首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Lake Okaro is a small, warm monomictic lake in central North Island, New Zealand, which progressed from oligotrophic to eutrophic through the 1960s. Trends in phosphorus (P) concentrations in the lake are linked to multiple restoration efforts over a 5-year period (2003–2008). The restoration procedures include a 2.3 ha constructed wetland established in February 2006 and riparian margin protection to reduce external loading, as well as an Alum application in December 2003 and sediment capping using modified zeolite in September 2008 to reduce internal loading. The annual average total phosphorus (TP) concentration in the lake decreased by 41% from 2004–2005 to 2007–2008. Two predictive models based on external P loading data generally underestimated the measured TP concentrations in the water column due to internal P loading. The relatively rapid response of TP concentrations after reduction of the internal loading using modified zeolite suggests that this technique can effect a rapid decrease in lake water TP concentrations though the trophic state of Lake Okaro showed high resilience to the reduced P loading. It is concluded that the combined effect of all restoration procedures resulted in a relatively rapid decrease in TP concentrations in Lake Okaro, which may be prolonged by continued external load reduction.  相似文献   

2.
Nutrient availability, in particular of phosphorus (P), is a key factor for the structure and functioning of shallow lakes, and not least the sediment plays an important role by acting as both a nutrient source and sink. We used 21 years of monthly mass balance and lake water data from six shallow (mean depth = 1.2–2.7 m) and fast flushed (mean hydraulic retention time = 0.6–2.6 months) eutrophic Danish lakes (mean summer P concentrations ranging from 0.09 to 0.61 mg/l) to investigate long-term trends in yearly and seasonal patterns of P retention. To one of the lakes, the external P input was reduced by 70% in the early 1990s, whereas none of the other lakes have experienced major changes in external P loading for more than 20 years. All lakes showed a distinct seasonal pattern with high P concentrations and typically negative P retention during summer (up to ?300% of the external loading from May to August). During winter, P retention was overall positive (up to 50% of the external loading from December to April). Internal P loading from the sediment delayed lake recovery by approximately 10 years in the lake with the most recently reduced external loading, but in all the lakes net release of P from the sediment occurred during summer. P release in the six lakes has not abated during the past decade, indicating that the sediment of eutrophic and turbid shallow lakes remains a net source of P during summer. The seasonal variations in P retention became more pronounced with increasing P levels, and retention decreased with increasing temperature, but increased if clear water conditions were established.  相似文献   

3.
SUMMARY. 1. Potential phosphatase activity and phytoplankton from several lakes of different character were compared in order to evaluate the importance of lake water pH and phytoplankton composition for the activity and pH optimum of lake water phosphatases.
2. In oligotrophic lakes, in which phytoplankton biomass was most often dominated by Ochromonadaceae spp., optimum phosphate activity was found at pH values <6. In eutrophic lakes, where species of Cyanophyceae and Bacillariophyceae dominated the phytoplankton biomass, optimum phosphatase activity was found at pH 7.5 or 8.5.
3. The pH optimum of phosphatase activity often differed from the corresponding lake water pH.
4. Experimental variation in phosphorus availability resulted in predictable changes in phosphatase activity. However, specific phosphatase activity, calculated per biomass of phytoplankton, was dependent on plankton species composition.  相似文献   

4.
Jeppesen  E.  Søndergaard  M.  Mortensen  E.  Kristensen  P.  Riemann  B.  Jensen  H. J.  Müller  J. P.  Sortkjær  O.  Jensen  J. P.  Christoffersen  K.  Bosselmann  S.  Dall  E. 《Hydrobiologia》1990,200(1):205-218
The use of fish manipulation as a tool for lake restoration in eutrophic lakes has been investigated since 1986 in three shallow, eutrophic Danish lakes. The lakes differ with respect to nutrient loading and nutrient levels (130–1000 μg P l−1, 1–6 mg N l−1). A 50% removal of planktivorous fish in the less eutrophic cyanobacteria-diatom dominated Lake V?ng caused marked changes in lower trophic levels, phosphorus concentration and transparency. Only minor changes occurred after a 78% removal of planktivorous fish in eutrophic cyanobacteria dominated Frederiksborg Castle Lake. In the hypertrophic, green algae dominated Lake S?byg?rd a low recruitment of all fish species and a 16% removal of fish biomass created substantial changes in trophic structure, but no decrease in phosphorus concentration. The different response pattern is interpreted as (1) a difference in density and persistence of bloomforming cyanobacteria caused by between-lake variations in nutrient levels and probably also mixing- and flushing rates, (2) a difference in specific loss rates through sedimentation of the algal community prevaling after the fish manipulation, (3) a decreased impact of planktivorous fish with increasing mean depth and (4) a lake specific difference in ability to create a self-increasing reduction in the phosphorus level in the lake water. This in turn seems related to the phosphorus loading.  相似文献   

