首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A variety of transport properties have been measured for solutions of the water soluble polymer poly(ethylene oxide)(PEO) with molecular weights ranging from 200 to 14,000, and volume fractions ranging from 0-80%. The transport properties are thermal conductivity, electrical conductivity at audio frequencies (in solutions containing dilute electrolyte), and water self-diffusion. These data, together with dielectric relaxation data previously reported, are amenable to analysis by the same mixture theory. The ionic conductivity and water self-diffusion coefficient, but not the thermal conductivity, are substantially smaller than predicted by the Maxwell and Hanai mixture relations, calculated using the known transport properties of pure liquid water. A 25% (by volume) solution of PEO exhibits an average dielectric relaxation frequency of the suspending water of one half that of pure water, with clear evidence of a distribution of relaxation times present. The limits of the cumulative distribution of dielectric relaxation times that are consistent with the data are obtained using a linear programming technique. The application of simple mixture theory, under appropriate limiting conditions, yields hydration values for the more dilute polymer solutions that are somewhat larger than values obtained from thermodynamic measurements.  相似文献   

2.
The enthalpy relaxation during the ageing of gelatin in the glassy state was studied for partially crystalline or amorphous materials at different water contents and ageing temperatures. The extent and rate of this relaxation associated with physical ageing were found to increase when the shifted temperature parameter (Ta-Tg) increased. This parameter was able to account for the effects of structure and water content (through Tg) and ageing temperature (Ta).  相似文献   

3.
The ageing process of high methoxyl pectin (HMP)/sucrose gels was followed at different ageing temperatures by small amplitude oscillatory experiments. Dynamic mechanical measurements allowed the characterisation of the point at which the system undergoes the sol/gel transition. The HMP/sucrose system is extremely sensitive to temperature variation during ageing, especially in the lower temperature range. The viscoelastic behaviour through the gel point changes with the ageing temperature, probably due to variations in mobility of the pectin chains, and consequently, in the lifetime of junction zones. Weaker pectin networks are formed under thermal conditions unfavourable to the development of hydrophobic interactions. Gel time and elastic modulus have a complex dependence on temperature, which could be attributed to the different thermal behaviour of the intermolecular interactions that stabilise the nonpermanent cross links of these physical networks.  相似文献   

4.
Membrane electrical properties of mouse embryo fibroblasts and their ionizing radiation and chemically transformed counterparts were investigated using dielectric relaxation measurements in the radio frequency range. This determination is possible because, in the radio frequency range, suspensions of cells in an electrolyte buffer show a conductivity dispersion due to interfacial polarization. An analysis of the experimental data based on a single-shell model showed that conductivity and permittivity of the membranes of both radiation and chemically transformed fibroblasts were lower than in normal cells. In addition, the conductivity of the cytoplasm was higher in both transformed cell types than in the normal mouse fibroblasts. We discuss the significance of these findings in view of the possible structural and functional modifications brought about by the process of neoplastic transformation.  相似文献   

5.
F-actin bundles are prominent cytoskeletal structures in eukaryotes. They provide mechanical stability in stereocilia, microvilli, filopodia, stress fibers and the sperm acrosome. Bundles are typically stabilized by a wide range of specific crosslinking proteins, most of which exhibit off-rates on the order of 1s−1. Yet F-actin bundles exhibit structural and mechanical integrity on time scales that are orders of magnitude longer. By applying large deformations to reconstituted F-actin bundles using optical tweezers, we provide direct evidence of their differential mechanical response in vitro: bundles exhibit fully reversible, elastic response on short time scales and irreversible, elasto-plastic response on time scales that are long compared to the characteristic crosslink dissociation time. Our measurements show a broad range of characteristic relaxation times for reconstituted F-actin bundles. This can be reconciled by considering that bundle relaxation behavior is also modulated by the number of filaments, crosslinking type and occupation number as well as the consideration of defects due to filament ends.  相似文献   

6.
Dielectric measurements have been carried out on partially hydrated collagen in the frequency ranges 100 kHz–5 MHz, 100 MHz–1 GHz, and 8–23 GHz. In the low-frequency range, a dispersion was observed around 100 kHz which results from inhomogeneous conductivity of the samples. A dielectric relaxation was observed aroud 0.3 GHz using time-domain-spectroscopy techniques. This relaxation can be considered to originate from mobile side chains. Microwave measurements indicate that the water relaxation may extend into the 10-GHz region. An apparent discrepancy between the main water relaxation time and the average rotational correlation time of water as measured by nmr line widths was resolved by the assumption that a fraction of the water molecules is bound to the collagen with residence times on the order of 10?6 sec, whereas the remainder of the water is only weakly bound and exhibits rotational rates on the order of 10?10 sec.  相似文献   

