首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human respiratory mucin glycoproteins from patients with cystic fibrosis were purified and oligosaccharide chains were released by treatment with alkaline borohydride. A neutral oligosaccharide alditol fraction was isolated from mucin obtained from a patient with A blood group determinant by chromatography on DEAF-cellulose and individual oligosaccharide chains were then isolated by gel filtration on BioGel P-6 columns and high performance liquid chromatography with gradient and isocratic solvent systems. The structures of the purified oligosaccharides were determined by methylation analysis, sequential glycosidase digestion and H-NMR spectroscopy. The amount of each chain was determined by compositional analysis. A wide array of discrete branched oligosaccharide structures that contain from 3 to 22 sugar residues were found. Many of the oligosaccharides are related and appear to be precursors of larger chains. The predominant branched oligosaccharides which accumulate contain terminal blood group H (Fuc2Ga14) or blood group A (Fuc2(Ga1NAc3) (Ga14) determinants which stop further branching and chain elongation. The elongation of oligosaccharide chains in respiratory mucins occurs on the 3-linked G1cNAc at branch points, whereas the 6-linked GlcNAc residue ultimately forms short side chains with a Fuc2 (Ga1NAc3) Gal4 G1cNAc6 structure in individuals with A blood group determinant.The results obtained in the current studies further suggest that even higher molecular weight oligosaccharide chains with analogous branched structures are present in some human respiratory mucin glycoproteins. Increasing numbers of the repeating sequence shown in the oligosaccharide below is present in the higher molecular weight chains. {ie75-1} This data in conjunction with our earlier observations on the extensive branching of these oligosaccharide chains helps to define and explain the enormous range of oligosaccharide structures found in human and swine respiratory mucin glycoproteins. Comparison of the relative concentrations of each oligosaccharide chain suggest that these oligosaccharides represent variations of a common branched core structure which may be terminated by the addition of a2-linked fucose to the 3/4 linked galactose residue at each branch point. These chains accumulate and are found in the highest concentrations in these respiratory mucins.  相似文献   

2.
In this study, we investigated the use of metabolic oligosaccharide engineering and bio-orthogonal ligation reactions combined with lectin microarray and mass spectrometry to analyze sialoglycoproteins in the SW1990 human pancreatic cancer line. Specifically, cells were treated with the azido N-acetylmannosamine analog, 1,3,4-Bu3ManNAz, to label sialoglycoproteins with azide-modified sialic acids. The metabolically labeled sialoglyproteins were then biotinylated via the Staudinger ligation, and sialoglycopeptides containing azido-sialic acid glycans were immobilized to a solid support. The peptides linked to metabolically labeled sialylated glycans were then released from sialoglycopeptides and analyzed by mass spectrometry; in parallel, the glycans from azido-sialoglycoproteins were characterized by lectin microarrays. This method identified 75 unique N-glycosite-containing peptides from 55 different metabolically labeled sialoglycoproteins of which 42 were previously linked to cancer in the literature. A comparison of two of these glycoproteins, LAMP1 and ORP150, in histological tumor samples showed overexpression of these proteins in the cancerous tissue demonstrating that our approach constitutes a viable strategy to identify and discover sialoglycoproteins associated with cancer, which can serve as biomarkers for cancer diagnosis or targets for therapy.

Electronic supplementary material

The online version of this article (doi:10.1186/s12014-015-9083-8) contains supplementary material, which is available to authorized users.  相似文献   

3.
Providing the neonatal calf with a sufficient quantity and quality of colostrum may optimise future health, performance and reduce the risk of morbidity. A 6-month double blind trial with 80 prepartum dairy cows was conducted to determine if supplementation with mannan oligosaccharide (MOS) influences colostrum quality, quantity and subsequent calf performance. The Holstein cross Friesian 80 cows (no heifers) were allocated into a control and treatment group at the point of drying off by previous lactation number and yield. The control and treatment group were fed the same commercial standard dry cow diet throughout the trial supplemented with a mineral concentrate without or with 1.33% MOS, respectively. Cows were milked out of colostrum within 40 min of calving prior to calf suckling, weight was recorded. Mannan oligosaccharide fed cows produced significantly more colostrum on first milking (7.5 kg, SEM±0.69) compared with cows fed without MOS (5.6 kg, SEM±0.43). The immunoglobulin G (IgG) concentrations (control 53.7 IgG g/l, SEM±5.8 and MOS of 42.7 IgG g/l, SEM±4.9) and total mass of IgG did not differ between treatments. No significant observable MOS-derived effect on calf health or weight gain occurred during the study.  相似文献   