5.
1. The main focus of this study was to investigate the effects of single and multiple moderate doses of lime (slaked lime, Ca(OH)2, and/or calcite, CaCO3) on eutrophic hardwater lakes. This information would contribute to strategies to manage phytoplankton and macrophyte biomass in eutrophic lakes.
2. Water chemistry and biota were monitored for up to 7 years after initial lime treatment and results were compared with reference systems.
3. Complementary studies investigated the effect of lime on macrophytes in ponds, irrigation canals and microcosm experiments.
4. When water pH was kept within its natural range (≤ 10), single and multiple lime applications to lakes and ponds controlled macrophyte biomass, without negatively affecting invertebrate communities.
5. Single lime treatments at moderate dosages of lakes and ponds resulted in variable and mostly temporary changes in chlorophyll a (chl a ) and phosphorus (P) concentration. Although sediment P release was reduced in single-dose lakes during the first winter following treatment, reductions appeared temporary.
6. Multiple treatments of lakes and ponds were effective at reducing both chl a and P concentrations over longer periods. Mean winter P release rate was also reduced after initial treatment.
7. In laboratory studies, sediment cores were incubated with eight different treatments to assess P release. Redox-sensitive treatments were no more effective at lowering total P concentration in overlying water than some redox-insensitive treatments. Lime reduced total P concentrations, but was not as effective as treatments with alum.
8. The use of lime in managing macrophyte and phytoplankton biomass in shallow, hardwater lakes and ponds may be preferable over other treatments, because lime is economical and non-toxic as long as pH is kept within a natural range.  相似文献   

6.
Biomanipulation via fish regulation combined with submerged plant introduction is an effective measure to restore eutrophic shallow lakes. Improved water quality and clarity promote growth of benthic algae, which with submerged plants may limit sediment phosphorus (P) release, thereby reinforce lake recovery. Our study sought to evaluate the effect of such a biomanipulation on water quality, benthic algal development and sediment P release in a shallow, tropical lake by (1) comparing porewater and lake water quality, light intensity and benthic algal development in restored and unrestored sections; (2) conducting a 32P radiotracer experiment to track P release from sediment cores sampled from both sections. The biomanipulation led to lower total P, total dissolved P, and soluble reactive P concentrations in lake water, lower phytoplankton biomass, and increased light intensity at sediment surface, stimulating benthic algal development. Moreover, sediment 32P release was lower in the restored than unrestored section. Concurrently, dissolved oxygen levels in upper layers of the sediment cores were higher in the restored section. Our study indicates that the biomanipulation improved water quality and enhanced growth of benthic algae, thereby reducing sediment P release, which may be one of the main mechanisms to create successful restoration.  相似文献   

7.
Experiences with reducing point sources of phosphorus to lakes   总被引:4,自引:3,他引:1  
Experiences over the last 25 years have demonstrated that eutrophication can be reversed, and that phosphorus is most often the nutrient through which control should be exerted.The reduction of the external load of phosphorus to a eutrophic lake is a necessary condition for lake restoration, but may not in itself be sufficient. Three main response patterns to a reduction in external load are identified. These include reduction in lake phosphorus that leads to sufficient reduction in chlorophyll to change the trophic category, to make the lakes less eutrophic or have small or no effect. The factors that determine the actual response are discussed.It is clear that interventions to restore eutrophic lakes have not always given the results expected. Limnological studies are necessary for well-grounded predictions.  相似文献   

8.
1. Two hardwater eutrophic lakes of central Alberta were subjected to single doses of Ca(OH)2 (74 or 107 mg L–1). The effects of lime treatment on phosphorus (P) precipitation, sediment P release, and macrophyte biomass were assessed for up to 2 years.
2. In both lakes, sediment P release was reduced to 16 and 27%, respectively, of pre-treatment values by the first winter following treatment. However, sediment P release returned to pre-treatment values during the following year.
3. In contrast to these short-term effects, macrophyte biomass decreased by as much as 80% after lime application and remained there for at least 2 years.
4. Our results indicate that a single dose of Ca(OH)2 may give short-term (< 1 year) control of P and long-term control (> 1 year) of macrophytes in hardwater eutrophic lakes of Alberta.  相似文献   

