首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fast and low phototoxic imaging techniques are pre-requisite to study the development of organisms in toto. Light sheet based microscopy reduces photo-bleaching and phototoxic effects compared to confocal microscopy, while providing 3D images with subcellular resolution. Here we present the setup of a light sheet based microscope, which is composed of an upright microscope and a small set of opto-mechanical elements for the generation of the light sheet. The protocol describes how to build, align the microscope and characterize the light sheet. In addition, it details how to implement the method for in toto imaging of C. elegans embryos using a simple observation chamber. The method allows the capture of 3D two-colors time-lapse movies over few hours of development. This should ease the tracking of cell shape, cell divisions and tagged proteins over long periods of time.  相似文献   

2.
Quantitatively capturing developmental processes is crucial to derive mechanistic models and key to identify and describe mutant phenotypes. Here protocols are presented for preparing embryos and adult C. elegans animals for short- and long-term time-lapse microscopy and methods for tracking and quantification of developmental processes. The methods presented are all based on C. elegans strains available from the Caenorhabditis Genetics Center and on open-source software that can be easily implemented in any laboratory independently of the microscopy system used. A reconstruction of a 3D cell-shape model using the modelling software IMOD, manual tracking of fluorescently-labeled subcellular structures using the multi-purpose image analysis program Endrov, and an analysis of cortical contractile flow using PIVlab (Time-Resolved Digital Particle Image Velocimetry Tool for MATLAB) are shown. It is discussed how these methods can also be deployed to quantitatively capture other developmental processes in different models, e.g., cell tracking and lineage tracing, tracking of vesicle flow.  相似文献   

3.
Label-free imaging techniques such as differential interference contrast (DIC) allow the observation of cells and large subcellular structures in their native, unperturbed states with minimal exposure to light. The development of robust computational image-analysis routines is vital to quantitative label-free imaging. The reliability of quantitative analysis of time-series microscopy data based on single-particle tracking relies on accurately detecting objects as distinct from the background, i.e., segmentation. Typical approaches to segmenting DIC images either involve converting images to those resembling phase contrast, mimicking the optics of DIC object formation, or using the morphological properties of objects. Here, we describe MATLAB based, single-particle tracking tool with a GUI for mobility analysis of objects from in vitro and in vivo DIC time-series microscopy. The tool integrates contrast enhancement with multiple modified Gaussian filters, automated threshold detection for segmentation and minimal distance-based two-dimensional single-particle tracking. We compare the relative performance of multiple filters and demonstrate the utility of the tool for DIC object tracking (DICOT). We quantify subcellular dynamics of a time series of Caenorhabditis elegans embryos in the one-celled stage by detecting birefringent yolk granules in the cytoplasm with high precision. The resulting two-dimensional map of oscillatory dynamics of granules quantifies the cytoplasmic flows driven by anaphasic spindle oscillations. The frequency of oscillations across the anterior-posterior (A-P) and transverse axes of the embryo correspond well with the reported frequency of spindle oscillations. We validate the quantitative accuracy of our method by tracking the in vitro diffusive mobility of micron-sized beads in glycerol solutions. Estimates of the diffusion coefficients of the granules are used to measure the viscosity of a dilution series of glycerol. Thus, our computational method is likely to be useful for both intracellular mobility and in vitro microrheology.  相似文献   

4.
The study of intracellular transport pathways at epithelial cell barriers that line diverse tissue sites is fundamental to understanding tissue homeostasis. A major impediment to investigating such processes at the subcellular level has been the lack of imaging approaches that support fast three-dimensional (3D) tracking of cellular dynamics in thick cellular specimens. Here, we report significant advances in multifocal plane microscopy and demonstrate 3D single molecule tracking of rapid protein dynamics in a 10 micron thick live epithelial cell monolayer. We have investigated the transferrin receptor (TfR) pathway, which is not only essential for iron delivery but is also of importance for targeted drug delivery across cellular barriers at specific body sites, such as the brain that is impermeable to blood-borne substances. Using multifocal plane microscopy, we have discovered a cellular process of intercellular transfer involving rapid exchange of Tf molecules between two adjacent cells in the monolayer. Furthermore, 3D tracking of Tf molecules at the lateral plasma membrane has led to the identification of different modes of endocytosis and exocytosis, which exhibit distinct temporal and intracellular spatial trajectories. These results reveal the complexity of the 3D trafficking pathways in epithelial cell barriers. The methods and approaches reported here can enable the study of fast 3D cellular dynamics in other cell systems and models, and underscore the importance of developing advanced imaging technologies to study such processes.  相似文献   

