首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Head and neck squamous cell carcinoma (HNSCC) has been widely reported and considered as one of the most threatening diseases to human health. Derived from complicated tissue subtypes, HNSCC has diverse symptoms and pathogenesis. They make the identification of the core carcinogenic factors of such diseases at the multi-cell level difficult. With the development of single-cell sequencing technologies, the effects of non-malignant cells on traditional bulk sequencing data can be eliminated directly. On the basis of fresh single-cell RNA-seq data, we set up a computational filtering strategy for tumor cell identification in an expression rule manner. This strategy can reveal the accurate expression distinction between tumor cells and adjacent tumor microenvironment, which are all supported by literature reports. Validated by several independent datasets, these rule genes can further group HNSCC patients with significant difference on survival risks. Thus, the establishment of our computational approach may not only provide an efficient tool to identify malignant cells in the tumor ecosystem but also deepen our understanding of tumor heterogeneity and tumorigenesis.  相似文献   

3.
Hou Y  Song L  Zhu P  Zhang B  Tao Y  Xu X  Li F  Wu K  Liang J  Shao D  Wu H  Ye X  Ye C  Wu R  Jian M  Chen Y  Xie W  Zhang R  Chen L  Liu X  Yao X  Zheng H  Yu C  Li Q  Gong Z  Mao M  Yang X  Yang L  Li J  Wang W  Lu Z  Gu N  Laurie G  Bolund L  Kristiansen K  Wang J  Yang H  Li Y  Zhang X  Wang J 《Cell》2012,148(5):873-885
Tumor heterogeneity presents a challenge for inferring clonal evolution and driver gene identification. Here, we describe a method for analyzing the cancer genome at a single-cell nucleotide level. To perform our analyses, we first devised and validated a high-throughput whole-genome single-cell sequencing method using two lymphoblastoid cell line single cells. We then carried out whole-exome single-cell sequencing of 90 cells from a JAK2-negative myeloproliferative neoplasm patient. The sequencing data from 58 cells passed our quality control criteria, and these data indicated that this neoplasm represented a monoclonal evolution. We further identified essential thrombocythemia (ET)-related candidate mutations such as SESN2 and NTRK1, which may be involved in neoplasm progression. This pilot study allowed the initial characterization of the disease-related genetic architecture at the single-cell nucleotide level. Further, we established a single-cell sequencing method that opens the way for detailed analyses of a variety of tumor types, including those with high genetic complex between patients.  相似文献   

4.
The single-cell RNA sequencing (scRNA-seq) technologies obtain gene expression at single-cell resolution and provide a tool for exploring cell heterogeneity and cell types. As the low amount of extracted mRNA copies per cell, scRNA-seq data exhibit a large number of dropouts, which hinders the downstream analysis of the scRNA-seq data. We propose a statistical method, SDImpute (Single-cell RNA-seq Dropout Imputation), to implement block imputation for dropout events in scRNA-seq data. SDImpute automatically identifies the dropout events based on the gene expression levels and the variations of gene expression across similar cells and similar genes, and it implements block imputation for dropouts by utilizing gene expression unaffected by dropouts from similar cells. In the experiments, the results of the simulated datasets and real datasets suggest that SDImpute is an effective tool to recover the data and preserve the heterogeneity of gene expression across cells. Compared with the state-of-the-art imputation methods, SDImpute improves the accuracy of the downstream analysis including clustering, visualization, and differential expression analysis.  相似文献   

5.
Single-cell RNA sequencing is a powerful technique that continues to expand across various biological applications. However, incomplete 3′-UTR annotations can impede single-cell analysis resulting in genes that are partially or completely uncounted. Performing single-cell RNA sequencing with incomplete 3′-UTR annotations can hinder the identification of cell identities and gene expression patterns and lead to erroneous biological inferences. We demonstrate that performing single-cell isoform sequencing in tandem with single-cell RNA sequencing can rapidly improve 3′-UTR annotations. Using threespine stickleback fish (Gasterosteus aculeatus), we show that gene models resulting from a minimal embryonic single-cell isoform sequencing dataset retained 26.1% greater single-cell RNA sequencing reads than gene models from Ensembl alone. Furthermore, pooling our single-cell sequencing isoforms with a previously published adult bulk Iso-Seq dataset from stickleback, and merging the annotation with the Ensembl gene models, resulted in a marginal improvement (+0.8%) over the single-cell isoform sequencing only dataset. In addition, isoforms identified by single-cell isoform sequencing included thousands of new splicing variants. The improved gene models obtained using single-cell isoform sequencing led to successful identification of cell types and increased the reads identified of many genes in our single-cell RNA sequencing stickleback dataset. Our work illuminates single-cell isoform sequencing as a cost-effective and efficient mechanism to rapidly annotate genomes for single-cell RNA sequencing.  相似文献   

6.
During early embryonic development, cell fate commitment represents a critical transition or"tipping point"of embryonic differentiation, at which there is a drastic and qualitative shift of the cell populations. In this study, we presented a computational approach, scGET, to explore the gene–gene associations based on single-cell RNA sequencing (scRNA-seq) data for critical transition prediction. Specifically, by transforming the gene expression data to the local network entropy, the single-cell graph entropy (SGE) value quantitatively characterizes the stability and criticality of gene regu-latory networks among cell populations and thus can be employed to detect the critical signal of cell fate or lineage commitment at the single-cell level. Being applied to five scRNA-seq datasets of embryonic differentiation, scGET accurately predicts all the impending cell fate transitions. After identifying the"dark genes"that are non-differentially expressed genes but sensitive to the SGE value, the underlying signaling mechanisms were revealed, suggesting that the synergy of dark genes and their downstream targets may play a key role in various cell development processes. The application in all five datasets demonstrates the effectiveness of scGET in analyzing scRNA-seq data from a network perspective and its potential to track the dynamics of cell differentiation. The source code of scGET is accessible at https://github.com/zhongjiayuna/scGET_Project.  相似文献   