9.
1. Concentrations of phosphorus, nitrogen and silica and alkalinity were monitored in eight shallow and four deep Danish lakes for 13 years following a phosphorus loading reduction. The aim was to elucidate the seasonal changes in nutrient concentrations during recovery. Samples were taken biweekly during summer and monthly during winter. 2. Overall, the most substantive changes in lake water concentrations were seen in the early phase of recovery. However, phosphorus continued to decline during summer as long as 10 years after the loading reduction, indicating a significant, albeit slow, decline in internal loading. 3. Shallow and deep lakes responded differently to reduced loading. In shallow lakes the internal phosphorus release declined significantly in spring, early summer and autumn, and only non‐significantly so in July and August. In contrast, in deep lakes the largest reduction occurred from May to August. This difference may reflect the much stronger benthic pelagic‐coupling and the lack of stratification in shallow lakes. 4. Nitrogen only showed minor changes during the recovery period, while alkalinity increased in late summer, probably conditioned by the reduced primary production, as also indicated by the lower pH. Silica tended to decline in winter and spring during the study period, probably reflecting a reduced release of silica from the sediment because of enhanced uptake by benthic diatoms following the improved water transparency. 5. These results clearly indicate that internal loading of phosphorus can delay lake recovery for many years after phosphorus loading reduction, and that lake morphometry (i.e. deep versus shallow basins) influences the patterns of change in nutrient concentrations on both a seasonal and interannual basis.  相似文献   

10.
Internal P loading can maintain high P concentrations and delay eutrophic lake recovery following abatement of external loading. Sediment P inactivation with Al salts has been shown to provide long-term (5–14 years) control of sediment P release; long-term effectiveness of Fe and Ca salts has not been reported. Al toxicity problems are possible unless pH is maintained in the 6–8 range. Vertical transport of hypolimnetic P is unlikely in small, deep, dimictic lakes (\-ZA0 > 8), and effectiveness of P inactivation in lowering their mid-summer epilimnetic P has not been demonstrated. To date, P inactivation has been found to be most effective in improving trophic state in shallow, softwater, polymictic lakes where control of sediment P release affects the entire water column. Abatement of external loading, where necessary, is essential for a successful P inactivation treatment.  相似文献   

11.
1. This synthesis examines 35 long‐term (5–35 years, mean: 16 years) lake re‐oligotrophication studies. It covers lakes ranging from shallow (mean depth <5 m and/or polymictic) to deep (mean depth up to 177 m), oligotrophic to hypertrophic (summer mean total phosphorus concentration from 7.5 to 3500 μg L?1 before loading reduction), subtropical to temperate (latitude: 28–65°), and lowland to upland (altitude: 0–481 m). Shallow north‐temperate lakes were most abundant. 2. Reduction of external total phosphorus (TP) loading resulted in lower in‐lake TP concentration, lower chlorophyll a (chl a) concentration and higher Secchi depth in most lakes. Internal loading delayed the recovery, but in most lakes a new equilibrium for TP was reached after 10–15 years, which was only marginally influenced by the hydraulic retention time of the lakes. With decreasing TP concentration, the concentration of soluble reactive phosphorus (SRP) also declined substantially. 3. Decreases (if any) in total nitrogen (TN) loading were lower than for TP in most lakes. As a result, the TN : TP ratio in lake water increased in 80% of the lakes. In lakes where the TN loading was reduced, the annual mean in‐lake TN concentration responded rapidly. Concentrations largely followed predictions derived from an empirical model developed earlier for Danish lakes, which includes external TN loading, hydraulic retention time and mean depth as explanatory variables. 4. Phytoplankton clearly responded to reduced nutrient loading, mainly reflecting declining TP concentrations. Declines in phytoplankton biomass were accompanied by shifts in community structure. In deep lakes, chrysophytes and dinophytes assumed greater importance at the expense of cyanobacteria. Diatoms, cryptophytes and chrysophytes became more dominant in shallow lakes, while no significant change was seen for cyanobacteria. 5. The observed declines in phytoplankton biomass and chl a may have been further augmented by enhanced zooplankton grazing, as indicated by increases in the zooplankton : phytoplankton biomass ratio and declines in the chl a : TP ratio at a summer mean TP concentration of <100–150 μg L?1. This effect was strongest in shallow lakes. This implies potentially higher rates of zooplankton grazing and may be ascribed to the observed large changes in fish community structure and biomass with decreasing TP contribution. In 82% of the lakes for which data on fish are available, fish biomass declined with TP. The percentage of piscivores increased in 80% of those lakes and often a shift occurred towards dominance by fish species characteristic of less eutrophic waters. 6. Data on macrophytes were available only for a small subsample of lakes. In several of those lakes, abundance, coverage, plant volume inhabited or depth distribution of submerged macrophytes increased during oligotrophication, but in others no changes were observed despite greater water clarity. 7. Recovery of lakes after nutrient loading reduction may be confounded by concomitant environmental changes such as global warming. However, effects of global change are likely to run counter to reductions in nutrient loading rather than reinforcing re‐oligotrophication.  相似文献   

