首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The gene responsible for multiple endocrine neoplasia type 2A (MEN 2A) has been localized to the pericentromeric region of chromosome 10. Several markers that fail to recombine with MEN2A have been identified, including D10Z1, D10S94, D10S97, and D10S102. Meiotic mapping in the MEN2A region is limited by the paucity of critical crossovers identified and by the dramatically reduced rates of recombination in males. Additional approaches to mapping loci in the pericentromeric region of chromosome 10 are required. We have undertaken the generation of a detailed physical map by radiation hybrid mapping. Here we report the development of a radiation hybrid panel and its use in the mapping of new DNA markers in pericentromeric chromosome 10. The radiation-reduced hybrids used for mapping studies all retain small subchromosomal fragments that include both D10S94 and D10Z1. One hybrid was selected as the source of DNA for cloning. One hundred five human recombinant clones were isolated from a lambda library made with pp11A DNA. We have completed regional mapping of 22 of those clones using our radiation hybrid mapping panel. Seven markers have been identified and, when taken together with previously meiotically mapped markers, define eight radiation hybrid map intervals between D10S34 and RBP3. The identical order is found for a number of these using either the radiation hybrid mapping panel or the meiotic mapping panel. We believe that this combination cloning and mapping approach will facilitate the precise positioning of new markers in pericentromeric chromosome 10 and will help in refining further the localization of MEN2A.  相似文献   

2.
The gene for multiple endocrine neoplasia type 2A (MEN2A) has been mapped to the pericentromeric region of chromosome 10 by linkage analysis. Thirty-four families with multiple cases of medullary carcinoma of the thyroid (MTC), including 24 families with origins in France, have been typed with nine polymorphic markers spanning the centromere of chromosome 10. No recombination was observed between the MEN2A locus and either of the four loci D10Z1 (lod score 12.79), D10S102 (lod score 6.38), D10S94 (lod score 7.76), and D10S34 (lod score 5.94). There was no evidence for genetic linkage heterogeneity in the panel of 34 families. Haplotypes were constructed for a total of 11 polymorphisms in the MEN2A region, for mutation-bearing chromosomes in 24 French families and for 100 spouse controls. One haplotype was present in four MEN2A families but was not observed in any control (P less than .01). Two additional families share a core segment of this haplotype near the MEN2A gene. It is likely that these six families have a common affected ancestor. Because the incidence of pheochromocytoma among carriers varies from 0% to 74% within these six families, it is probable that additional factors modify the expression of the MEN2A gene.  相似文献   

3.
Gene(s) for the autosomal dominant endocrine cancer syndromes, multiple endocrine neoplasia type 2A (MEN2A), multiple endocrine neoplasia type 2B (MEN2B), and familial medullary thyroid carcinoma (MTC1) all map to the pericentromeric region of chromosome 10. Predictive testing for the inheritance of mutant alleles in individuals at risk for these disorders has been limited by the availability of highly informative and closely linked flanking markers. We describe the development of eight new markers, including two PCR-based dinucleotide repeat polymorphisms and six RFLPs that flank the disease loci. One of the dinucleotide repeat markers (sJRH-1) derives from the RBP3 locus on 10q11.2 and has a PIC of .88. The other dinucleotide repeat (sTCL-1) defines a new locus, D10S176, that maps by in situ hybridization to 10p11.2 and has a PIC of .68. We have constructed a new genetic linkage map of the pericentromeric region of chromosome 10, on the basis of 13 polymorphisms at six loci, which places the MEN2A locus between the dinucleotide repeat markers, with odds of 5,750:1 over the next most likely position. Using this set of markers, predictive genetic testing of 130 at-risk individuals from six families segregating MEN2A revealed that 95% were jointly informative with flanking markers, representing a significant improvement in genetic testing capabilities.  相似文献   

