首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multiple control strategies, including a downstream purification process with well-controlled parameters and a comprehensive release or characterization for intermediates or drug substances, were implemented to mitigate the potential risk of host cell proteins (HCPs) in one concentrated fed-batch (CFB) mode manufactured product. A host cell process specific enzyme-linked immunosorbent assay (ELISA) method was developed for the quantitation of HCPs. The method was fully validated and showed good performance including high antibody coverage. This was confirmed by 2D Gel-Western Blot analysis. Furthermore, a LC-MS/MS method with non-denaturing digestion and a long gradient chromatographic separation coupled with data dependent acquisition (DDA) on a Thermo/QE-HF-X mass spectrometer was developed as an orthogonal method to help identify the specific types of HCPs in this CFB product. Because of the high sensitivity, selectivity and adaptability of the new developed LC-MS/MS method, significantly more species of HCP contaminants were able to be identified. Even though high levels of HCPs were observed in the harvest bulk of this CFB product, the development of multiple processes and analytical control strategies may greatly mitigate potential risks and reduce HCPs contaminants to a very low level. No high-risk HCP was identified and the total amount of HCPs was very low in the CFB final product.  相似文献   

2.
Monitoring host cell proteins (HCPs) is one of the most important analytical requirements in production of recombinant biopharmaceuticals to ensure product purity and patient safety. Enzyme-linked immunosorbent assay (ELISA) is the standard method for monitoring HCP clearance. It is important to validate that the critical reagent of an ELISA, the HCP antibody, covers a broad spectrum of the HCPs potentially present in the purified drug substance. Current coverage methods for assessing HCP antibody coverage are based on 2D-Western blot or immunoaffinity-purification combined with 2D gel electrophoresis and have several limitations. In the present study, we present a novel coverage method combining ELISA-based immunocapture with protein identification by liquid chromatography–tandem mass spectrometry (LC–MS/MS): ELISA-MS. ELISA-MS is used to accurately determine HCP coverage of an early process sample by three commercially available anti-Escherichia coli HCP antibodies, evading the limitations of current methods for coverage analysis, and taking advantage of the benefits of MS analysis. The results obtained comprise a list of individual HCPs covered by each HCP antibody. The novel method shows high sensitivity, high reproducibility, and enables tight control of nonspecific binding through inclusion of a species-specific isotype control antibody. We propose that ELISA-MS will be a valuable supplement to existing coverage methods or even a replacement. ELISA-MS will increase the possibility of selecting the best HCP ELISA, thus improving HCP surveillance and resulting in a final HCP profile with the lowest achievable risk. Overall, this will be beneficial to both the pharmaceutical industry and patient safety.  相似文献   

3.
The analysis of host cell proteins (HCPs) is one of the most important analytical requirements during bioprocess development of therapeutic moieties. In this review, we focus on the comparison of different methods for the analysis of HCPs and how cell lines, fermentation conditions, and unit operations influence HCP distribution during the process chain. Current guidelines typically require reduction of HCPs to the ppm level, depending on the intended use, the route of administration of the product, and the production system. A range of immunospecific and non-specific methods are available that have been globally accepted by regulatory bodies. Immunospecific methods, such as ELISA, are simple to use in routine analysis and can quantify low levels of HCPs when specific antibodies are available. Non-specific methods are more complex; however, they provide a holistic view of the HCP profile and qualitative information of the composition of HCP in the sample. Different methods for the comparison of bioprocessing strategies during scale-up and purification development are compared herein. The methods include immunospecific methods, such as ELISA, western blot, and threshold, and non-specific methods, such as 2D-DIGE and 2D-HPLC combined with MS.  相似文献   

4.
Host cell protein (HCP) impurities are generated by the host organism during the production of therapeutic recombinant proteins, and are difficult to remove completely. Though commonly present in small quantities, if levels are not controlled, HCPs can potentially reduce drug efficacy and cause adverse patient reactions. A high resolution approach for thorough HCP characterization of therapeutic monoclonal antibodies is presented herein. In this method, antibody samples are first depleted via affinity enrichment (e.g., Protein A, Protein L) using milligram quantities of material. The HCP-containing flow-through is then enzymatically digested, analyzed using nano-UPLC-MS/MS, and proteins are identified through database searching. Nearly 700 HCPs were identified from samples with very low total HCP levels (< 1 ppm to ∼10 ppm) using this method. Quantitation of individual HCPs was performed using normalized spectral counting as the number of peptide spectrum matches (PSMs) per protein is proportional to protein abundance. Multivariate analysis tools were utilized to assess similarities between HCP profiles by: 1) quantifying overlaps between HCP identities; and 2) comparing correlations between individual protein abundances as calculated by spectral counts. Clustering analysis using these measures of dissimilarity between HCP profiles enabled high resolution differentiation of commercial grade monoclonal antibody samples generated from different cell lines, cell culture, and purification processes.  相似文献   