7.
The structural properties of four gelatin fractions in mixture with sucrose and glucose syrup have been investigated extensively using small deformation dynamic oscillation. The total level of solids was 80%, the number average molecular weight of the protein ranged from 29.2 to 68 kD, and the temperatures were between 60 and -60 degrees C. Remarkably, the nature of the time and temperature dependence on the viscoelastic functions of all samples could be reduced to master curves using horizontal shift factors. The construction of master curves indicates a common mechanism of structure formation, which, in accordance with the synthetic polymer literature, comprises the rubbery zone, glass transition region, and glassy state. Application of Ferry's free-volume formalism and Rouse theory suggests that there is no change in the thermodynamic state of materials during vitrification, with changes in molecular weight simply introducing shifts in the time scale and temperature range of contributions to viscoelasticity. The thermorheological simplicity allowed development of the concept of "rheological" Tg. This was defined as the point between free-volume phenomena of the polymeric backbone occurring in the glass transition region and an energetic barrier to rotation required for local chain rearrangements in the glassy state. Mechanical relaxation and retardation distribution functions were calculated, thus obtaining values for the effective friction coefficient per monomer unit of the protein. It appears that the local friction coefficient is governed by a linear relationship between fractional free volume and the decreasing molecular weight of the protein, which introduces additional voids due to molecular ends.  相似文献   

8.
The purpose of this study was to evaluate DNA degradation upon thermal heating using dielectric relaxation and direct current (DC) conductivity methods. Herring sperm DNA, human growth hormone (HgH) plasmid DNA, and secreted alkaline phosphatase (SEAP) plasmid DNA were used as the examples. DNA was heated at 80°C for 1 hour. The dielectric relaxation spectra as a function of the applied field frequency were measured for HgH DNA at 0.5 hours and at 1 hour. The frequency range covered was from 10 kHz to 100 kHz. The DC conductivity measurements were made for all 3 kinds of DNA at 4 time points: 0 hours, 0.5 hours, 0.75 hours, and 1 hour. At each time point the DC conductivity was measured for each sample as a function of concentration via water dilution. The results show that the dielectric relaxation method is less sensitive in characterizing heat-driven DNA degradation. Conversely, DC conductivity is very sensitive. The semiquantitative dependence of the conductivity upon heating suggests that DNA degradation involves more than plasmid DNA nicking. Double strand and single strand breaks may also occur. In addition, herring sperm DNA, HgH DNA, and SEAP DNA, though similar in their DC conductivity functional forms upon dilution, exhibit significant differences in their responses to sustained heating.  相似文献   

9.
The efficacy of compression therapy using compression bandages is highly dependent on the level of compression applied and the sustenance of the pressure during the course of treatment. This study attempts to predict the pressure profile generated by compression bandages using constitutive equations describing relaxation behavior of viscoelastic materials. It is observed that this pressure profile is highly correlated with the stress relaxation behavior of the bandage. To model the pressure profile, the stress relaxation behavior of compression bandages was studied and modeled using three mechanical models: the Maxwell model, the standard linear solid model and the two-component Maxwell model with a nonlinear spring. It was observed that the models with more component values explained the experimental relaxation curves better. The parameters used for modelling relaxation behavior were used to describe the pressure profile, which is significantly dependent on the longitudinal stress relaxation behavior of the bandage, using the modified Laplace's law equation. This approach thus helps in evaluating the bandage performance with time during compression therapy as novel wound care management.  相似文献   

10.
A novel cationized starch-based interpolyelectrolyte complex (IPEC) was formed using kappa-carrageenan as the counter polyion. Characterization of the product by turbidity measurements and elemental analyses indicated a 1:1 interaction of the repeating units. FT-IR spectra for the IPEC showed some differences in comparison with either IPEC constituents or physical mixture. The swelling of tablets obtained by direct compression was independent of pH, and a maximum value of 742% was attained after 24 h. The performance of the IPEC as matrix for controlled release of ibuprofen indicates that drug delivery takes place in a zero-order manner. Experimental dissolution data in the buffer stage were properly represented by a model accounting for contributions of Fickian diffusion and relaxation phenomena; this model suggests that the former predominates over the latter, for the modeled range.  相似文献   

11.
Inoue C  Suzuki T 《Cryobiology》2006,52(1):83-89
The enthalpy relaxation of freeze concentrated sucrose-water glass was investigated using 40% sucrose, differential scanning calorimetry (DSC) with isothermal ageing for 1-6 days at various temperatures (-70, -65, -60, and -55 degrees C). The enthalpy relaxation was observed as an endothermic peak superimposed on the endothermic step-wise change due to the glass transition around -47 degrees C. The enthalpy relaxation was found to increase with ageing time and temperature. An 80% sucrose glass was also investigated at ageing temperatures of -60 and -65 degrees C, and this material exhibited a similar glass transition and enthalpy relaxation to that observed with the frozen 40% sucrose solution. The calculated activation energy of the enthalpy relaxation of the sucrose-water glass was smaller than that reported for pure sucrose. These results suggest that the freeze concentrated sucrose-water glass could have a higher molecular mobility and less stability than pure sucrose glass.  相似文献   