12.
Nearly half of US lakes are impaired, primarily resulting from excessive nutrients and resultant eutrophication. The stability and recycling of sediment P results in differing degrees of internal P loading, which can alter lake water quality. In this study, we asked: (1) What are the underlying mechanisms controlling internal loading (net release) and retention of P? and (2) How does trophic state, specifically a hypereutrophic condition, affect internal P loading in agricultural reservoirs? We show that shifts in internal P loading are related to trophic-level indicators, including total P (TP) and chl-a concentrations. All study reservoirs were classified as hypereutrophic, and we grouped them as “less eutrophic” or “more eutrophic” based on TP and chl-a concentrations. In less eutrophic lakes, chemical variables (for example, oxygen) and sediment iron-bound P primarily controlled internal P loading under anaerobic conditions. However, in the more eutrophic lakes, biological variables, including phytoplankton biomass (as indicated by chl-a concentrations) and extracellular enzyme activity, drove internal P loading or reduced P retention under aerobic conditions. Biologically controlled aerobic internal P cycling was related to higher sediment organic P pools being broken down by enzymatic hydrolysis. Therefore, we theorize that as lakes become hypereutrophic, biological mechanisms begin to amplify internal P release by acting under both anaerobic and aerobic conditions, thus creating a perpetual cycle of internal P loading. Thus, the role of biological processes and oxygen availability should be considered in water quality management strategies aimed at alleviating eutrophication in lakes.  相似文献   

13.
Frequent resuspension of sediments is recognized as an important process in large shallow lakes, impeding the recovery of eutrophic lakes. A large-scale project, including a wave barrier (3.3 km long) and a soft enclosure, was implemented to reduce wave energy and sediment resuspension in Lake Taihu, eastern China. The effects of the wave-reduction engineering on sediment resuspension and internal nutrient loading were investigated. Results showed that sediment resuspension rates as well as suspended solids (SS) in the areas protected by the wave barrier and the soft enclosure were significantly lower than in the unprotected areas. There was a positive relationship between total phosphorus (TP) and SS; thus internal loading of phosphorus was significantly reduced by the wave-reduction structure. High nutrient levels and phytoplankton biomass persisted during the experiment period, suggesting that additional measures, such as re-establishment of the macrophyte community, must be included to help restore the water quality in such a large, shallow and eutrophic lake.  相似文献   

14.
SUMMARY 1. One of the most controversial issues in biomanipulation research relates to the conditions required for top-down control to cascade down from piscivorous fish to phytoplankton. Numerous experiments have demonstrated that Phytoplankton biomass Top-Down Control (PTDC) occurs under the following conditions: (i) in short-term experiments, (ii) shallow lakes with macrophytes, and (iii) deep lakes of slightly eutrophic or mesotrophic state. Other experiments indicate that PTDC is unlikely in (iv) eutrophic or hypertrophic deep lakes unless severe light limitation occurs, and (v) all lakes characterised by extreme nutrient limitation (oligo to ultraoligotrophic lakes).
2. Key factors responsible for PTDC under conditions (i) to (iii) are time scales preventing the development of slow-growing inedible phytoplankton (i), shallow depth allowing macrophytes to become dominant primary producers (ii), and biomanipulation-induced reduction of phosphorus (P) availability for phytoplankton (iii).
3. Under conditions (iv) and (v), biomanipulation-induced reduction of P-availability might also occur but is insufficient to alter the epilimnetic P-content enough to initiate effective bottom-up control (P-limitation) of phytoplankton. In these cases, P-loading is much too high (iv) or P-content in the lake much too low (v) to initiate or enhance P-limitation of phytoplankton by a biomanipulation-induced reduction of P-availability. However, PTDC may exceptionally result under condition (iv) if high mixing depth and/or light attenuation cause severe light limitation of phytoplankton.
4. Recognition of the five different conditions reconciles previous seemingly contradictory results from biomanipulation experiments and provides a sound basis for successful application of biomanipulation as a tool for water management.  相似文献   