5.
Understanding subcellular dynamic processes governing pathogenic mechanisms is a necessary step towards the development of new drugs and strategies against infectious diseases. Subcellular pathogenic mechanisms, such as viral invasion processes involve highly dynamic nanometric-scale objects and rapid molecular interactions that require the study of individual particle paths. Single-particle tracking methods allow visualizing and characterizing the dynamics of biological objects, and provide a straightforward and accurate means to understand subcellular processes. This review describes a number of particle-tracking methods in time-lapse microscopy sequences and provides examples of using such techniques to investigate mechanisms of host-pathogen interactions.  相似文献   

6.
Interest in cell heterogeneity and differentiation has recently led to increased use of time-lapse microscopy. Previous studies have shown that cell fate may be determined well in advance of the event. We used a mixture of automation and manual review of time-lapse live cell imaging to track the positions, contours, divisions, deaths and lineage of 44 B-lymphocyte founders and their 631 progeny in vitro over a period of 108 hours. Using this data to train a Support Vector Machine classifier, we were retrospectively able to predict the fates of individual lymphocytes with more than 90% accuracy, using only time-lapse imaging captured prior to mitosis or death of 90% of all cells. The motivation for this paper is to explore the impact of labour-efficient assistive software tools that allow larger and more ambitious live-cell time-lapse microscopy studies. After training on this data, we show that machine learning methods can be used for realtime prediction of individual cell fates. These techniques could lead to realtime cell culture segregation for purposes such as phenotype screening. We were able to produce a large volume of data with less effort than previously reported, due to the image processing, computer vision, tracking and human-computer interaction tools used. We describe the workflow of the software-assisted experiments and the graphical interfaces that were needed. To validate our results we used our methods to reproduce a variety of published data about lymphocyte populations and behaviour. We also make all our data publicly available, including a large quantity of lymphocyte spatio-temporal dynamics and related lineage information.  相似文献   

7.
Changes in cellular organization and chromosome dynamics that occur during mitosis are tightly coordinated to ensure accurate inheritance of genomic and cellular content. Hallmark events of mitosis, such as chromosome movement, can be readily tracked on an individual cell basis using time-lapse fluorescence microscopy of mammalian cell lines expressing specific GFP-tagged proteins. In combination with RNAi-based depletion, this can be a powerful method for pinpointing the stage(s) of mitosis where defects occur after levels of a particular protein have been lowered. In this protocol, we present a basic method for assessing the effect of depleting a potential mitotic regulatory protein on the timing of mitosis. Cells are transfected with siRNA, placed in a stage-top incubation chamber, and imaged using an automated fluorescence microscope. We describe how to use software to set up a time-lapse experiment, how to process the image sequences to make either still-image montages or movies, and how to quantify and analyze the timing of mitotic stages using a cell-line expressing mCherry-tagged histone H2B. Finally, we discuss important considerations for designing a time-lapse experiment. This strategy is complementary to other approaches and offers the advantages of 1) sensitivity to changes in kinetics that might not be observed when looking at cells as a population and 2) analysis of mitosis without the need to synchronize the cell cycle using drug treatments. The visual information from such imaging experiments not only allows the sub-stages of mitosis to be assessed, but can also provide unexpected insight that would not be apparent from cell cycle analysis by FACS.  相似文献   

8.
The mitotic spindle is a microtubule-based structure that elongates to accurately segregate chromosomes during anaphase. Its position within the cell also dictates the future cell cleavage plan, thereby determining daughter cell orientation within a tissue or cell fate adoption for polarized cells. Therefore, the mitotic spindle ensures at the same time proper cell division and developmental precision. Consequently, spindle dynamics is the matter of intensive research. Among the different cellular models that have been explored, the one-cell stage C. elegans embryo has been an essential and powerful system to dissect the molecular and biophysical basis of spindle elongation and positioning. Indeed, in this large and transparent cell, spindle poles (or centrosomes) can be easily detected from simple DIC microscopy by human eyes.To perform quantitative and high-throughput analysis of spindle motion, we developed a computer program ACT for Automated-Centrosome-Tracking from DIC movies of C. elegans embryos. We therefore offer an alternative to the image acquisition and processing of transgenic lines expressing fluorescent spindle markers. Consequently, experiments on large sets of cells can be performed with a simple setup using inexpensive microscopes. Moreover, analysis of any mutant or wild-type backgrounds is accessible because laborious rounds of crosses with transgenic lines become unnecessary. Last, our program allows spindle detection in other nematode species, offering the same quality of DIC images but for which techniques of transgenesis are not accessible. Thus, our program also opens the way towards a quantitative evolutionary approach of spindle dynamics.Overall, our computer program is a unique macro for the image- and movie-processing platform ImageJ. It is user-friendly and freely available under an open-source licence. ACT allows batch-wise analysis of large sets of mitosis events. Within 2 minutes, a single movie is processed and the accuracy of the automated tracking matches the precision of the human eye.  相似文献   

