首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nucleotide signaling is a key element of the neutrophil activation pathway. Neutrophil recruitment and migration to injured tissues is guided by purinergic receptor sensitization, mostly induced by extracellular adenosine triphosphate (ATP) and its hydrolysis product, adenosine (ADO), which is primarily produced by the CD39-CD73 axis located at the neutrophil cell surface. In inflammation unrelated to cancer, neutrophil activation via purinergic signaling aims to eliminate antigens and promote an immune response with minimal damage to healthy tissues; however, an antagonistic response may be expected in tumors. Indeed, alterations in purinergic signaling favor the accumulation of extracellular ATP and ADO in the microenvironment of solid tumors, which promote tumor progression by inducing cell proliferation, angiogenesis, and escape from immune surveillance. Since neutrophils and their N1/N2 polarization spectrum are being considered new components of cancer-related inflammation, the participation of purinergic signaling in pro-tumor activities of neutrophils should also be considered. However, there is a lack of studies investigating purinergic signaling in human neutrophil polarization and in tumor-associated neutrophils. In this review, we discussed the human neutrophil response elicited by nucleotides in inflammation and extrapolated its behavior in the context of cancer. Understanding these mechanisms in cancerous conditions may help to identify new biological targets and therapeutic strategies, particularly regarding tumors that are refractory to traditional chemo- and immunotherapy.  相似文献   

2.
Ai  Xiaopeng  Dong  Xing  Guo  Ying  Yang  Peng  Hou  Ya  Bai  Jinrong  Zhang  Sanyin  Wang  Xiaobo 《Purinergic signalling》2021,17(2):229-240

Adenosine triphosphate (ATP) and its metabolites adenosine diphosphate, adenosine monophosphate, and adenosine in purinergic signaling pathway play important roles in many diseases. Activation of P2 receptors (P2R) channels and subsequent membrane depolarization can induce accumulation of extracellular ATP, and furtherly cause kinds of diseases, such as pain- and immune-related diseases, cardiac dysfunction, and tumorigenesis. Active ingredients of traditional Chinese herbals which exhibit superior pharmacological activities on diversified P2R channels have been considered as an alternative strategy of disease treatment. Experimental evidence of potential ingredients in Chinese herbs targeting P2R and their pharmacological activities were outlined in the study.

  相似文献   

3.
Abstract

Extracellular nucleotides and nucleosides mediate diverse signaling effects in virtually all organs and tissues. Most models of purinergic signaling depend on functional interactions between distinct processes, including (i) the release of endogenous ATP and other nucleotides, (ii) triggering of signaling events via a series of nucleotide-selective ligand-gated P2X and metabotropic P2Y receptors as well as adenosine receptors and (iii) ectoenzymatic interconversion of purinergic agonists. The duration and magnitude of purinergic signaling is governed by a network of ectoenzymes, including the enzymes of the nucleoside triphosphate diphosphohydrolase (NTPDase) family, the nucleotide pyrophosphatase/phosphodiesterase (NPP) family, ecto-5′-nucleotidase/CD73, tissue-nonspecific alkaline phosphatase (TNAP), prostatic acid phosphatase (PAP) and other alkaline and acid phosphatases, adenosine deaminase (ADA) and purine nucleoside phosphorylase (PNP). Along with “classical” inactivating ectoenzymes, recent data provide evidence for the co-existence of a counteracting ATP-regenerating pathway comprising the enzymes of the adenylate kinase (AK) and nucleoside diphosphate kinase (NDPK/NME/NM23) families and ATP synthase. This review describes recent advances in this field, with special emphasis on purine-converting ectoenzymes as a complex and integrated network regulating purinergic signaling in such (patho)physiological states as immunomodulation, inflammation, tumorigenesis, arterial calcification and other diseases. The second part of this review provides a comprehensive overview and basic principles of major approaches employed for studying purinergic activities, including spectrophotometric Pi-liberating assays, high-performance liquid chromatographic (HPLC) and thin-layer chromatographic (TLC) analyses of purine substrates and metabolites, capillary electrophoresis, bioluminescent, fluorometric and electrochemical enzyme-coupled assays, histochemical staining, and further emphasizes their advantages, drawbacks and suitability for assaying a particular catalytic reaction.  相似文献   