4.
Linked markers flanking the gene for multiple endocrine neoplasia type 2A   总被引:11,自引:0,他引:11  
The inherited cancer syndrome multiple endocrine neoplasia type 2A (MEN2A) has recently been mapped to chromosome 10. We have typed 29 families with this disorder with DNA markers from the pericentromeric region of chromosome 10. Two markers, RBP3 and MCK2, were tightly linked to the MEN2A gene at recombination fractions of less than 3%. Multipoint analysis of the linkage data suggests that the gene is located within a 3-cM interval defined by the markers RBP3/MCK2 on one side and TB14.34 on the other. No evidence for locus heterogeneity was detected in any of the 27 families from 14 countries who were informative for the markers tested. The data confirm and refine the original assignment and provide the basis for presymptomatic screening for this disorder.  相似文献   

5.
Multiple endocrine neoplasia type 2A (MEN2A) is a rare cancer syndrome that is inherited in an apparently autosomal dominant fashion. Previous linkage studies had assigned the MEN2A locus to chromosome 10 in the pericentromeric region. We recently have described several new easily scorable RFLPs for the chromosome 10-specific alpha satellite DNA (the D10Z1) locus that is known, on the basis of previous in situ hybridization experiments, to lie at the centromere. We report here tight linkage between MEN2A and D10Z1, as demonstrated by a maximum lod score of 12.02 at the recombination frequency of zero (1-lod-unit support interval 0-4 cM), indicating that the genetic defect in MEN2A lies in the immediate vicinity of the centromere. By means of a set of ordered polymorphic DNA markers from the pericentromeric region, multipoint as well as pairwise linkage analyses place the MEN2A locus at the middle of a small region (approximately 11 cM) bracketing the centromere with FNRB (at 10p11.2) and RBP3 (at 10q11.2) on either side, providing further support for the centromeric location of the MEN2A locus. Marked sex difference in recombination frequencies exists in this pericentromeric region: significantly (P less than .01) more female than male crossovers were observed across all of the adjacent intervals D10S24-FNRB, FNRB-D10Z1, and D10Z1-RBP3. However, a sex difference was not seen in the 7-cM interval from RBP3 to D10S5, suggesting that large variation in the sex difference in recombination can occur over small chromosomal regions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Multiple endocrine neoplasia type 1 (MEN1) is an autosomal dominant disorder with a high penetrance characterized by tumors of the parathyroid glands, the endocrine pancreas, and the anterior pituitary. TheMEN1gene, a putative tumor suppressor gene, has been mapped to a 3- to 8-cM region in chromosome 11q13 but it remains elusive as yet. We have combined the efforts and resources from four laboratories to form the European Consortium on MEN1 with the aims of establishing the genetic and the physical maps of 11q13 and of further narrowing the MEN1 region. A 5-Mb integrated map of the region was established by fluorescencein situhybridization on both metaphase chromosomes and DNA fibers, by hybridization to DNA from somatic cell hybrids containing various parts of human chromosome 11, by long-range restriction mapping, and by characterization of YACs and cosmids. Polymorphic markers were positioned and ordered by physical mapping and genetic linkage in 86 MEN1 families with 452 affected individuals. Two critical recombinants identified in two affected cases placed theMEN1gene in an ≈2-Mb region aroundPYGM,flanked by D11S1883 and D11S449.  相似文献   

7.
Multiple endocrine neoplasia type 1 (MEN1) is an autosomal dominant disorder in which affected individuals develop tumors primarily in the parathyroids, anterior pituitary, endocrine pancreas, and duodenum. The locus for MEN1 is tightly linked to the marker PYGM on chromosome 11q13, and linkage analysis has previously placed the MEN1 gene within a 2-Mb interval flanked by markers D11S1883 and D11S449. Loss of heterozygosity (LOH) studies in MEN1 and sporadic tumors have helped narrow the location of the gene to a 600-kb interval between PYGM and D11S449. Eighteen new polymerase chain reaction (PCR)-based polymorphic markers were generated for the MEN1 region, with ten mapping to the PYGM-D11S449 interval. These new markers, along with 14 previously known polymorphic markers, were precisely mapped on a 2.8-Mb (D11S480–D11S913) high-density clone contig-based, physical map generated for the MEN1 region. Received: 21 February 1997 / Accepted: 5 June 1997  相似文献   