5.
Therapeutic monoclonal antibodies (mAb) production relies on multiple purification steps before release as a drug product (DP). A few host cell proteins (HCPs) may co-purify with the mAb. Their monitoring is crucial due to the considerable risk they represent for mAb stability, integrity, and efficacy and their potential immunogenicity. Enzyme-linked immunosorbent assays (ELISA) commonly used for global HCP monitoring present limitations in terms of identification and quantification of individual HCPs. Therefore, liquid chromatography tandem mass spectrometry (LC-MS/MS) has emerged as a promising alternative. Challenging DP samples show an extreme dynamic range requiring high performing methods to detect and reliably quantify trace-level HCPs. Here, we investigated the benefits of adding high-field asymmetric ion mobility spectrometry (FAIMS) separation and gas phase fractionation (GPF) prior to data independent acquisition (DIA). FAIMS LC-MS/MS analysis allowed the identification of 221 HCPs among which 158 were reliably quantified for a global amount of 880 ng/mg of NIST mAb Reference Material. Our methods have also been successfully applied to two FDA/EMA approved DPs and allowed digging deeper into the HCP landscape with the identification and quantification of a few tens of HCPs with sensitivity down to the sub-ng/mg of mAb level.  相似文献   

6.
Host cell proteins (HCPs) are process-related impurities present in biopharmaceuticals and are generally considered to be critical quality attributes. Changes in a biopharmaceutical production process may result in qualitative shifts in the HCP population. These shifts are not necessarily detectable when overall HCP levels are measured with traditional approaches such as enzyme-linked immunosorbent assays (ELISAs). Thus, the development of techniques that complement the ELISA’s functionality is desirable. Here, a mass spectrometry (MS)-based approach for the analysis of HCP populations in biopharmaceuticals is presented. It consists of (i) the generation of exclusion lists that represent the masses of the active pharmaceutical ingredient (API), (ii) the compilation of inclusion lists based on an HCP catalog derived from the analysis of protein A-purified samples, and (iii) the analysis of purified biopharmaceuticals using the generated exclusion and inclusion lists. With this approach, it was possible to increase sensitivity for HCP detection compared with a standard liquid chromatography tandem MS (LC–MS/MS) run. The workflow was successfully implemented in a comparability exercise assessing HCP populations in drug substance samples before and after a process change. Furthermore, the results suggest that size can be an important factor in the copurification of HCPs and API.  相似文献   

7.
Levels of host cell proteins (HCPs) in purification intermediates and drug substances (DS) of monoclonal antibodies (mAbs) must be carefully monitored for the production of safe and efficacious biotherapeutics. During the development of mAb1, an immunoglobulin G1 product, unexpected results generated with HCP Enzyme-Linked Immunosorbent Assay (ELISA) kit triggered an investigation which led to the identification of a copurifying HCP called N-(4)-(β-acetylglucosaminyl)-l -asparaginase (AGA, EC3.5.1.26) by liquid chromatography–tandem mass spectrometry (LC-MS/MS). The risk assessment performed indicated a low immunogenicity risk for the copurifying HCP and an ad hoc stability study demonstrated no mAb glycan cleavage and thus no impact on product quality. Fractionation studies performed on polishing steps revealed that AGA was coeluted with the mAb. Very interestingly, the native digestion protocol implemented to go deeper in the MS–HCP profiling was found to be incompatible with correct AGA detection in last purification intermediate and DS, further suggesting a hitchhiking behavior of AGA. In silico surface characterization of AGA also supports this hypothesis. Finally, the combined support of HCP ELISA results and MS allowed process optimization and removal of this copurifying HCP.  相似文献   