4.
In the last years, it has become evident that both acute and chronic physical exercise trigger responses/adaptations in the purinergic signaling and these adaptations can be considered one important mechanism related to the exercise benefits for health improvement. Purinergic system is composed of enzymes (ectonucleotidases), receptors (P1 and P2 families), and molecules (ATP, ADP, adenosine) that are able to activate these receptors. These components are widely distributed in almost all cell types, and they respond/act in a specific manner depending on the exercise types and/or intensities as well as the cell type (organ/tissue analyzed). For example, while acute intense exercise can be associated with tissue damage, inflammation, and platelet aggregation, chronic exercise exerts anti-inflammatory and anti-aggregant effects, promoting health and/or treating diseases. All of these effects are dependent on the purinergic signaling. Thus, this review was designed to cover the aspects related to the relationship between physical exercise and purinergic signaling, with emphasis on the modulation of ectonucleotidases and receptors. Here, we discuss the impact of different exercise protocols as well as the differences between acute and chronic effects of exercise on the extracellular signaling exerted by purinergic system components. We also reinforce the concept that purinergic signaling must be understood/considered as a mechanism by which exercise exerts its effects.  相似文献   

5.
Cancer comprises a collection of diseases that occur in almost any tissue and it is characterized by an abnormal and uncontrolled cell growth that results in tumor formation and propagation to other tissues, causing tissue and organ malfunction and death. Despite the undeniable improvement in cancer diagnostics and therapy, there is an urgent need for new therapeutic and preventive strategies with improved efficacy and fewer side effects. In this context, purinergic signaling emerges as an interesting candidate as a cancer biomarker or therapeutic target. There is abundant evidence that tumor cells have significant changes in the expression of purinergic receptors, which comprise the G-protein coupled P2Y and AdoR families of receptors and the ligand-gated ion channel P2X receptors. Tumor cells also exhibit changes in the expression of nucleotidases and other enzymes involved in nucleotide metabolism, and the concentrations of extracellular nucleotides are significantly higher than those observed in normal cells. In this review, we will focus on the potential role of purinergic signaling in the ten most lethal cancers (lung, breast, colorectal, liver, stomach, prostate, cervical, esophagus, pancreas, and ovary), which together are responsible for more than 5 million annual deaths.  相似文献   

6.
Extracellular purines, principally adenosine triphosphate and adenosine, are among the oldest evolutionary and widespread chemical messengers. The integrative view of purinergic signaling as a multistage coordinated cascade involves the participation of nucleotides/nucleosides, their receptors, enzymes metabolizing extracellular nucleosides and nucleotides as well as several membrane transporters taking part in the release and/or uptake of these molecules. In view of the emerging data, it is evident and widely accepted that an extensive network of diverse enzymatic activities exists in the extracellular space. The enzymes regulate the availability of nucleotide and adenosine receptor agonists, and consequently, the course of signaling events. The current data indicate that mesenchymal stem cells (MSCs) and cells induced to differentiate exhibit different sensitivity to purinergic ligands as well as a distinct activity and expression profiles of ectonucleotidases than mature cells. In the proposed review, we postulate for a critical role of these enzymatic players which, by orchestrating a fine-tune regulation of nucleotides concentrations, are integrally involved in modulation and diversification of purinergic signals. This specific hallmark of the MSC purinome should be linked with cell-specific biological potential and capacity for tissue regeneration. We anticipate this publication to be a starting point for scientific discussion and novel approach to the in vitro and in vivo regulation of the MSC properties.  相似文献   