7.
8.
Advances in single-cell RNA sequencing (scRNA-seq) have led to successes in discovering novel cell types and understanding cellular heterogeneity among complex cell populations through cluster analysis. However, cluster analysis is not able to reveal continuous spectrum of states and underlying gene expression programs (GEPs) shared across cell types. We introduce scAAnet, an autoencoder for single-cell non-linear archetypal analysis, to identify GEPs and infer the relative activity of each GEP across cells. We use a count distribution-based loss term to account for the sparsity and overdispersion of the raw count data and add an archetypal constraint to the loss function of scAAnet. We first show that scAAnet outperforms existing methods for archetypal analysis across different metrics through simulations. We then demonstrate the ability of scAAnet to extract biologically meaningful GEPs using publicly available scRNA-seq datasets including a pancreatic islet dataset, a lung idiopathic pulmonary fibrosis dataset and a prefrontal cortex dataset.  相似文献   

9.
Mesenchymal stem cells (MSCs) are multipotent stromal cells with great potential for clinical applications. However, little is known about their cell heterogeneity at a single-cell resolution, which severely impedes the development of MSC therapy. In this review, we focus on advances in the identification of novel surface markers and functional subpopulations of MSCs made by single-cell RNA sequencing and discuss their participation in the pathophysiology of stem cells and related diseases. The challenges and future directions of single-cell RNA sequencing in MSCs are also addressed in this review.  相似文献   

10.
11.
12.
视网膜母细胞瘤(retinoblastoma,RB)是婴幼儿最常见的眼内恶性肿瘤。在RB进展过程中的关键致病因素目前尚不十分清楚。因此,识别与RB进展密切相关的基因能为病情诊断及基因治疗提供重要信息。然而,肿瘤组织具有很强的细胞异质性,不同病理状态下的细胞,其功能及基因表达都可能呈现显著的差异。本研究从公共基因表达数据库(gene expression omnibus,GEO)下载了1例4个月肿瘤患者和1例2年患者的肿瘤及癌旁组织的单细胞转录组测序数据,从单细胞水平解析不同患病时长的RB肿瘤转录图谱,鉴定与RB进展有潜在关联的细胞亚群及基因集。结果显示,肿瘤组织与癌旁组织在单细胞转录图谱上具有整体的一致性,但视锥前体G1期细胞群、G2期细胞群以及小胶质细胞群在肿瘤与癌旁组织中的分布比例存在明显差异。进一步分析了这3种细胞群在RB肿瘤进展过程中的作用。研究发现,在RB肿瘤的早期阶段,视锥前体细胞在G1期异常增殖,随着RB肿瘤的进展,视锥前体G2期细胞比例显著增加。同时,RB进展过程的小胶质细胞群差异分析结果显示,主要参与免疫应答的关键基因包括RPL23B2M、HLA家族基因。本研究可为RB发病机制及进展研究提供更多新视角和数据资源。  相似文献   

13.
14.
15.
16.
17.
Recent evidence suggests that cell-to-cell difference at the gene expression level is an order of magnitude greater than previously thought even for isogenic bacterial populations. Such gene expression heterogeneity determines the fate of individual bacterial cells in populations and could also affect the ultimate fate of populations themselves. To quantify the heterogeneity and its biological significance, quantitative methods to measure gene expression in single bacterial cells are needed. In this work, we developed two SYBR Green-based RT-qPCR methods to determine gene expression directly in single bacterial cells. The first method involves a single-tube operation that can analyze one gene from each bacterial cell. The second method is featured by a two-stage protocol that consists of RNA isolation from a single bacterial cell and cDNA synthesis in the first stage, and qPCR in the second stage, which allows determination of expression level of multiple genes simultaneously for single bacterial cells of both gram-positive and negative. We applied the methods to stress-treated (i.e. low pH and high temperature) Escherichia coli populations. The reproducible results demonstrated that the method is sensitive enough not only for measuring cellular responses at the single-cell level, but also for revealing gene expression heterogeneity among the bacterial cells. Furthermore, our results showed that the two-stage method can reproducibly measure multiple highly expressed genes from a single E. coli cell, which exhibits important foundation for future development of a high throughput and lab-on-chips whole-genome RT-qPCR methodology for single bacterial cells.  相似文献   

18.
单细胞转录组测序(Single-cell RNA sequencing,scRNA-seq)可以在单细胞水平描绘出每个细胞同一基因的表达量在不同细胞间的表达水平差异,使得在单细胞水平重新认识各种组织器官成为可能.目前对心脏的测序研究正从传统的普通转录组水平过渡到单细胞水平,对小鼠和人的心脏的测序陆续地发表出来.概述了s...  相似文献   

19.
Single-cell sequencing promotes our understanding of the heterogeneity of cellular populations, including the haplotypes and genomic variability among different generation of cells. Whole-genome amplification is crucial to generate sufficient DNA fragments for single-cell sequencing projects. Using sequencing data from single sperms, we quantitatively compare two prevailing amplification methods that extensively applied in single-cell sequencing, multiple displacement amplification (MDA) and multiple annealing and looping-based amplification cycles (MALBAC). Our results show that MALBAC, as a combination of modified MDA and tweaked PCR, has a higher level of uniformity, specificity and reproducibility.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号