9.
Most studies on new cancer drugs are based on population-derived data, where the absence of response of a small population may pass unnoticed. Thus, individual longitudinal tracking of cells is important for the future development of efficient cancer treatments. We have used digital holographic microscopy to track individual JIMT-1 human breast cancer cells and L929 mouse fibroblast cultivated in normoxia or hypoxia. In addition, JIMT-1 cells were treated with salinomycin, a cancer stem cell targeting compound. Three-day time-lapse movies were captured and individual cells were analysed with respect to cell division (cell cycle length) and cell movement. Comparing population-doubling time derived from population-based growth curves and individual cell cycle time data from time-lapse movies show that the former hide a sub-population of dividing cells. Salinomycin treatment increased the motility of cells, however, this motility did not result in an increased distant migration i.e. the cells increased their local movement. MCF-7 breast cancer cells showed similar motility behaviour as salinomycin-treated JIMT-1 cells. We suggest that combining features, such as motility and migration, can be used to distinguish cancer cells with mesenchymal (JIMT-1) and epithelial (MCF-7) features. The data clearly emphasize the importance of longitudinal cell tracking to understand the biology of individual cells under different conditions.  相似文献   

10.

Background

The software available to date for analyzing image sequences from time-lapse microscopy works only for certain bacteria and under limited conditions. These programs, mostly MATLAB-based, fail for microbes with irregular shape, indistinct cell division sites, or that grow in closely packed microcolonies. Unfortunately, many organisms of interest have these characteristics, and analyzing their image sequences has been limited to time consuming manual processing.

Results

Here we describe BactImAS – a modular, multi-platform, open-source, Java-based software delivered both as a standalone program and as a plugin for Icy. The software is designed for extracting and visualizing quantitative data from bacterial time-lapse movies. BactImAS uses a semi-automated approach where the user defines initial cells, identifies cell division events, and, if necessary, manually corrects cell segmentation with the help of user-friendly GUI and incorporated ImageJ application. The program segments and tracks cells using a newly-developed algorithm designed for movies with difficult-to-segment cells that exhibit small frame-to-frame differences. Measurements are extracted from images in a configurable, automated fashion and an SQLite database is used to store, retrieve, and exchange all acquired data. Finally, the BactImAS can generate configurable lineage tree visualizations and export data as CSV files. We tested BactImAS on time-lapse movies of Mycobacterium smegmatis and achieved at least 10-fold reduction of processing time compared to manual analysis. We illustrate the power of the visualization tool by showing heterogeneity of both icl expression and cell growth atop of a lineage tree.

Conclusions

The presented software simplifies quantitative analysis of time-lapse movies overall and is currently the only available software for the analysis of mycobacteria-like cells. It will be of interest to the community of both end-users and developers of time-lapse microscopy software.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2105-15-251) contains supplementary material, which is available to authorized users.  相似文献   

11.
Fluorescence time-lapse microscopy has become a powerful tool in the study of many biological processes at the single-cell level. In particular, movies depicting the temporal dependence of gene expression provide insight into the dynamics of its regulation; however, there are many technical challenges to obtaining and analyzing fluorescence movies of single cells. We describe here a simple protocol using a commercially available microfluidic culture device to generate such data, and a MATLAB-based, graphical user interface (GUI) -based software package to quantify the fluorescence images. The software segments and tracks cells, enables the user to visually curate errors in the data, and automatically assigns lineage and division times. The GUI further analyzes the time series to produce whole cell traces as well as their first and second time derivatives. While the software was designed for S. cerevisiae, its modularity and versatility should allow it to serve as a platform for studying other cell types with few modifications.  相似文献   