7.
Despite recent advances in the treatment landscape for prostate cancer, many challenges still remain. A more profound understanding of prostate cancer pathogenesis and the underlying mechanisms is critical to developing novel therapeutics strategies. Extracellular nucleotides play a central role in the growth and progression of a variety of cancer types – almost all tumor cells and immune cells express purinergic membrane receptors for extracellular nucleotides (ATP, ADP, UTP, UDP, UDP-sugar) and their metabolic nucleoside products (e.g., adenosine). Herein we review the pathological and immunomodulatory roles of P2Y purinergic nucleotide receptors in prostate cancer and their potential as therapeutic targets to address some of the clinical limitations in prostate cancer treatment.  相似文献   

8.
Trichomonas vaginalis is a parasite from the human urogenital tract that causes trichomonosis, the most prevalent non-viral sexually transmitted disease. The neutrophil infiltration has been considered to be primarily responsible for cytological changes observed at infection site, and the chemoattractants can play an important role in this leukocytic recruitment. Nitric oxide (NO) is one of the most widespread mediator compounds, and it is implicated in modulation of immunological mechanisms. Extracellular nucleotides and nucleosides are signaling molecules involved in several processes, including immune responses and control of leukocyte trafficking. Ectonucleoside triphosphate diphosphohydrolase members, ecto-5′-nucleotidase, and adenosine deaminase (ectoADA) have been characterized in T. vaginalis. Herein, we investigated the effects of purinergic system on NO production by neutrophils stimulated with T. vaginalis. The trophozoites were able to induce a high NO synthesis by neutrophils through iNOS pathway. The extracellular nucleotides ATP, ADP, and ATPγS (a non-hydrolyzable ATP analog) showed no significant change in NO secretion. In contrast, adenosine and its degradation product, inosine, promoted a low production of the compound. The immunosuppressive effect of adenosine upon NO release by neutrophils occurred due to adenosine A2A receptor activation. The ecto-5′-nucleotidase activity displayed by T. vaginalis was shown to be important in adenosine generation, indicating the efficiency of purinergic cascade. Our data suggest the influence of purinergic signaling, specifically adenosinergic system, on NO production by neutrophils in T. vaginalis infection, contributing to the immunological aspects of disease.  相似文献   

9.

Background

Numerous signaling pathways function in the brain ventricular system, including the most important - GABAergic, glutaminergic and dopaminergic signaling. Purinergic signalization system - comprising nucleotide receptors, nucleotidases, ATP and adenosine and their degradation products - are also present in the brain. However, the precise role of nucleotide signalling pathway in the ventricular system has been not elucidated so far. The aim of our research was the identification of all three elements of purinergic signaling pathway in the porcine brain ventricular system.

Results

Besides nucleotide receptors on the ependymocytes surface, we studied purines and pyrimidines in the CSF, including mechanisms of nucleotide signaling in the swine model (Sus scrofa domestica). The results indicate presence of G proteins coupled P2Y receptors on ependymocytes and also P2X receptors engaged in fast signal transmission. Additionally we found in CSF nucleotides and adenosine in the concentration sufficient to P receptors activation. These extracellular nucleotides are metabolised by adenylate kinase and nucleotidases from at least two families: NTPDases and NPPases. A low activity of these nucleotide metabolising enzymes maintains nucleotides concentration in ventricular system in micromolar range. ATP is degraded into adenosine and inosine.

Conclusions

Our results confirm the thesis about cross-talking between brain and ventricular system functioning in physiological as well as pathological conditions. The close interaction of brain and ventricular system may elicit changes in qualitative and quantitative composition of purines and pyrimidines in CSF. These changes can be dependent on the physiological state of brain, including pathological processes in CNS.  相似文献   