4.
A reproducible high-throughput sample cleanup method for fluorescent oligosaccharide mapping of glycoproteins is described. Oligosaccharides are released from glycoproteins using PNGase F and labeled with 2-aminobenzoic acid (anthranilic acid, AA). A PhyNexus MEA system was adapted for automated isolation of the fluorescently labeled oligosaccharides from the reaction mixture prior to mapping by HPLC. The oligosaccharide purification uses a normal-phase polyamide resin (DPA-6S) in custom-made pipette tips. The resin volume, wash, and elution steps involved were optimized to obtain high recovery of oligosaccharides with the least amount of contaminating free fluorescent dye in the shortest amount of time. The automated protocol for sample cleanup eliminated all manual manipulations with a recycle time of 23 min. We have reduced the amount of excess AA by 150-fold, allowing quantitative oligosaccharide mapping from as little as 500 ng digested recombinant immunoglobulin G (rIgG). This low sample requirement allows early selection of a cell line with desired characteristics (e.g., oligosaccharide profile and high specific productivity) for the production of glycoprotein drugs. In addition, the use of Tecan or another robotic platform in conjunction with this method should allow the cleanup of 96 samples in 23 min, a significant decrease in the amount of time currently required to process such a large number of samples.  相似文献   

5.
The fundamental importance of correct protein glycosylation is abundantly clear in a group of diseases known as congenital disorders of glycosylation (CDGs). In these diseases, many biological functions are compromised, giving rise to a wide range of severe clinical conditions. By performing detailed analyses of the total serum glycoproteins as well as isolated transferrin and IgG, we have directly correlated aberrant glycosylation with a faulty glycosylation processing step. In one patient the complete absence of complex type sugars was consistent with ablation of GlcNAcTase II activity. In another CDG type II patient, the identification of specific hybrid sugars suggested that the defective processing step was cell type-specific and involved the mannosidase III pathway. In each case, complementary serum proteome analyses revealed significant changes in some 31 glycoproteins, including components of the complement system. This biochemical approach to charting diseases that involve alterations in glycan processing provides a rapid indicator of the nature, severity, and cell type specificity of the suboptimal glycan processing steps; allows links to genetic mutations; indicates the expression levels of proteins; and gives insight into the pathways affected in the disease process.  相似文献   

6.
In this report, we describe the preparation of a library ofN-linked glycans from whole murine brain obtained by the large-scale hydrazinolysis of an acetone powder of the tissue followed by chromatographic procedures. 84% of the characterized oligosaccharides were found to be anionic, the remainder neutral. The anionic species were successively neutralized by neuraminidase (29%), aq. hydrofluoric acid (30%), and methanolysis (26%), indicating that approximately equal portions were sensitive to desialylation, dephosphorylation and desulfation, respectively. The presence of the sulfated fraction was confirmed by direct35SO4 metabolic labelling. A residual partially characterized fraction was found to be anionic through possession of carboxylic acid groups, unrelated to sialic acid. The purified oligosaccharides, in the absence of their original protein conjugates, were shown to retain those immunological characteristics essential for recognition by a specific monoclonal antibody, LS (412), that is known to recognize a carbohydrate epitope present on a number of neural adhesion molecules and functional in neural cell adhesion. These properties confirm the viability of scaling up the size of the hydrazinolysis procedure and adapting it to whole tissue for the production of glycan libraries and for the probing of structures of interest.Abbreviations ConA concanavalin A - ELISA enzyme-linked immunosorbent assay - Fuc fucose - Gal galactose - GalNAc N-acetylgalactosamine - GlcNAc N-acetylglucosamine - g.u. glucose units - HRP horseradish peroxidase - HVE high voltage electrophoresis - Man mannose - MS mass spectrometry - N-CAM neural cell adhesion molecule  相似文献   