12.
The densities of amorphous maltose-water, maltose-glycerol and starch-sorbitol-water mixtures were measured using a vibrating-tube density meter and pycnometry. The volumetric change on mixing was investigated through the calculation of the quantity DeltaV/V, the difference between (experimental) volume of the mixture and the linear composition weighted pure constituent volumes (ideal mixing). For all of the systems studied the quantity DeltaV/V was negative and approached a minimum of -0.03 and -0.015 at mass fractions of maltose in the region of 0.75 and 0.85 for the maltose-water and maltose-glycerol mixtures, respectively. Results are discussed in the context of volume change due to structural relaxation of vitreous materials and related to the phenomenon of antiplasticisation.  相似文献   

13.
High-solid materials of gelatin in the presence of co-solute were prepared and subjected to a series of hydrostatic pressures up to 700 MPa. Following this, a study was made of the relaxation properties of the mixture around the glass transition region and the melting behaviour of the gelatin network. Structural properties were monitored using differential scanning calorimetry and small-deformation dynamic oscillation on shear. Thermograms were obtained and master curves of viscoelasticity were constructed for each experimental pressure. The dependence of the empirical shift distances obtained from mechanical measurements and supplementing evidence from thermal analysis argue that the application of pressure did not alter the vitrification or melting characteristics of the gelatin/co-solute system within the experimentally accessible pressure range. Unlike the principle of the time–temperature–pressure superposition applicable to synthetic macromolecules, it may not be possible to incorporate a pressure component into the framework of thermorheological simplicity governing the glass transition of the high-sugar gelatin network.  相似文献   

14.
Rheological properties of pullulan, sodium alginate and blend solutions were studied at 20 °C, using steady shear and dynamic oscillatory measurements. The intrinsic viscosity of pure sodium alginate solution was 7.340 dl/g, which was much higher than that of pure pullulan (0.436 dl/g). Pure pullulan solution showed Newtonian behavior between 0.1 and 100 s−1 shear rate range. However, increasing sodium alginate concentration in pullulan-alginate blend solution led to a shear-thinning behavior. The effect of temperature on viscosities of all solutions was well-described by Arrhenius equation. Results from dynamical frequency sweep showed that pure sodium alginate and blend solutions at 4% (w/w) polymer concentration were viscoelastic liquid, whereas the pure pullulan exhibited Newtonian behavior. The mechanical properties of pure sodium alginate and pullulan-alginate mixture were analyzed using the generalized Maxwell model and their relaxation spectra were determined. Correlation between dynamic and steady-shear viscosity was analyzed with the empirical Cox-Merz rule.  相似文献   

15.
An increased permeability of a cell membrane during the application of high-voltage pulses results in increased transmembrane transport of molecules that otherwise cannot enter the cell. Increased permeability of a cell membrane is accompanied by increased membrane conductivity; thus, by measuring electric conductivity the extent of permeabilized tissue could be monitored in real time. In this article the effect of cell electroporation caused by high-voltage pulses on the conductivity of a cell suspension was studied by current-voltage measurements during and impedance measurement before and after the pulse application. At the same time the percentage of permeabilized and survived cells was determined and the extent of osmotic swelling measured. For a train of eight pulses a transient increase in conductivity of a cell suspension was obtained above permeabilization threshold in low- and high-conductive medium with complete relaxation in <1 s. Total conductivity changes and impedance measurements showed substantial changes in conductivity due to the ion efflux in low-conductive medium and colloid-osmotic swelling in both media. Our results show that by measuring electric conductivity during the pulses we can detect limit permeabilization threshold but not directly permeabilization level, whereas impedance measurements in seconds after the pulse application are not suitable.  相似文献   

16.
In this work, detailed dielectric measurements are presented on aqueous electrolytic solutions of NaCl and KCl in a broad frequency range, typical for modern telecommunication techniques. The complex dielectric permittivity or equivalently the complex conductivity are systematically studied as function of frequency (100 MHz-40 GHz), temperature (10-60 degrees C) and molar concentration (0.001-1 mol/l). By a detailed analysis of the dielectric results using an asymmetrically broadened Cole-Davidson distribution of relaxation times, in addition to dc conductivity, the dielectric response as function of frequency, temperature, and molar concentration was fully parameterized by a total of 13 parameters. This model ansatz and the 13 parameters include an enormous predictive power, allowing a reasonable estimation of the dielectric constant, loss, and the conductivity for any set of external variables frequency, temperature and concentration. The proposed method is not only useful for rather simple electrolytic solutions, but also for cell suspensions and biological matter, if additional processes, especially at low frequencies, are adequately taken into account.  相似文献   