10.
Abstract: Cultured astroglia express both adenosine and ATP purinergic receptors that are coupled to increases in intracellular calcium concentration ([Ca2+]i). Currently, there is little evidence that such purinergic receptors exist on astrocytes in vivo. To address this issue, calcium-sensitive fluorescent dyes were used in conjunction with confocal microscopy and immunocytochemistry to examine the responsiveness of astrocytes in acutely isolated hippocampal slices to purinergic neuroligands. Both ATP and adenosine induced dynamic increases in astrocytic [Ca2+]i that were blocked by the adenosine receptor antagonist 8-( p -sulfophenyl)theophylline. The responses to adenosine were not blocked by tetrodotoxin, 8-cyclopentyltheophylline, 8-(3-chlorostyryl)caffeine, dipyridamole, or removal of extracellular calcium. The P2Y-selective agonist 2-methylthioadenosine triphosphate was unable to induce increases in astrocytic [Ca2+]i, whereas the P2 agonist adenosine 5'- O -(2-thiodiphosphate) induced astrocytic responses in a low percentage of astrocytes. These results indicate that the majority of hippocampal astrocytes in situ contain P1 purinergic receptors coupled to increases in [Ca2+]i, whereas a small minority appear to contain P2 purinergic receptors. Furthermore, individual hippocampal astrocytes responded to adenosine, glutamate, and depolarization with increases in [Ca2+]i. The existence of both purinergic and glutamatergic receptors on individual astrocytes in situ suggests that astrocytes in vivo are able to integrate information derived from glutamate and adenosine receptor stimulation.  相似文献   

11.
It is well accepted that G protein-coupled receptors (GPCRs) arrange into dimers or higher-order oligomers that may modify various functions of GPCRs. GPCR-type purinergic receptors (i.e. adenosine and P2Y receptors) tend to form heterodimers with GPCRs not only of the different families but also of the same purinergic receptor families, leading to alterations in functional properties. In the present review, we focus on current knowledge of the formation of heterodimers between metabotropic purinergic receptors that activate novel functions in response to extracellular nucleosides/nucleotides, revealing that the dimerization seems to be employed for ‘fine-tuning’ of purinergic signaling. Thus, the relationship between adenosine and adenosine triphosphate is likely to be more and more intimate than simply being a metabolite of the other.  相似文献   

12.
Purinergic Signalling - Several studies suggest a role of extracellular adenine nucleotides in regulating adipose tissue functions via the purinergic signaling network. Metabolic studies in mice...  相似文献   

13.
Ecto-nucleotidases play a pivotal role in purinergic signal transmission. They hydrolyze extracellular nucleotides and thus can control their availability at purinergic P2 receptors. They generate extracellular nucleosides for cellular reuptake and salvage via nucleoside transporters of the plasma membrane. The extracellular adenosine formed acts as an agonist of purinergic P1 receptors. They also can produce and hydrolyze extracellular inorganic pyrophosphate that is of major relevance in the control of bone mineralization. This review discusses and compares four major groups of ecto-nucleotidases: the ecto-nucleoside triphosphate diphosphohydrolases, ecto-5'-nucleotidase, ecto-nucleotide pyrophosphatase/phosphodiesterases, and alkaline phosphatases. Only recently and based on crystal structures, detailed information regarding the spatial structures and catalytic mechanisms has become available for members of these four ecto-nucleotidase families. This permits detailed predictions of their catalytic mechanisms and a comparison between the individual enzyme groups. The review focuses on the principal biochemical, cell biological, catalytic, and structural properties of the enzymes and provides brief reference to tissue distribution, and physiological and pathophysiological functions.  相似文献   

14.
Atherosclerosis is a consequence of diverse pathologies that could be affected by signaling mediated by nucleotides and their metabolites. Concentration of specific nucleotide derivatives in the proximity of purinergic receptors is controlled by extracellular enzymes such as ecto-nucleoside triphopsphate diphosphohydrolase (eNTPD), ecto-5′-nucleotidase (e5NT), and ecto-adenosine deaminase (eADA). To estimate changes in metabolism of extracellular nucleotides in the atherosclerotic vessel wall, aortoiliac bifurcation of ApoE/LDLr (–/–) mice was perfused with solution containing adenosine-5′-triphosphate (ATP), adenosine-5′-monophosphate (AMP) or adenosine. Formation of the product of eNTPD, e5NT or eADA was measured by high performance liquid chromatography (HPLC). The most significant difference between ApoE/LDLr (–/–) and wild-type mice was several times higher rate of conversion of adenosine to inosine catalyzed by eADA activity. This highlights potential decrease in intravascular adenosine concentration in atherosclerosis.  相似文献   