7.
A significant percentage of eukaryotic proteins contain posttranslationalmodifications, including glycosylation, which are required forbiological function. However, the understanding of the structure–functionrelationships of N-glycans has lagged significantly due to themicroheterogeneity of glycosylation in mammalian produced proteins.Recently we reported on the cellular engineering of yeast toreplicate human N-glycosylation for the production of glycoproteins.Here we report the engineering of an artificial glycosylationpathway in Pichia pastoris blocked in dolichol oligosaccharideassembly. The PpALG3 gene encoding Dol-P-Man:Man5GlcNAc2-PP-Dolmannosyltransferase was deleted in a strain that was previouslyengineered to produce hybrid GlcNAcMan5GlcNAc2 human N-glycans.Employing this approach, combined with the use of combinatorialgenetic libraries, we engineered P. pastoris strains that synthesizecomplex GlcNAc2Man3GlcNAc2 N-glycans with striking homogeneity.Furthermore, through expression of a Golgi-localized fusionprotein comprising UDP-glucose 4-epimerase and ß-1,4-galactosyltransferase activities we demonstrate that this structure isa substrate for highly efficient in vivo galactose addition.Taken together, these data demonstrate that the artificial invivo glycoengineering of yeast represents a major advance inthe production of glycoproteins and will emerge as a practicaltool to systematically elucidate the structure–functionrelationship of N-glycans. 1 These authors contributed equally to this work. 2 To whom correspondence should be addressed; e-mail: swildt{at}glycofi.com  相似文献   

8.
壳寡糖对大肠杆菌抑菌活性研究   总被引:1,自引:0,他引:1  
分析壳寡糖对大肠杆菌抑菌效果的影响因素.采用摇瓶法和ELISA板法对不同浓度的壳寡糖进行抑菌试验;比较不同pH、不同脱乙酰度的壳寡糖对大肠杆菌抑菌效果的差异;比较不同聚合度的单一聚合度壳寡糖抑菌效果的差异.壳寡糖浓度大于5 mg/mL时抑菌效果与同浓度苯甲酸钠相近;pH为4时,0.156 mg/mL的壳寡糖溶液抑菌活性即能超过90%;pH为7时,5 mg/mL的壳寡糖才能达到90%抑菌活性.脱乙酰度为95%时,5 mg/mL的壳寡糖溶液抑菌活性能超过97%;脱乙酰度为45%时,40 mg/mL的壳寡糖溶液抑菌活性仅有56%;聚合度大于4的单一聚合度壳寡糖40 mg/mL时抑菌活性能达到99%.结果表明:提高壳寡糖溶液浓度、降低pH、提高脱乙酰度,能提高壳寡糖的抑菌活性,单一聚合度壳寡糖聚合度越高,对大肠杆菌的抑制作用越强.此外,采用ELISA板的方法进行实验,即节省试药又方便快捷.  相似文献   

9.
10.
As a part of a exploring the N-glycan-mediated glycoprotein quality control in endoplasmic reticulum, 2-fluorinated derivative Glcalpha1 --> 3Man(F) 1, Glcalpha1 --> 3Man(F)alpha1 --> 2Man2, and Glcalpha1 --> 3Man(F)alpha1 --> 2Manalpha1 --> 2Man 3 were synthesized in a concise manner. These oligosaccharides were subjected to binding studies with calreticulin by using isothermal titration calorimetry. It was revealed that disaccharide 1 was a poor ligand, while tri- (2) and tetrasaccharide (3) had observable affinity.  相似文献   