12.
Finley KR  Berman J 《Eukaryotic cell》2005,4(10):1697-1711
Candida albicans is an opportunistic fungal pathogen whose virulence is related to its ability to switch between yeast, pseudohyphal, and true-hyphal morphologies. To ask how long-distance nuclear migration occurs in C. albicans hyphae, we identified the fundamental properties of nuclear movements and microtubule dynamics using time-lapse microscopy. In hyphae, nuclei migrate to, and divide across, the presumptive site of septation, which forms 10 to 15 microm distal to the basal cell. The mother nucleus returns to the basal cell, while the daughter nucleus reiterates the process. We used time-lapse microscopy to identify the mechanisms by which C. albicans nuclei move over long distances and are coordinated with hyphal morphology. We followed nuclear migration and spindle dynamics, as well as the time and position of septum specification, defined it as the presumptum, and established a chronology of nuclear, spindle, and morphological events. Analysis of microtubule dynamics revealed that premitotic forward nuclear migration is due to the repetitive sliding of astral microtubules along the cell cortex but that postmitotic forward and reverse nuclear migrations are due primarily to spindle elongation. Free microtubules exhibit cell cycle regulation; they are present during interphase and disappear at the time of spindle assembly. Finally, a growth defect in strains expressing Tub2-green fluorescent protein revealed a connection between hyphal elongation and the nuclear cell cycle that is coordinated by hyphal length and/or volume.  相似文献   

13.
We have used time-lapse digital- and video-enhanced differential interference contrast (DE-DIC, VE-DIC) microscopy to study the role of dynein in spindle and nuclear dynamics in the yeast Saccharomyces cerevisiae. The real-time analysis reveals six stages in the spindle cycle. Anaphase B onset appears marked by a rapid phase of spindle elongation, simultaneous with nuclear migration into the daughter cell. The onset and kinetics of rapid spindle elongation are identical in wild type and dynein mutants. In the absence of dynein the nucleus does not migrate as close to the neck as in wild-type cells and initial spindle elongation is confined primarily to the mother cell. Rapid oscillations of the elongating spindle between the mother and bud are observed in wild-type cells, followed by a slower growth phase until the spindle reaches its maximal length. This stage is protracted in the dynein mutants and devoid of oscillatory motion. Thus dynein is required for rapid penetration of the nucleus into the bud and anaphase B spindle dynamics. Genetic analysis reveals that in the absence of a functional central spindle (ndcl), dynein is essential for chromosome movement into the bud. Immunofluorescent localization of dynein-beta- galactosidase fusion proteins reveals that dynein is associated with spindle pole bodies and the cell cortex: with spindle pole body localization dependent on intact microtubules. A kinetic analysis of nuclear movement also revealed that cytokinesis is delayed until nuclear translocation is completed, indicative of a surveillance pathway monitoring nuclear transit into the bud.  相似文献   

14.
Fluorescent microscope imaging technologies have developed at a rapid pace in recent years. High-throughput 2D fluorescent imaging platforms are now in wide use and are being applied on a proteome wide scale. Multiple fluorophore 3D imaging of live cells is being used to give detailed localization and subcellular structure information. Further, 2D and 3D video microscopy are giving important insights into the dynamics of protein localization and transport. In parallel with these developments, significant research has gone into developing new methodologies for quantifying and extracting meaning from the imaging data. Here we outline and give entry points to the literature on approaches to quantification such as segmentation, tracking, automated classification and data visualization. Particular attention is paid to the distinction between and application of concrete quantification measures such as number of objects in a cell, and abstract measures such as texture.  相似文献   

15.

Background

Automated time-lapse microscopy can visualize proliferation of large numbers of individual cells, enabling accurate measurement of the frequency of cell division and the duration of interphase and mitosis. However, extraction of quantitative information by manual inspection of time-lapse movies is too time-consuming to be useful for analysis of large experiments.

Methodology/Principal Findings

Here we present an automated time-series approach that can measure changes in the duration of mitosis and interphase in individual cells expressing fluorescent histone 2B. The approach requires analysis of only 2 features, nuclear area and average intensity. Compared to supervised learning approaches, this method reduces processing time and does not require generation of training data sets. We demonstrate that this method is as sensitive as manual analysis in identifying small changes in interphase or mitotic duration induced by drug or siRNA treatment.