8.
Summary Multiple endocrine neoplasia type 1 (MEN1) is characterized by neoplasia of the parathyroids, the pancreas, and the pituitary. Tumorigenesis involves unmasking of a recessive mutation at the MEN1 locus, which has been mapped to the centromeric part of chromosomal region 11q. In order to localize the MEN1 gene further and to make its isolation possible, a number of new markers were isolated. Two radiation-reduced somatic cell hybrids were identified that only contained markers close to and flanking the MEN1 region. DNA from these hybrids was used for the construction of a cosmid library, and clones containing human inserts were isolated. In addition, cosmid clones were isolated for locus expansion of 7 other markers that were mapped to the 11q12–13.2 region. The 33 newly isolated clones together with 25 previously published markers from this region were analyzed in a panel of radiation-reduced somatic cell hybrids. From the hybridization pattern, the region was divided into 11 parts. New restriction fragment length polymorphisms were identified in 7 of the newly isolated cosmid clones and in one plasmid. These were then used to sublocalize meiotic cross-overs more precisely in two MEN1 families, thus refining the mapping of the disease gene.  相似文献   

9.
Summary The use of polymorphic DNA segments as markers for the gene for the multiple endocrine neoplasia (MEN) syndrome, type 2a, allows the identification of family members at high risk for developing medullary carcinoma of the thyroid and other tumors, especially pheochromocytoma. Several families have also been identified in which medullary thyroid carcinoma is inherited, but pheochromocytoma is not seen. We have analysed 18 families, 9 with MEN 2A and 9 with medullary carcinoma of the thyroid without pheochromocytoma, with probes specific for the pericentromeric region of chromosome 10 and conclude that the mutations for the two presentations are closely situated. Genetic heterogeneity of the susceptibility locus was not seen among this sample of 18 families. The genetic mutation for medullary carcinoma was in disequilibrium with the marker alleles of the two closely linked probes. IRBPH4 and MCK2. These data suggest that different mutant alleles of the same gene or closely linked mutations account for the variation in penetrance of pheochromocytoma in families with hereditary, medullary thyroid carcinoma.  相似文献   

10.
We have constructed a high-resolution genetic linkage map in the vicinity of the gene responsible for multiple endocrine neoplasia type 1 (MEN1). The mutation causing this disease, inherited as an autosomal dominant, predisposes carriers to development of neoplastic tumors in the parathyroid, the endocrine pancreas, and the anterior lobe of the pituitary. The 12 markers on the genetic linkage map reported here span nearly 20 cM, and linkage analysis of MEN1 pedigrees has placed the MEN1 locus within the 8-cM region between D11S480 and D11S546. The markers on this map will be useful for prenatal or presymptomatic diagnosis of individuals in families that segregate a mutant allele of the MEN1 gene.  相似文献   

11.
Multiple endocrine neoplasia type 1 (MEN1) is an autosomal dominant disorder that predisposes affected individuals to neoplasms of the parathyroid glands, endocrine pancreas, anterior pituitary, and carcinoids. The MEN1 locus has been localized by family studies to 11q13, flanked by markers PGA and D11S97. Eight new polymorphisms located in three separate radiation-reduced somatic cell hybrid segregation groups were developed. The order of the new markers, within the context of previously described loci, was determined by linkage analysis on the Venezuelan reference pedigree. Four independent MEN1 families, consisting of 57 affected individuals, and 70 individuals at-risk for the disease were genotyped. Sixteen people inherited a chromosome that shows recombination between a linked marker and the disease. The nearest proximal and distal markers that show recombination with the disease are D11S822 and GSTP1, respectively, thereby narrowing the candidate region for MEN1 by 50% on the distal side. Using these loci in haplotype analysis, an accurate presymptomatic molecular diagnostic test has been developed. These new markers in 11q13 linked to MEN1 also facilitate the genetic and physical characterization of this very gene-rich region.  相似文献   