8.
As significant improvements in volumetric antibody productivity have been achieved by advances in upstream processing over the last decade, and harvest material has become progressively more difficult to recover with these intensified upstream operations, the segregation of upstream and downstream processing has remained largely unchanged. By integrating upstream and downstream process development, product purification issues are given consideration during the optimization of upstream operating conditions, which mitigates the need for extensive and expensive clearance strategies downstream. To investigate the impact of cell culture duration on critical quality attributes, CHO-expressed IgG1 was cultivated in two 2 L bioreactors with samples taken on days 8, 10, 13, 15, and 17. The material was centrifuged, filtered and protein A purified on a 1 ml HiTrap column. Host cell protein (HCP) identification by mass spectrometry (MS) was applied to this system to provide insights into cellular behavior and HCP carryover during protein A purification. It was shown that as cultivation progressed from day 8 to 17 and antibody titer increased, product quality declined due to an increase in post-protein A HCPs (from 72 to 475 peptides detected by MS) and a decrease in product monomer percentage (from 98% to 95.5%). Additionally, the MS data revealed an increase in the abundance of several classes of post-protein A HCPs (e.g., stress response proteins and indicators of cell age), particularly on days 15 and 17 of culture, which were associated with significant increases in total overall HCP levels. This provides new insight into the specific types of HCPs that are retained during mAb purification and may be used to aid process development strategies.  相似文献   

9.
Assays for identification and quantification of host-cell proteins (HCPs) in biotherapeutic proteins over 5 orders of magnitude in concentration are presented. The HCP assays consist of two types: HCP identification using comprehensive online two-dimensional liquid chromatography coupled with high resolution mass spectrometry (2D-LC/MS), followed by high-throughput HCP quantification by liquid chromatography, multiple reaction monitoring (LC-MRM). The former is described as a “discovery” assay, the latter as a “monitoring” assay. Purified biotherapeutic proteins (e.g., monoclonal antibodies) were digested with trypsin after reduction and alkylation, and the digests were fractionated using reversed-phase (RP) chromatography at high pH (pH 10) by a step gradient in the first dimension, followed by a high-resolution separation at low pH (pH 2.5) in the second dimension. As peptides eluted from the second dimension, a quadrupole time-of-flight mass spectrometer was used to detect the peptides and their fragments simultaneously by alternating the collision cell energy between a low and an elevated energy (MSE methodology). The MSE data was used to identify and quantify the proteins in the mixture using a proven label-free quantification technique (“Hi3” method). The same data set was mined to subsequently develop target peptides and transitions for monitoring the concentration of selected HCPs on a triple quadrupole mass spectrometer in a high-throughput manner (20 min LC-MRM analysis). This analytical methodology was applied to the identification and quantification of low-abundance HCPs in six samples of PTG1, a recombinant chimeric anti-phosphotyrosine monoclonal antibody (mAb). Thirty three HCPs were identified in total from the PTG1 samples among which 21 HCP isoforms were selected for MRM monitoring. The absolute quantification of three selected HCPs was undertaken on two different LC-MRM platforms after spiking isotopically labeled peptides in the samples. Finally, the MRM quantitation results were compared with TOF-based quantification based on the Hi3 peptides, and the TOF and MRM data sets correlated reasonably well. The results show that the assays provide detailed valuable information to understand the relative contributions of purification schemes to the nature and concentrations of HCP impurities in biopharmaceutical samples, and the assays can be used as generic methods for HCP analysis in the biopharmaceutical industry.Key words: host cell proteins, protein quantification, biotherapeutic proteins, mAbs, HCP  相似文献   

10.
《MABS-AUSTIN》2013,5(6):1128-1137
Host cell protein (HCP) impurities are generated by the host organism during the production of therapeutic recombinant proteins, and are difficult to remove completely. Though commonly present in small quantities, if levels are not controlled, HCPs can potentially reduce drug efficacy and cause adverse patient reactions. A high resolution approach for thorough HCP characterization of therapeutic monoclonal antibodies is presented herein. In this method, antibody samples are first depleted via affinity enrichment (e.g., Protein A, Protein L) using milligram quantities of material. The HCP-containing flow-through is then enzymatically digested, analyzed using nano-UPLC-MS/MS, and proteins are identified through database searching. Nearly 700 HCPs were identified from samples with very low total HCP levels (< 1 ppm to ~10 ppm) using this method. Quantitation of individual HCPs was performed using normalized spectral counting as the number of peptide spectrum matches (PSMs) per protein is proportional to protein abundance. Multivariate analysis tools were utilized to assess similarities between HCP profiles by: 1) quantifying overlaps between HCP identities; and 2) comparing correlations between individual protein abundances as calculated by spectral counts. Clustering analysis using these measures of dissimilarity between HCP profiles enabled high resolution differentiation of commercial grade monoclonal antibody samples generated from different cell lines, cell culture, and purification processes.  相似文献   