15.
Purinergic signaling has broad physiological significance to the hearing organ, involving signal transduction via ionotropic P2X receptors and metabotropic G-protein-coupled P2Y and P1 (adenosine), alongside conversion of nucleotides and nucleosides by ecto-nucleotidases and ecto-nucleoside diphosphokinase. In addition, ATP release is modulated by acoustic overstimulation or stress and involves feedback regulation. Many of these principal elements of the purinergic signaling complex have been well characterized in the cochlea, while the characterization of P2Y receptor expression is emerging. The present study used immunohistochemistry to evaluate the expression of five P2Y receptors, P2Y1, P2Y2, P2Y4, P2Y6, and P2Y12, during development of the rat cochlea. Commencing in the late embryonic period, the P2Y receptors studied were found in the cells lining the cochlear partition, associated with establishment of the electrochemical environment which provides the driving force for sound transduction. In addition, early postnatal P2Y2 and P2Y4 protein expression in the greater epithelial ridge, part of the developing hearing organ, supports the view that initiation and regulation of spontaneous activity in the hair cells prior to hearing onset is mediated by purinergic signaling. Sub-cellular compartmentalization of P2Y receptor expression in sensory hair cells, and diversity of receptor expression in the spiral ganglion neurons and their satellite cells, indicates roles for P2Y receptor-mediated Ca2+-signaling in sound transduction and auditory neuron excitability. Overall, the dynamics of P2Y receptor expression during development of the cochlea complement the other elements of the purinergic signaling complex and reinforce the significance of extracellular nucleotide and nucleoside signaling to hearing.  相似文献   

16.

Geoffrey Burnstock will be remembered as the scientist who set up an entirely new field of intercellular communication, signaling via nucleotides. The signaling cascades involved in purinergic signaling include intracellular storage of nucleotides, nucleotide release, extracellular hydrolysis, and the effect of the released compounds or their hydrolysis products on target tissues via specific receptor systems. In this context ectonucleotidases play several roles. They inactivate released and physiologically active nucleotides, produce physiologically active hydrolysis products, and facilitate nucleoside recycling. This review briefly highlights the development of our knowledge of two types of enzymes involved in extracellular nucleotide hydrolysis and thus purinergic signaling, the ectonucleoside triphosphate diphosphohydrolases, and ecto-5′-nucleotidase.

  相似文献   

17.
《遗传学报》2022,49(4):299-307
Insulin resistance contributes to metabolic disorders in obesity and type 2 diabetes. In mechanisms of insulin resistance, the roles of glucose, fatty acids, and amino acids have been extensively documented in literature. However, the activities of nucleotides remain to be reviewed comprehensively in the regulation of insulin sensitivity. Nucleotides are well known for their activities in biosynthesis of DNA and RNA as well as their signaling activities in the form of cAMP and cGAMP. Their activities in insulin resistance are dependent on the derivatives and corresponding receptors. ATP and NADH, derivatives of adenosine, inhibit insulin signaling inside cells by downregulation of activities of AMPK and SIRT1, respectively. ATP, ADP and AMP, the well-known energy carriers, regulate cellular responses to insulin outside cells through the purinergic receptors in cell surface. Current evidence suggests that ATP, NADH, cGAMP, and uridine are potential biomarkers of insulin resistance. However, GTP and cGMP are likely the markers of insulin sensitization. Here, studies crossing the biomedical fields are reviewed to characterize nucleotide activities in the regulation of insulin sensitivity. The knowledge brings new insights into the mechanisms of insulin resistance.  相似文献   