11.
The structure of the core oligosaccharide region of the lipopolysaccharide from the Pasteurella multocida strain X73 was elucidated. The lipopolysaccharide was subjected to a variety of degradative procedures. The structure of the purified oligosaccharide was established by monosaccharide and methylation analyses, NMR spectroscopy and mass spectrometry. The following structure illustrates a similar structure to the recently identified oligosaccharide from another P. multocida strain VP161, but with additional symmetrical substitution of the terminal galactose residues with phosphoethanolamine moieties, where based on the NMR data all sugars were found in pyranose ring forms and Kdo is 3-deoxy-alpha-D-manno-2-oct-2-ulosonic acid, l,D-alpha-Hep is l-glycero-D-manno-heptose, PEtn is phosphoethanolamine and PCho is phosphocholine.  相似文献   

12.
The crystal structure of the catalytic domain of bovine beta1,4-galactosyltransferase (Gal-T1) co-crystallized with UDP-Gal and MnCl(2) has been solved at 2.8 A resolution. The structure not only identifies galactose, the donor sugar binding site in Gal-T1, but also reveals an oligosaccharide acceptor binding site. The galactose moiety of UDP-Gal is found deep inside the catalytic pocket, interacting with Asp252, Gly292, Gly315, Glu317 and Asp318 residues. Compared to the native crystal structure reported earlier, the present UDP-Gal bound structure exhibits a large conformational change in residues 345-365 and a change in the side-chain orientation of Trp314. Thus, the binding of UDP-Gal induces a conformational change in Gal-T1, which not only creates the acceptor binding pocket for N-acetylglucosamine (GlcNAc) but also establishes the binding site for an extended sugar acceptor. The presence of a binding site that accommodates an extended sugar offers an explanation for the observation that an oligosaccharide with GlcNAc at the non-reducing end serves as a better acceptor than the monosaccharide, GlcNAc. Modeling studies using oligosaccharide acceptors indicate that a pentasaccharide, such as N-glycans with GlcNAc at their non-reducing ends, fits the site best. A sequence comparison of the human Gal-T family members indicates that although the binding site for the GlcNAc residue is highly conserved, the site that binds the extended sugar exhibits large variations. This is an indication that different Gal-T family members prefer different types of glycan acceptors with GlcNAc at their non-reducing ends.  相似文献   

13.
A new chromatographic method which enables the separation of permethylated oligosaccharide alditols has been developed. The method entails chromatography on precoated silica gel plates using benzene-methanol (16:1, v/v or 10:1 v/v) as developing solvent. Separations of disaccharides were obtained on the basis of glycosidic linkage and anomeric configuration; the method can accomodate oligosaccharides containing up to 15 glycose units. The combined use of thin-layer chromatography and gas-liquid chromatography provides a powerful approach for the characterization of oligosaccharides. Retention indices are given of permethylated oligosaccharide alditols on a fused-silica capillary column bonded with DB-1.  相似文献   

14.
A method for methylation analysis of intact glycoproteins is described. Starting with intact glycoprotein, the oligosaccharides are methylated, hydrolyzed, reduced, and acetylated. The partially methylated alditol acetates are then separated from noncarbohydrate contaminants on a silica gel G column. Partially methylated hexitol acetates are eluted from the column with petroleum ether:ethyl acetate (1:1, vv) and partially methylated N-acetylhexosaminitol acetates are subsequently eluted with methanol. Analysis by gas-liquid chromatography/mass spectrometry of the partially methylated alditol acetates shows no interfering contaminants. This method circumvents the need to make pronase glycopeptides and avoids the pitfalls of other methylation procedures.  相似文献   