11.
An advanced liquid chromatography/mass spectrometry (MS) platform was used to identify and quantify residual Escherichia coli host cell proteins (HCPs) in the drug substance (DS) of several peptibodies (Pbs). Significantly different HCP impurity profiles were observed among different biotherapeutic Pbs as well as one Pb purified via multiple processes. The results can be rationally interpreted in terms of differences among the purification processes, and demonstrate the power of this technique to sensitively monitor both the quantity and composition of residual HCPs in DS, where these may represent a safety risk to patients. The breadth of information obtained using MS is compared to traditional multiproduct enzyme‐linked immunosorbent assay (ELISA) values for total HCP in the same samples and shows that, in this case, the ELISA failed to detect multiple HCPs. The HCP composition of two upstream samples was also analyzed and used to demonstrate that HCPs that carry through purification processes to be detectable in DS are not always among those that are the most abundant upstream. Compared to ELISA, we demonstrate that MS can provide a more comprehensive, and accurate, characterization of DS HCPs, thereby facilitating process development as well as more rationally assessing potential safety risks posed by individual, identified HCPs. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:951–957, 2013  相似文献   

12.
Chinese hamster ovary (CHO) cells are often used to produce therapeutic monoclonal antibodies (mAbs). CHO cells express many host cell proteins (HCPs) required for their growth. Interactions of HCPs with mAbs can sometimes result in co‐purification of trace levels of ‘hitchhiker’ HCPs during the manufacturing process. Purified mAb‐1 product produced in early stages of process optimization had high HCP levels. In addition, these lots formed delayed‐onset particles containing mAb‐1 and its heavy chain C‐terminal fragments. Studies were performed to determine the cause of the observed particle formation and to optimize the purification for improved HCP clearance. Protease activity and inhibitor stability studies confirmed that an aspartyl protease was responsible for fragmentation of mAb‐1 resulting in particle formation. An affinity resin was used to selectively capture aspartyl proteases from the mAb‐1 product. Mass spectrometry identified the captured aspartyl protease as CHO cathepsin D. A wash step at high pH with salt and caprylate was implemented during the protein A affinity step to disrupt the HCP–mAb interactions and improve HCP clearance. The product at the end of purification using the optimized process had very low HCP levels, did not contain detectable protease activity, and did not form particles. Spiking of CHO cathepsin D back into mAb‐1 product from the optimized process confirmed that it was the cause of the particle formation. This work demonstrated that process optimization focused on removal of HCPs was successful in eliminating particle formation in the final mAb‐1 product. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1360–1369, 2015  相似文献   

13.
For production of different monoclonal antibodies (mAbs), biopharmaceutical companies often use related upstream and downstream manufacturing processes. Such platforms are typically characterized regarding influence of upstream and downstream process (DSP) parameters on critical quality attributes (CQAs). CQAs must be monitored strictly by an adequate control strategy. One such process-related CQA is the content of host cell protein (HCP) which is typically analyzed by immunoassay methods (e.g., HCP-ELISA). The capacity of the immunoassay to detect a broad range of HCPs, relevant for the individual mAb-production process should be proven by orthogonal proteomic methods such as 2D gel electrophoresis or mass spectrometry (MS). In particular MS has become a valuable tool to identify and quantify HCP in complex mixtures. We evaluate up- and DSP parameters of four different biopharmaceutical products, two different process variants, and one mock fermentation on the HCP pattern by shotgun MS analysis and ELISA. We obtained a similar HCP pattern in different cell culture fluid harvests compared to the starting material from the downstream process. During the downstream purification process of the mAbs, the HCP level and the number of HCP species significantly decreased, accompanied by an increase in diversity of the residual HCP pattern. Based on this knowledge, we suggest a control strategy that combines multi product ELISA for in-process control and release analytics, and MS testing for orthogonal HCP characterization, to attain knowledge on the HCP level, clusters and species. This combination supports a control strategy for HCPs addressing safety and efficacy of biopharmaceutical products.  相似文献   