12.
Close linkage of MEN2A with RBP3 locus in Japanese kindreds   总被引:7,自引:0,他引:7  
Summary The gene responsible for multiple endocrine neoplasia type 2A (MEN2A) has recently been assigned to the pericentromeric region of chromsome 10 in European Caucasian kindreds by linkage analysis using a DNA marker, interstitial retinol-binding protein 3 (RBP3). We have found tight linkage between the MEN2A and RBP3 loci in Japanese MEN2A kindreds. The maximum lod score is 5.19 at a recombination fraction of 0.00. This result suggests that mutation of a certain gene close to RBP3 is responsible for MEN2A irrespective of ethnic backgrounds.  相似文献   

13.
14.
The multiple endocrine neoplasia type 1 (MEN1) locus has been previously localised to 11q13 by combined tumour deletion mapping and recombination studies, and a 0.5-Mb region, flanked by PYGM and D11S449, has been defined. In the course of constructing a contig, we have identified the location of the gene encoding the B56β subunit of protein phosphatase 2A (PP2A), which is involved in cell signal transduction pathways and thus represents a candidate gene for MEN1. We have searched for mutations in the PP2A-B56β coding region, together with the 5′ and 3′ untranslated regions in six MEN1 patients. DNA sequence abnormalities were not identified and thus the PP2A-B56β gene is excluded as the candidate gene for MEN1. However, our precise localisation of PP2A-B56β to this region of 11q13 may help in elucidating the basis for other disease genes mapping to this gene-rich region. Received: 17 April 1997 / Accepted: 22 April 1997  相似文献   

15.
Multiple endocrine neoplasia 2a (MEN 2a) is known to be genetically linked to a locus on chromosome 10. The application of polymorphic DNA probes for the region has made it possible to identify carriers of the disease susceptible gene. We performed DNA analysis for a newly found non-Caucasian MEN 2a family using MEN 203 as a probe. Data from DNA analysis of the family members were concordant with the results of conventional endocrinological tests. Furthermore, DNA analysis discriminated four individuals out of fifteen as non-carriers of the gene with a high degree of certainty. The results relieved these people from taking screening tests for years. DNA analysis employing suitable markers such as MEN 203 appears to be useful for a screening program of MEN 2a in Japanese as well as Caucasians.  相似文献   

16.
Medullary thyroid carcinoma (MTC) occurs as a component of three well-described autosomal dominant familial cancer syndromes. Multiple endocrine neoplasia type 2A (MEN 2A) is characterized by MTC, pheochromocytomas, and parathyroid hyperplasia. Patients with the rarer multiple endocrine neoplasia type 2B (MEN 2B) syndrome develop MTC and pheochromocytomas, as well as mucosal neuromas, ganglioneuromatosis of the gastrointestinal tract, and a characteristic "marfanoid" habitus. Finally, MTC is transmitted in an autosomal dominant pattern in some families without associated pheochromocytomas or parathyroid hyperplasia (familial medullary thyroid carcinoma, MTC1(2). Sixty-one members of two well-characterized kindreds segregating MTC1 and 34 [corrected] members of six families segregating MEN2B were genotyped using a panel of RFLP probes from the pericentromeric region of chromosome 10 near a locus for MEN 2A. Statistically significant linkage was observed between the chromosome 10 centromere-specific marker D10Z1 and MTC1 (maximum pairwise lod score 5.88 with 0% recombination) and D10Z1 and MEN2B (maximum pairwise lod score 3.58 with 0% recombination). A maximum multipoint lod score of 4.08 was obtained for MEN2B at the position of D10Z1. In addition, 92 members of a previously unreported large MEN2A kindred were genotyped, and linkage to the pericentromeric region of chromosome 10 is reported (maximum pairwise lod score of 11.33 with 0% recombination between MEN2A and RBP3). These results demonstrate that both a locus for familial MTC and a locus for MEN 2B map to the pericentromeric region of chromosome 10, in the same region as a locus for MEN 2A. The finding that each of these three clinically distinct familial cancer syndromes maps to the same chromosomal region suggests that all are allelic mutations at the same locus or represent a cluster of genes involved in the regulation of neuroendocrine tissue development.  相似文献   