17.
Broadband measurements of the millimeter-wave and far-ir absorption (10–104 GHz) of lyophilized hemoglobin are reported. Additionally, the absorption of poly(L -alanine) and crystalline L -alanine at 70 GHz was measured for comparison. All measurements were extended over the temperature range from liquid helium to room temperature. For the millimeter range, this was attained by using the novel oversized-cavity technique. It was found that the millimeter-wave absorption of the materials increased nearly exponentially with temperature and increased as ν1.2–ν2 with frequency. The far-ir absorption of hemoglobin showed broadbands with almost no temperature dependence. The frequency and temperature dependence of the millimeter-wave absorption is quantitatively described as due to three distinct relaxation processes on a picosecond time scale occurring in asymmetric double-well potentials. These processes are most probably assigned to the NH ?OC hydrogen bonds of the peptide backbone.  相似文献   

18.
Thermal conductivity of dimethyl-sulfoxide (DMSO) solution is measured in this study using a transient hot wire technique, where DMSO is a key ingredient in many cryoprotective agent (CPA) cocktails. Characterization of thermal properties of cryoprotective agents is essential to the analysis of cryopreservation processes, either when evaluating experimental data or for the design of new protocols. Also presented are reference measurements of thermal conductivity for pure water ice and glycerol. The thermal conductivity measurement setup is integrated into the experimentation stage of a scanning cryomacroscope apparatus, which facilitates the correlation of measured data with visualization of physical events. Thermal conductivity measurements were conducted for a DMSO concentration range of 2M and 10M, in a temperature range of -180°C and 25°C. Vitrified samples showed decreased thermal conductivity with decreasing temperature, while crystalline samples showed increased thermal conductivity with decreasing temperature. These different behaviors result in up to a tenfold difference in thermal conductivity at -180°C. Such dramatic differences can drastically impact heat transfer during cryopreservation and their quantification is therefore critical to cryobiology.  相似文献   

19.
Understanding the viscoelastic behavior of collagenous tissues with complex hierarchical structures requires knowledge of the properties at each structural level. Whole tissues have been studied extensively, but less is known about the mechanical behavior at the submicron, fibrillar level. Using a microelectromechanical systems platform, in vitro coupled creep and stress relaxation tests were performed on collagen fibrils isolated from the sea cucumber dermis. Stress-strain-time data indicate that isolated fibrils exhibit viscoelastic behavior that could be fitted using the Maxwell-Weichert model. The fibrils showed an elastic modulus of 123 ± 46 MPa. The time-dependent behavior was well fit using the two-time-constant Maxwell-Weichert model with a fast time response of 7 ± 2 s and a slow time response of 102 ± 5 s. The fibrillar relaxation time was smaller than literature values for tissue-level relaxation time, suggesting that tissue relaxation is dominated by noncollagenous components (e.g., proteoglycans). Each specimen was tested three times, and the only statistically significant difference found was that the elastic modulus is larger in the first test than in the subsequent two tests, indicating that viscous properties of collagen fibrils are not sensitive to the history of previous tests.  相似文献   

20.
Epigenetic ageing, i.e., age-associated changes in DNA methylation patterns, is a sensitive marker of biological ageing, a major determinant of morbidity and functional decline. We examined the association of physical activity with epigenetic ageing and the role of immune function and cardiovascular risk factors in mediating this relation. Moreover, we aimed to identify novel molecular processes underlying the association between physical activity and epigenetic ageing. We analysed cross-sectional data from 3567 eligible participants (mean age: 55.5 years, range: 30–94 years, 54.8% women) of the Rhineland Study, a community-based cohort study in Bonn, Germany. Physical activity components (metabolic equivalent (MET)-Hours, step counts, sedentary, light-intensity and moderate-to-vigorous intensity activities) were recorded with accelerometers. DNA methylation was measured with the Illumina HumanMethylationEPIC BeadChip. Epigenetic age acceleration (Hannum's age, Horvath's age, PhenoAge and GrimAge) was calculated based on published algorithms. The relation between physical activity and epigenetic ageing was examined with multivariable regression, while structural equation modeling was used for mediation analysis. Moreover, we conducted an epigenome-wide association study of physical activity across 850,000 CpG sites. After adjustment for age, sex, season, education, smoking, cell proportions and batch effects, physical activity (step counts, MET-Hours and %time spend in moderate-to-vigorous activities) was non-linearly associated with slower epigenetic ageing, in part through its beneficial effects on immune function and cardiovascular health. Additionally, we identified 12 and 7 CpGs associated with MET-Hours and %time spent in moderate-to-vigorous activities, respectively (p < 1 × 10−5). Our findings suggest that regular physical activity slows epigenetic ageing by counteracting immunosenescence and lowering cardiovascular risk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号