14.
The clearance of host cell proteins (HCPs) is of crucial importance in biomanufacturing, given their diversity in composition, structure, abundance, and occasional structural homology with the product. The current approach to HCP clearance in the manufacturing of monoclonal antibodies (mAbs) relies on product capture with Protein A followed by removal of residual HCPs in flow-through mode using ion exchange or mixed-mode chromatography. Recent studies have highlighted the presence of “problematic HCP” species, which are either difficult to remove (Group I), can degrade the mAb product (Group II), or trigger immunogenic reactions (Group III). To improve the clearance of these species, we developed a family of synthetic peptides that target HCPs and exhibit low binding to IgG product. In this study, these peptides were conjugated onto chromatographic resins and evaluated in terms of HCP clearance and mAb yield, using an industrial mAb-producing CHO harvest as model supernatant. To gather detailed knowledge on the binding of individual HCPs, the unbound fractions were subjected to shotgun proteomic analysis by mass spectrometry. It was found that these peptide ligands exhibit superior HCP binding capability compared to those of the benchmark commercial resins commonly used in mAb purification. In addition, some peptide-based resins resulted in much lower losses of product yield compared to these commercial supports. The proteomic analysis showed effective capture of many “problematic HCPs” by the peptide ligands, especially some that are weakly bound by commercial media. Collectively, these results indicate that these peptides show great promise toward the development of next-generation adsorbents for safer and cost-effective manufacturing of biologics.  相似文献   

15.
Residual host cell proteins (HCPs) in biotherapeutics can present potential safety risks to patients or compromise product stability. As such, their levels are typically monitored using a multicomponent HCP enzyme-linked immunosorbent assay (ELISA) to ensure adequate removal. However, it is not possible to guarantee ELISA coverage of every possible HCP impurity, and the specific HCPs remaining following purification are rarely identified. In the current study, we characterized the ability of an advanced two-dimensional liquid chromatography/mass spectrometry platform (2D-LC/MS(E)) to identify and quantify known low-level spiked protein impurities in a therapeutic peptide Fc fusion protein. The label-free quantification procedure based on the "top 3" intensity tryptic peptides per protein was applied and improved on for this application. Limits of detection for unknown HCPs were approximated from the spiked protein data along with estimates for the quantitative accuracy of the method. In all, we established that most protein impurities present at 13±4ppm can be identified with a quantitative error of less than 2-fold using the more sensitive of two tested method formats. To conclude the study, we characterized all detectable Escherichia coli proteins present in this Fc fusion protein drug substance and discuss future applications of the method.  相似文献   

16.
The most significant factor contributing to the presence of host cell protein (HCP) impurities in Protein A chromatography eluates is their association with the product monoclonal antibodies (mAbs) has been reported previously, and it has been suggested that more efficacious column washes may be developed by targeting the disruption of the mAbs-HCP interaction. However, characterization of this interaction is not straight forward as it is likely to involve multiple proteins and/or types of interaction. This work is an attempt to begin to understand the contribution of HCP subpopulations and/or mAb interaction propensity to the variability in HCP levels in the Protein A eluate. We performed a flowthrough (FT) recycling study with product respiking using two antibody molecules of apparently different HCP interaction propensities. In each case, the ELISA assay showed depletion of select subpopulations of HCP in Protein A eluates in subsequent column runs, while the feedstock HCP in the FTs remained unchanged from its native harvested cell culture fluid (HCCF) levels. In a separate study, the final FT from each molecule's recycling study was cross-spiked with various mAbs. In this case, Protein A eluate levels remained low for all but two molecules which were known as having high apparent HCP interaction propensity. The results of these studies suggest that mAbs may preferentially bind to select subsets of HCPs, and the degree of interaction and/or identity of the associated HCPs may vary depending on the mAb.  相似文献   

17.
In the 40‐year history of biopharmaceuticals, there have been a few cases where the final products contained residual host cell protein (HCP) impurities at levels high enough to be of concern. This article summarizes the industry experience in these cases where HCP impurities have been presented in public forums and/or published. Regulatory guidance on HCP impurities is limited to advising that products be as pure as practical, with no specified numerical limit because the risk associated with HCP exposure often depends on the clinical setting (route of administration, dose, indication, patient population) and the particular impurity. While the overall safety and purity track record of the industry is excellent, these examples illustrate several important lessons learned about the kinds of HCPs that co‐purify with products (e.g., product homologs, and HCPs that react with product), and the kinds of clinical consequences of HCP impurities (e.g., direct biological activity, immunogenicity, adjuvant). The literature on industry experience with HCP impurities is scattered, and this review draws in to one reference documented examples where the data have been presented in meetings, patents, product inserts, or press releases, in addition to peer‐reviewed journal articles. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:828–837, 2018  相似文献   