15.
Internal phosphorus loading is particularly concerned for the shallow lakes due to the frequent sediment disturbance, which may play a vital role in changing nutrient level in overlying water. A historical perspective on internal phosphorus loading may contribute to understanding its contribution to recent eutrophication. In this work, a study on the changes in internal phosphorus loading and release potential in Taihu Lake, a shallow eutrophic lake in China, was performed based on the analysis of spatio-temporal variations of sedimentary total phosphorus and three operationally defined fractions (NaOH-P, HCl-P and OP). The influencing factors for changing internal loading were discussed. The results showed that internal phosphorus loading was elevated compared to pre-eutrophication periods and the increase has occurred since approximately the late 1970s to early 1980s. Changes in internal phosphorus loading were primarily attributed to the NaOH-P and OP fractions, relating to anthropogenic inputs and enhanced productivity, respectively. The internal phosphorus release potential may be enhanced by up to 22% currently relative to the pre-eutrophication period; however, it should play a secondary role to external input in enhancing nutrient levels and sustaining the eutrophication in Taihu Lake.  相似文献   

16.
Restoration of anthropogenically eutrophied lake ecosystems is difficult due to feedback mechanisms that stabilize the trophically degraded state. Here, we show rapid recovery of a eutrophic stratified lake in response to multiple restoration that targeted the feedback mechanisms of high external and internal nutrient loads, lack of a trophic cascade, and lack of structured littoral habitats. Lake Tiefwarensee (Germany) was exposed to aluminium and calcium treatment and fisheries management over 5 years. Within this period, in-lake phosphorus concentrations declined by more than 80%, and transparency, zooplankton biomass and fish assemblage structure and biomass responded immediately and almost linearly to the reduction in phosphorus concentrations. Phytoplankton biomass and chlorophyll a (chl a) concentrations likewise decreased in response to restoration, but the declining trend was interrupted by one recovery year with unusually high phytoplankton biomasses. The zooplankton:phytoplankton biomass ratio and the chl a:phosphorus ratio approached values observed in other stratified lakes during natural recovery from eutrophication. The slow response of Tiefwarensee to the reduction of external load, and the quick response to the chemical treatment suggest that the disruption of internal P recycling and loading was the decisive restoration measure in Tiefwarensee. The external load reduction was a necessary but not sufficient measure, at least in the short-term, whereas the low-effort fisheries management was of minor importance. A comparison with other case studies confirms that measures aiming to inactivate phosphorus are the most efficient approaches to restore stratified lakes in the short-term, but a shift to a permanent near-pristine state is possible only by additional P input control. Author Contributions: T.M. designed the study, analyzed data, and wrote the paper. M.D. analyzed data. T.G. analyzed data. P.K. designed the study and analyzed data. R.K. conceived of and designed the study. L.K, M.R. and M.S. analyzed data. G.W. contributed new methods, analyzed data and wrote parts of the paper. All authors contributed to writing the final version.  相似文献   

17.
SUMMARY. 1. The exchange of phosphorus between the epilimnetic (shallow zone) sediment and water column in Lough Ennell was investigated in laboratory experiments using five intact cores.
2. Variations in water mixing, sediment suspension and aerobic–anaerobic oxygen status in the water column and its effects on sediment phosphorus release rates were determined.
3. Experimental results indicated that phosphorus release is possible under both aerobic and anaerobic conditions. Aerobic release (0.025 mg P l−1 over 5 days) was possible up to the point when mass resuspension of sediment occurred. Anaerobic release for the same period and mixing conditions was 0.183 mg Pl−1.
4. The release rate under aerobic conditions at 10°C equates to an internal areal loading of 0.134 g P m−2 yr−1, which is approximately 17% and 30% of the average total phosphorus and orthophosphate loadings respectively for the period 1974–79.
5. The results clearly implicate aerobic inorganic phosphorus release from the epilimnetic sediments as a significant source of this nutrient to the overlying water column and is likely a major factor in the continuing eutrophic status in the lake.  相似文献   

