Y6 are not involved in this response. U0126, an antagonist for MEK1/2, a kinase that phosphorylates the extracellular signal-regulated kinases ERK1/2, decreased IFN gamma-induced NO production. BzATP, a potent P2X7 receptor agonist, was more effective than ATP, ADP, or 2-MeSATP at enhancing IFN gamma-induced ERK1/2 phosphorylation. Consistent with activation of the P2X7 receptor, periodate-oxidized ATP, a P2X7 receptor antagonist, and suramin, a non-specific P2 receptor antagonist, inhibited the effect of ATP or BzATP on IFN gamma-induced NO production, whereas pyridoxal-phosphate-6-azophenyl-2',4'-disulfonic acid (PPADS), an antagonist of several P2X receptor subtypes, was ineffective. These results suggest that activation of P2X7 receptors may contribute to inflammatory responses in microglial cells seen in neurodegenerative diseases.  相似文献   

14.
克隆的P2受体亚型的药理学研究进展   总被引:3,自引:0,他引:3  
张一红  赵志奇 《生命科学》2001,13(4):170-173,166
细胞外嘌呤(腺苷,ADP,ATP)及嘧啶(UDP,UTP)为重要的信使分子,通过细胞表面P2受体介导产生不同的生物效应,P2嘌吟受体的概念于1978年被提出,随后根据药理学特征又被分为P2X及P2X嘌呤受体,90年代,采用分子生物学手段,一系列配体门控的P2X受体及G蛋白耦联的P2Y受体被克隆及功能表达,迄今为止,已有七型P2X受体亚型(P2X1-7)及六型P2Y受体亚型被克隆(P2Y1,2,4,6,11,12),各型具有不同的分子结构,药理学特征及组织分布,本文还讨论了目前可用于区分各亚型激动剂及拮抗剂。  相似文献   

15.
16.
Etiology of the Alzheimer’s disease (AD) is not fully understood. Different pathological processes are considered, such as amyloid deposition, tau protein phosphorylation, oxidative stress (OS), metal ion disregulation, or chronic neuroinflammation. Purinergic signaling is involved in all these processes, suggesting the importance of nucleotide receptors (P2X and P2Y) and adenosine receptors (A1, A2A, A2B, A3) present on the CNS cells. Ecto-purines, ecto-pyrimidines, and enzymes participating in their metabolism are present in the inter-cellular spaces. Accumulation of amyloid-β (Aβ) in brain induces the ATP release into the extra-cellular space, which in turn stimulates the P2X7 receptors. Activation of P2X7 results in the increased synthesis and release of many pro-inflammatory mediators such as cytokines and chemokines. Furthermore, activation of P2X7 leads to the decreased activity of α-secretase, while activation of P2Y2 receptor has an opposite effect. Simultaneous inhibition of P2X7 and stimulation of P2Y2 would therefore be the efficient way of the α-secretase activation. Activation of P2Y2 receptors present in neurons, glia cells, and endothelial cells may have a positive neuroprotective effect in AD. The OS may also be counteracted via the purinergic signaling. ADP and its non-hydrolysable analogs activate P2Y13 receptors, leading to the increased activity of heme oxygenase, which has a cytoprotective activity. Adenosine, via A1 and A2A receptors, affects the dopaminergic and glutaminergic signaling, the brain-derived neurotrophic factor (BNDF), and also changes the synaptic plasticity (e.g., causing a prolonged excitation or inhibition) in brain regions responsible for learning and memory. Such activity may be advantageous in the Alzheimer’s disease.  相似文献   

17.
Localization of three P2X and six P2Y receptors in sinus endothelial cells of the rat spleen was examined by immunofluorescent microscopy, and ultrastructural localization of the detected receptors was examined by immunogold electron microscopy. In immunofluorescent microscopy, labeling for anti-P2Y1, P2Y6, and P2Y12 receptors was detected in endothelial cells, but P2X1, P2X2, P2X4, P2Y2, P2Y4, and P2Y13 receptors was not detected. P2Y1 and P2Y12 receptors were prominently localized in the basal parts of endothelial cells. P2Y6 receptor was not only predominantly localized in the basal parts of endothelial cells, but also in the superficial layer. Triple immunofluorescent staining for a combination of two P2Y receptors and actin filaments showed that P2Y1, P2Y6, and P2Y12 receptors were individually localized in endothelial cells. Phospholipase C-β3, phospholipase C- γ2, and inositol-1,4,5-trisphosphate receptors, related to the release of the intracellular Ca2+ from the endoplasmic reticulum, were also predominantly localized in the basal parts of endothelial cells. In immunogold electron microscopy, labeling for P2Y1, P2Y6, and P2Y12 receptors were predominantly localized in the basal part of endothelial cells and, in addition, in the junctional membrane, basal plasma membrane, and caveolae in the basal part of endothelial cells. Labeling for phospholipase C-β3 and phospholipase C-γ2 was dominantly localized in the basal parts and in close proximity to the plasma membranes of endothelial cells. The possible functional roles of these P2Y receptors in splenic sinus endothelial cells are discussed.  相似文献   