Conclusions/Significance

This approach should facilitate automated analysis of high-throughput time-lapse data sets to identify small molecules or gene products that influence timing of cell division.  相似文献   

16.
17.
Ram S  Prabhat P  Chao J  Ward ES  Ober RJ 《Biophysical journal》2008,95(12):6025-6043
Single particle tracking in three dimensions in a live cell environment holds the promise of revealing important new biological insights. However, conventional microscopy-based imaging techniques are not well suited for fast three-dimensional (3D) tracking of single particles in cells. Previously we developed an imaging modality multifocal plane microscopy (MUM) to image fast intracellular dynamics in three dimensions in live cells. Here, we introduce an algorithm, the MUM localization algorithm (MUMLA), to determine the 3D position of a point source that is imaged using MUM. We validate MUMLA through simulated and experimental data and show that the 3D position of quantum dots can be determined over a wide spatial range. We demonstrate that MUMLA indeed provides the best possible accuracy with which the 3D position can be determined. Our analysis shows that MUM overcomes the poor depth discrimination of the conventional microscope, and thereby paves the way for high accuracy tracking of nanoparticles in a live cell environment. Here, using MUM and MUMLA we report for the first time the full 3D trajectories of QD-labeled antibody molecules undergoing endocytosis in live cells from the plasma membrane to the sorting endosome deep inside the cell.  相似文献   

18.
To identify novel components required for cell division processes in complex eukaryotes, we have undertaken an extensive mutational analysis in the one cell stage Caenorhabditis elegans embryo. The large size and optical properties of this cell permit observation of cell division processes with great detail in live specimens by simple differential interference contrast (DIC) microscopy. We have screened an extensive collection of maternal-effect embryonic lethal mutations on chromosome III with time-lapse DIC video microscopy. Using this assay, we have identified 48 mutations in 34 loci which are required for specific cell division processes in the one cell stage embryo. We show that mutations fall into distinct phenotypic classes which correspond, among others, to the processes of pronuclear migration, rotation of centrosomes and associated pronuclei, spindle assembly, chromosome segregation, anaphase spindle positioning, and cytokinesis. We have further analyzed pronuclear migration mutants by indirect immunofluorescence microscopy using antibodies against tubulin and ZYG-9, a centrosomal marker. This analysis revealed that two pronuclear migration loci are required for generating normal microtubule arrays and four for centrosome separation. All 34 loci have been mapped by deficiencies to distinct regions of chromosome III, thus paving the way for their rapid molecular characterization. Our work contributes to establishing the one cell stage C. elegans embryo as a powerful metazoan model system for dissecting cell division processes.  相似文献   

19.
Resolving coordinated biomolecular interactions in living cellular environments is vital for understanding the mechanisms of molecular nanomachines. The conventional approach relies on localizing and tracking target biomolecules and/or subcellular organelles labeled with imaging probes. However, it is challenging to gain information on rotational dynamics, which can be more indicative of the work done by molecular motors and their dynamic binding status. Herein, a bifocal parallax single-particle tracking method using half-plane point spread functions has been developed to resolve the full-range azimuth angle (0–360°), polar angle, and three-dimensional (3D) displacement in real time under complex living cell conditions. Using this method, quantitative rotational and translational motion of the cargo in a 3D cell cytoskeleton was obtained. Not only were well-known active intracellular transport and free diffusion observed, but new interactions (tight attachment and tethered rotation) were also discovered for better interpretation of the dynamics of cargo-motor-track interactions at various types of microtubule intersections.  相似文献   

20.
Live‐cell correlative light‐electron microscopy (live‐cell‐CLEM) integrates live movies with the corresponding electron microscopy (EM) image, but a major challenge is to relate the dynamic characteristics of single organelles to their 3‐dimensional (3D) ultrastructure. Here, we introduce focused ion beam scanning electron microscopy (FIB‐SEM) in a modular live‐cell‐CLEM pipeline for a single organelle CLEM. We transfected cells with lysosomal‐associated membrane protein 1‐green fluorescent protein (LAMP‐1‐GFP), analyzed the dynamics of individual GFP‐positive spots, and correlated these to their corresponding fine‐architecture and immediate cellular environment. By FIB‐SEM we quantitatively assessed morphological characteristics, like number of intraluminal vesicles and contact sites with endoplasmic reticulum and mitochondria. Hence, we present a novel way to integrate multiple parameters of subcellular dynamics and architecture onto a single organelle, which is relevant to address biological questions related to membrane trafficking, organelle biogenesis and positioning. Furthermore, by using CLEM to select regions of interest, our method allows for targeted FIB‐SEM, which significantly reduces time required for image acquisition and data processing.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号