18.
In neutrophils, adenosine triphosphate (ATP) release and autocrine purinergic signaling regulate coordinated cell motility during chemotaxis. Here, we studied whether similar mechanisms regulate the motility of breast cancer cells. While neutrophils and benign human mammary epithelial cells (HMEC) form a single leading edge, MDA-MB-231 breast cancer cells possess multiple leading edges enriched with A3 adenosine receptors. Compared to HMEC, MDA-MB-231 cells overexpress the ectonucleotidases ENPP1 and CD73, which convert extracellular ATP released by the cells to adenosine that stimulates A3 receptors and promotes cell migration with frequent directional changes. However, exogenous adenosine added to breast cancer cells or the A3 receptor agonist IB-MECA dose-dependently arrested cell motility by simultaneous stimulation of multiple leading edges, doubling cell surface areas and significantly reducing migration velocity by up to 75 %. We conclude that MDA-MB-231 cells, HMEC, and neutrophils differ in the purinergic signaling mechanisms that regulate their motility patterns and that the subcellular distribution of A3 adenosine receptors in MDA-MB-231 breast cancer cells contributes to dysfunctional cell motility. These findings imply that purinergic signaling mechanisms may be potential therapeutic targets to interfere with the motility of breast cancer cells in order to reduce the spread of cancer cells and the risk of metastasis.  相似文献   

19.
Purinergic signaling plays a unique role in the brain by integrating neuronal and glial cellular circuits. The metabotropic P1 adenosine receptors and P2Y nucleotide receptors and ionotropic P2X receptors control numerous physiological functions of neuronal and glial cells and have been implicated in a wide variety of neuropathologies. Emerging research suggests that purinergic receptor interactions between cells of the central nervous system (CNS) have relevance in the prevention and attenuation of neurodegenerative diseases resulting from chronic inflammation. CNS responses to chronic inflammation are largely dependent on interactions between different cell types (i.e., neurons and glia) and activation of signaling molecules including P2X and P2Y receptors. Whereas numerous P2 receptors contribute to functions of the CNS, the P2Y(2) receptor is believed to play an important role in neuroprotection under inflammatory conditions. While acute inflammation is necessary for tissue repair due to injury, chronic inflammation contributes to neurodegeneration in Alzheimer's disease and occurs when glial cells undergo prolonged activation resulting in extended release of proinflammatory cytokines and nucleotides. This review describes cell-specific and tissue-integrated functions of P2 receptors in the CNS with an emphasis on P2Y(2) receptor signaling pathways in neurons, glia, and endothelium and their role in neuroprotection.  相似文献   

20.
Myelin, an insulating membrane that enables rapid action potential propagation, is an essential component of an efficient, functional vertebrate nervous system. Oligodendrocytes, the myelinating glia of the central nervous system (CNS), produce myelin throughout the CNS, which requires continuous proliferation, migration, and differentiation of oligodendrocyte progenitor cells. Because myelination is essential for efficient neurotransmission, researchers hypothesize that neuronal signals may regulate the cascade of events necessary for this process. The ability of oligodendrocytes and oligodendrocyte progenitor cells to detect and respond to neuronal activity is becoming increasingly appreciated, although the specific signals involved are still a matter of debate. Recent evidence from multiple studies points to purinergic signaling as a potential regulator of oligodendrocyte development and differentiation. Adenosine triphosphate (ATP) and its derivatives are potent signaling ligands with receptors expressed on many populations of cells in the nervous system, including cells of the oligodendrocyte lineage. Release of ATP into the extracellular space can initiate a multitude of signaling events, and these downstream signals are specific to the particular purinergic receptor (or receptors) expressed, and whether enzymes are present to hydrolyze ATP to its derivatives adenosine diphosphate and adenosine, each of which can activate their own unique downstream signaling cascades. This review will introduce purinergic signaling in the CNS and discuss evidence for its effects on oligodendrocyte proliferation, differentiation, and myelination. We will review sources of extracellular purines in the nervous system and how changes in purinergic receptor expression may be coupled to oligodendrocyte differentiation. We will also briefly discuss purinergic signaling in injury and diseases of the CNS.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号