18.
Purinergic receptors are present in most tissues and thought to be involved in various signalling pathways, including neural signalling, cell metabolism and local regulation of the microcirculation in skeletal muscles. The present study aims to determine the distribution and intracellular content of purinergic receptors in skeletal muscle fibres in patients with type 2 diabetes and age-matched controls. Muscle biopsies from vastus lateralis were obtained from six type 2 diabetic patients and seven age-matched controls. Purinergic receptors were analysed using light and confocal microscopy in immunolabelled transverse sections of muscle biopsies. The receptors P2Y(4), P2Y(11) and likely P2X(1) were present intracellularly or in the plasma membrane of muscle fibres and were thus selected for further detailed morphological analysis. P2X(1) receptors were expressed in intracellular vesicles and sarcolemma. P2Y(4) receptors were present in sarcolemma. P2Y(11) receptors were abundantly and diffusely expressed intracellularly and were more explicitly expressed in type I than in type II fibres, whereas P2X(1) and P2Y(4) showed no fibre-type specificity. Both diabetic patients and healthy controls showed similar distribution of receptors. The current study demonstrates that purinergic receptors are located intracellularly in human skeletal muscle fibres. The similar cellular localization of receptors in healthy and diabetic subjects suggests that diabetes is not associated with an altered distribution of purinergic receptors in skeletal muscle fibres. We speculate that the intracellular localization of purinergic receptors may reflect a role in regulation of muscle metabolism; further studies are nevertheless needed to determine the function of the purinergic system in skeletal muscle cells.  相似文献   

19.
Sphingosine-1-phosphate (S1P) is a blood-borne lipid mediator with pleiotropic biological activities. S1P acts via the specific cell surface G-protein-coupled receptors, S1P(1-5). S1P(1) and S1P(2) were originally identified from vascular endothelial cells (ECs) and smooth muscle cells, respectively. Emerging evidence shows that S1P plays crucial roles in the regulation of vascular functions, including vascular formation, barrier protection and vascular tone via S1P(1), S1P(2) and S1P(3). In particular, S1P regulates vascular formation through multiple mechanisms; S1P exerts both positive and negative effects on angiogenesis and vascular maturation. The positive and negative effects of S1P are mediated by S1P(1) and S1P(2), respectively. These effects of S1P(1) and S1P(2) are probably mediated by the S1P receptors expressed in multiple cell types including ECs and bone-marrow-derived cells. The receptor-subtype-specific, distinct effects of S1P favor the development of novel therapeutic tactics for antitumor angiogenesis in cancer and therapeutic angiogenesis in ischemic diseases.  相似文献   

20.
Extracellular adenosine diphosphate (ADP) mediates a wide range of physiological effects as an extracellular signaling molecule, including platelet aggregation, vascular tone, cell proliferation, and apoptosis by interacting with plasma membrane P2 receptors. However, the effect of ADP on cell proliferation was contradictory. In this study, we found that ADP significantly inhibited cell proliferation of human umbilical vein endothelial cells at high concentrations (50 to 100 µM). Treatment with ADP did not induce cell apoptosis but instead induced cell cycle arrest in the S phase, which may be partly due to the downregulation of cyclin B1. The inhibition of cell proliferation was blocked by suramin, a nonspecific antagonist of the P2 receptors, and high concentrations of ADP significantly upregulated the messenger RNA (mRNA) and protein expression of P2Y11 in endothelial cells. Moreover, the downregulation of P2Y11 by RNA interference reversed the inhibition of cell proliferation. In addition, ADP (100 µM) can induce the formation of cytosolic autophagy in endothelial cells and a rapid phosphorylation of extracellular signal regulated kinase (ERK) 1/2, which is a canonical signal molecule downstream of P2Y receptors, accompanied by a mRNA expression of proinflammatory cytokines such as intercellular adhesion molecule 1 and vascular cell adhesion molecule 1. Taken together, our study excludes a mechanism for extracellular ADP impairing endothelial cells proliferation via P2Y11 receptor by downregulating cyclin B1 and arresting cell cycle at the S phase, besides, ADP induces cell autophagy and mRNA expression of inflammatory cytokines, whether it is mediated by Erk signaling pathways needs further studies to confirm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号