17.
We have constructed a physical map of chromosome 11q13, using 54 DNA markers that had been localized to 11q13.1----q13.5 by means of somatic hybrid cell panels. Although the map has some gaps, it spans nearly 14 Mb and includes the region containing the gene responsible for multiple endocrine neoplasia type 1 (MEN1) and also the region that is amplified in several types of malignant tumors. As the estimated average distance between each locus is roughly 300 kb, the markers reported here will be valuable resources for construction of contig maps with yeast artificial chromosomes and/or cosmid clones. Furthermore, these clones will be useful in efforts to identify the MEN1 gene and in analyses of the amplification units present at 11q13 in certain tumors.  相似文献   

18.
Multiple endocrine neoplasia type 2A (MEN2A) is an autosomal-dominant syndrome characterized by medullary thyroid carcinoma (MTC), pheochromocytoma and parathyroid hyperplasia. Recent reports have assigned the locus of MEN2A to the pericentromeric region of chromosome 10. Through the 'Groupe d'Etude des Tumeurs à Calcitonine', we have evaluated the ability to predict the carrier state using DNA probes. Our results suggest that the restriction fragment length polymorphism method can be used to identify individuals at risk within MEN2A families. They may then be followed by conventional endocrine methods for the onset of neoplastic changes, limiting the risk of subsequent metastatic disease. The method also permits the exclusion of further screening for family members at very low risk. Extension of the screening program can now be anticipated for other inherited forms of MTC, such as familial MTC without pheochromocytoma or other endocrinological tumor syndromes such as MEN1 for which the locus has also recently been mapped.  相似文献   

19.
In MEN2A both familial and sporadic cases are known. The familial cases show a dominant pattern of inheritance. In these respects, MEN2A resembles other tumors in whose etiology so-called tumor suppressor genes play a decisive role. The MEN2A locus has been assigned to chromosome 10 by linkage studies. Analysis of tumor DNA from 42 patients shows that markers on chromosome 10 were lost in only one tumor. Thus, these results contrast with previous studies which show that tumor development is generally associated with the loss of the whole or substantial parts of the chromosome on which the putative tumor suppressor gene is located.  相似文献   

20.
The multiple endocrine neoplasia type 1 (MEN1) locus has been previously localised to 11q13 by combined tumour deletion mapping and linkage studies and a 3.8-cM region flanked by PYGM and D11S97 has been defined. The zinc finger in the MEN1 locus (ZFM1) gene, which has also been mapped to this region, represents a candidate gene for MEN1. The ZFM1 gene, which consists of 14 exons, encodes a 623-amino acid protein and exons 2, 8 and 12 encode the putative nuclear localisation signal, a zinc finger motif, and a proline-rich region, respectively. We have investigated these potentially functional regions for germ-line mutations by single-stranded conformational polymorphism (SSCP) analysis in 64 unrelated MEN1 patients. In addition, we performed DNA sequence analysis of all the 14 exons and 13 of the 26 exon-intron boundaries in four unrelated MEN1 patients. A 6-bp deletion that resulted in the loss of two proline residues at codons 479 and 480 in exon 12 was found in one MEN1 patient. However, this did not co-segregate with MEN1 in the family and represented a rare polymorphism. Analysis by SSCP, DNA sequencing, northern blotting, Southern blotting and pulsed field gel electrophoresis revealed no additional genetic abnormalities of ZFM1 in the other MEN1 patients. Thus, our results indicate that ZFM1 is excluded as a candidate gene for MEN1. Received: 29 October 1996 / Revised: 16 December 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号