15.
The initial step in quantitative analysis of O-linked glycans of glycoproteins is to release them in high yield, nonselectively, unmodified, and with a free reducing terminus. In contrast to other techniques, hydrazinolysis can meet these criteria. However, when analyzing pools of O-linked glycans as described in the accompanying article by L. Royle et al. (2002, Anal. Biochem. 304), some peeling of the glycans was observed. Critical steps in the sample preparation and glycan recovery were therefore evaluated by analyzing and identifying both intact O-glycans and degraded products. Synthetic O-glycopeptides were characterized by mass spectrometry. Released glycans were identical to those on the glycopeptide. O-Linked glycans from a range of glycoproteins of increasing complexity, namely, bovine serum fetuin, glycophorin A, and previously uncharacterized glycopeptides isolated from human salivary mucin Muc5B, were also analyzed. Quantitative analysis of the glycan profile confirmed that there was <2% peeling of O-glycans released by hydrazinolysis conditions of 60 degrees C for 6 h, and recovered using the optimised procedure now described. This demonstrated that O-glycans can be prepared by hydrazinolysis without degradation and, as part of an analytical strategy, makes the analysis of O-glycans attached to low-microgram levels of naturally occurring glycoproteins feasible.  相似文献   

16.
James DC 《Cytotechnology》1996,22(1-3):17-24
The advent of new technologies for analysis of biopolymers by mass spectrometry has revolutionised strategies for recombinant protein characterization. The principal recent developments have been matrix-assisted laser desorption/ionization and electrospray ionization mass spectrometry. Using these tools, accurate molecular mass determinations can now be obtained routinely-often using minute (picomole-femtomole) quantities of protein or protein fragments. These techniques have proved indispensible for detailed characterization of the post-translational modifications of recombinant proteins produced by eukaryotic systems. Glycosylation is arguably the most important and complex of these modifications and has prompted widespread use of these new techniques. In this mini-review article I describe recent advances in the use of mass spectrometry for analysis of recombinant glycoproteins.  相似文献   

17.
18.
Transferrin receptor is isolated from the plasma membrane of chicken embryo red cell by affinity chromatography on transferrin-Sepharose 4B matrix. The molecular weight of the protein is approximately 58,000. The purified antibody to this protein is capable of agglutinating chicken embryo red cells, and the purified Fab fragments derived from this antibody are capable of inhibiting the antibody-induced agglutination, as well as the complement-induced hemolysis of chicken embryo red cells. The Fab fragments also inhibit the transferrin-mediated uptake of iron by chicken embryo red cells.  相似文献   

19.
An oleic acid-grafted chitosan oligosaccharide (CSO-OA) with different degrees of amino substitution (DSs) was synthesized by the 1-ethyl-3-(3-dimethylami-nopropyl) carbodiimide (EDC)-mediated coupling reac-tion. Fourier transform infrared spectroscopy (FT-IR) suggested the formation of an amide linkage between amino groups of chitosan oligosaccharide and carboxyl groups of oleic acid. The critical aggregation concentra-tions (CACs) of CSO-OA with 6%, 11%, and 21% DSs were 0.056, 0.042, and 0.028mg·mL-1, respectively. Nanoparticles prepared with the sonication method were characterized by means of transmission electron micro-scopy (TEM) and Zetasizer, and the antibacterial activity against Escherichia coli and Staphylococcus aureus was investigated. The results showed that the CSO-OA nanoparticles were in the range of 60-200 nm with satisfactory structural integrity. The particle size slightly decreased with the increase of DS of CSO-OA. The antibacterial trial showed that the nanoparticles had good antibacterial activity against E. coli and S. aureus.  相似文献   

20.
An oleic acid-grafted chitosan oligosaccharide (CSO-OA) with different degrees of amino substitution (DSs) was synthesized by the 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC)-mediated coupling reaction. Fourier transform infrared spectroscopy (FT-IR) suggested the formation of an amide linkage between amino groups of chitosan oligosaccharide and carboxyl groups of oleic acid. The critical aggregation concentrations (CACs) of CSO-OA with 6%, 11%, and 21% DSs were 0.056, 0.042, and 0.028 mg·mL−1, respectively. Nanoparticles prepared with the sonication method were characterized by means of transmission electron microscopy (TEM) and Zetasizer, and the antibacterial activity against Escherichia coli and Staphylococcus aureus was investigated. The results showed that the CSO-OA nanoparticles were in the range of 60–200 nm with satisfactory structural integrity. The particle size slightly decreased with the increase of DS of CSO-OA. The antibacterial trial showed that the nanoparticles had good antibacterial activity against E. coli and S. aureus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号