18.
To establish accurate detection methods of process-specific Escherichia coli residual host cell protein (HCP) and residual host cell DNA (rcDNA) in recombinant biological preparations. Taking the purification process of GLP expressed by E. coli as a specific-process model, the HCP of empty E. coli was intercepted to immunize mice and rabbits. Using IgG from immunized rabbits as the coating antibody and mouse immune serum as the second sandwich antibody, a process-specific enzyme-linked immunosorbent assay (ELISA) for E. coli HCP was established. Targeting the 16S gene of E. coli, ddPCR was used to obtain the absolute copies of rcDNA in samples. Non-process-specific commercial ELISA kit and the process-specific ELISA established in this study were used to detect the HCP in GLP preparation. About 62% of HCPs, which should be process-specific HCPs, could not be detected by the non-process-specific commercial ELISA kit. The sensitivity of established ELISA can reach 338 pg/mL. The rcDNA could be absolutely quantitated by ddPCR, for the copies of rcDNA in three multiple diluted samples showed a reduced gradient. While the copies of rcDNA in three multiple diluted samples could not be distinguished by the qPCR. Process-specific ELISA has high sensitivity in detecting process-specific E. coli HCP. The absolutely quantitative ddPCR has much higher accuracy than the relatively quantitative qPCR, it is a nucleic acid quantitative method that is expected to replace qPCR in the future.  相似文献   

19.
Recombinant protein products such as monoclonal antibodies (mAbs) for use in the clinic must be clear of host cell impurities such as host cell protein (HCP), DNA/RNA, and high molecular weight immunogenic aggregates. Despite the need to remove and monitor HCPs, the nature, and fate of these during downstream processing (DSP) remains poorly characterized. We have applied a proteomic approach to investigate the dynamics and fate of HCPs in the supernatant of a mAb producing cell line during early DSP including centrifugation, depth filtration, and protein A capture chromatography. The primary clarification technique selected was shown to influence the HCP profile that entered subsequent downstream steps. MabSelect protein A chromatography removed the majority of contaminating proteins, however using 2D‐PAGE we could visualize not only the antibody species in the eluate (heavy and light chain) but also contaminant HCPs. These data showed that the choice of secondary clarification impacts upon the HCP profile post‐protein A chromatography as differences arose in both the presence and abundance of specific HCPs when depth filters were compared. A number of intracellularly located HCPs were identified in protein A elution fractions from a Null cell line culture supernatant including the chaperone Bip/GRP78, heat shock proteins, and the enzyme enolase. We demonstrate that the selection of early DSP steps influences the resulting HCP profile and that 2D‐PAGE can be used for monitoring and identification of HCPs post‐protein A chromatography. This approach could be used to screen cell lines or hosts to select those with reduced HCP profiles, or to identify HCPs that are problematic and difficult to remove so that cell‐engineering approaches can be applied to reduced, or eliminate, such HCPs. Biotechnol. Bioeng. 2013; 110: 240–251. © 2012 Wiley Periodicals, Inc.  相似文献   

20.
Host cell proteins (HCPs) are process-related impurities derived from host organisms, which need to be controlled to ensure adequate product quality and safety. In this study, product quality attributes were tracked for several monoclonal antibodies (mAbs) under the intended storage and accelerated stability conditions. One product quality attribute not expected to be stability indicating is the N-glycan heterogeneity profile. However, significant N-glycan degradation was observed for one mAb under accelerated and stressed stability conditions. The root cause for this instability was attributed to hexosaminidase B (HEXB), an enzyme known to remove terminal N-acetylglucosamine (GlcNAc). HEXB was identified by liquid chromatography–mass spectrometry (LC–MS)-based proteomics approach to be enriched in the impacted stability batches from mAb-1. Subsequently, enzymatic and targeted multiple reaction monitoring (MRM) MS assays were developed to support process and product characterization. A potential interaction between HEXB and mAb-1 was initially observed from the analysis of process intermediates by proteomics among several mAbs and later supported by computational modeling. An improved bioprocess was developed to significantly reduce HEXB levels in the final drug substance. A risk assessment was conducted by evaluating the in silico immunogenicity risk and the impact on product quality. To the best of our knowledge, HEXB is the first residual HCP reported to have impact on the glycan profile of a formulated drug product. The combination of different analytical tools, mass spectrometry, and computational modeling provides a general strategy on how to study residual HCP for biotherapeutics development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号