18.
Variations in microbial biomass and activity in the sediments of hypereutrophic Lake Vallentunasjön were followed during a period of 5 years. The data were compared to the calculated release of phosphorus from the sediments during the same period. A strong co-variation was found between biomass of Microcystis, heterotrophic bacterial activity in the sediments and internal phosphorus loading. These parameters exhibited mainly a declining trend during the investigation period. A pronounced stability of the sediment chemistry, including the fractional composition of the sediment phosphorus, during the studied period indicates that microbial activity affected the phosphorus release from the sediments. Calculations of the percentage of sediment bacteria that was associated to the mucilage of Microcystis colonies imply, together with the specific bacterial production, that Microcystis in the sediment stimulates bacterial production. In the highly phosphorus-saturated sediments of Lake Vallentunasjön this would ultimately lead to an increased release of phosphorus from the sediment. Lake Vallentunasjön does not follow the common pattern of recovery after reduction of external phosphorus loading. The large biomasses and long survival of Microcystis in the sediment are probably important reasons for the delayed recovery of the lake.  相似文献   

19.
Lyche  Anne  Faafeng  Bjørn A.  Brabrand  Åge 《Hydrobiologia》1990,(1):251-261

The predictability of plankton response to reductions of planktivorous fish was investigated by comparing the plankton community in three biomanipulated lakes and ten unmanipulated lakes differing in intensity of fish predation. Data collected on total phosphorus, phytoplankton and zooplankton biomass and share of cyanobacteria and large grazers, as well as specific growth rate of phytoplankton, were further used to test some of the proposed underlying response-mechanisms. In the biomanipulated lakes the algal biomass and share of cyanobacteria decreased, specific growth rate of phytoplankton increased, and zooplankton biomass and share of large grazers increased or remained unchanged. This pattern was largely reflected in the differences in food-chain structure between the unmanipulated lakes with highversus those with low fish predation. The qualitative response to planktivorous fish reduction thus seems largely predictable. The biomanipulated lakes differed, however, in magnitude of response: the smallest hypertrophic, rotenone-treated lake (Helgetjern) showed the most dramatic response, whereas the large, deep mesotrophic lake (Gjersjøen), which was stocked with piscivorous fish, showed more moderate response, probably approaching a new steady state. These differences in response magnitude may be related to different perturbation intensity (rotenone-treatmentversus stocking with piscivores), food-chain complexity and trophic state. Both decreased phosphorus concentration and increased zooplankton grazing are probably important mechanisms underlying plankton response to biomanipulation in many lakes. The results provide tentative support to the hypothesis that under conditions of phosphorus limitation, increased zooplankton grazing can decrease algal biomassvia two separate mechanisms: reduction of the phosphorus pool in the phytoplankton, and reduction of the internal C:P-ratio in the phytoplankton cells.

  相似文献   

20.
An analysis of data from 49 shallow lakes showed, that the parameters of empirical models between phosphorus loading and concentration in the lake (e.g. Vollenweider type of relations) differ significantly for lakes without or with a reduced external loading. For lakes without a reduction of the external loading the summer phosphorus concentration is determined by the external phosphorus loading and the hydraulic loading. For these lakes the classical models suffice; deviations between calculations and measurements are partly due to errors made in the determination of the loading.In contrast, for lakes where the external loading was reduced, the measured internal loading explains most of the variation in the summer lake concentration. The external loading is of minor importance and the classical models cannot be applied. The internal loading measured before reduction of the external loading is not useful in predicting the concentration afterwards. Instead of the internal loading, the sediment composition can be used. The advantage of using sediment composition is that these variables are easier to determine and vary less in time. The most promising variable is the ratio between total P and total Fe in the sediment.Abbreviations: Qs hydraulic loading (m y-1) - hydraulic retention time (y) - Lext external phosphorus loading (gP m-2 y-1) - Lint internal phosphorus loading (gP m-2 y-1) - Plake phosphorus concentration in the lake (gP m-3) - Pinlet phosphorus concentration in the inlet water (gP m-3) - Psed phosphorus content on the sediment (gP kg-1 d.w.) - Fesed iron content of the sediment (gFe kg-1 d.w.) - Y dependent variable multiple regression calculations - X1, X2 independent variables multiple regressions calculations - a, a1 constants - a2, b constants  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号