首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Human peripheral blood monocytes ingest particulate activators and generate leukotrienes via a trypsin-sensitive, beta-glucan-inhibitable receptor. The incubation of monolayers of monocytes with from 4 X 10(5) to 2 X 10(8) zymosan or glucan particles resulted in a dose-dependent release of up to 9% +/- 1.9 and 17.8% +/- 5.3 (mean +/- SD, n = 3) of the lysosomal enzyme, N-acetylglucosaminidase, into the culture medium. Lysosomal enzyme release occurred throughout the 2-hr period studied, with the greatest rate of N-acetyl-glucosaminidase release occurring during the first hour; the presence of 5 micrograms/ml of cytochalasin B accelerated this process when zymosan was the agonist. The preincubation of monocytes with from 0.5 to 500 micrograms/ml of soluble yeast beta-glucan inhibited N-acetylglucosaminidase release by 4 X 10(7) zymosan and glucan particles in a dose-dependent manner, with 50% inhibition occurring with 50 micrograms/ml of soluble yeast beta-glucan (mean +/- SD, n = 3). Preincubation with as much as 5 mg/ml of yeast mannan had no inhibitory effect on N-acetylglucosaminidase release. The pretreatment for 30 min of monolayers of monocytes with 50 micrograms/ml of affinity-purified trypsin, which selectively inactivates the monocyte-phagocytic response to particulate activators, also fully inhibited lysosomal enzyme release induced by zymosan and glucan particles. The inhibitory effects of a soluble ligand, yeast beta-glucan, and of trypsin pretreatment on lysosomal enzyme release correspond to the inhibitory effect of these agents on monocyte phagocytosis of zymosan and glucan particles and thus indicates ligand specificity for the beta-glucan receptor in the release of stored intracellular mediators.  相似文献   

2.
The cellular and extracellular distribution of leukotriene B4 (LTB4) generated in human neutrophilic polymorphonuclear leukocytes (PMN) stimulated with unopsonized zymosan has been compared with that generated in PMN activated by the calcium ionophore. The amounts of extracellular and intracellular LTB4 were quantitated by radioimmunoassay. The authenticity of the immunoreactive LTB4 was confirmed by the elution of a single immunoreactive peak after reverse phase-high performance liquid chromatography (RP-HPLC) at the retention time of synthetic LTB4, by the identical elution time of a peak of radiolabeled product derived from [3H]arachidonic acid-labeled PMN with the immunoreactive product, and by the comparable chemotactic activity on a weight basis of immunoreactive LTB4 and synthetic LTB4 standard. Under optimal conditions of stimulation by unopsonized zymosan, more than 78% of the generated immunoreactive LTB4 remained intracellular, whereas with optimal activation by the ionophore, less than 8.6% of immunoreactive LTB4 was retained. Resolution by RP-HPLC of the products from the supernatants and cell extracts of [3H]arachidonic acid-labeled PMN stimulated with unopsonized zymosan and those stimulated with calcium ionophore allowed identification and measurement of 5-hydroxyeicosatetraenoic acid (5-HETE), 6-trans-LTB4, LTB4, and omega oxidation products of LTB4 by radioactivity. With zymosan stimulation of PMN, 5-HETE and the 6-trans-LTB4 diastereoisomers were not released, LTB4 was partially released, and the omega oxidation products of LTB4 were preferentially extracellular in distribution. In contrast, with ionophore stimulation, only 5-HETE had any duration of intracellular residence being equally distributed intra- and extracellularly throughout the 30-min period of observation; 6-trans-LTB4, LTB4, and the omega oxidation products of LTB4 were retained at less than 19%. The respective distributions of 5-HETE after zymosan and ionophore stimulation were not altered by the introduction of albumin to the reaction mixtures to prevent reacylation, or by hydrolysis of the cell extract to uncover any product that had been reacylated. The finding that stimulation of PMN with unopsonized zymosan results in the cellular retention of 5-lipoxygenase products suggests that release of these metabolites may be an event that is regulated separately from their generation.  相似文献   

3.
The lymphokine leukocyte inhibitory factor (LIF) has previously been documented to enhance several neutrophil (PMN) functions, including stimulated chemotaxis and superoxide generation, phagocytosis and adherence of opsonized targets, and antibody-dependent cellular cytotoxicity. The present studies were designed to investigate the effects of LIF on PMN function mediated by the complement components C3b and C3bi. LIF induced a dose-dependent increase in superoxide production generated by opsonized zymosan (up to 97.1 +/- 31.4% at 16 U LIF/ml; P less than 0.01). While neither control nor LIF-treated PMN were capable of inducing phagocytosis of either C3b- or C3bi-opsonized sheep erythrocytes (E) directly, exposure to LIF caused a significant (P less than 0.05) increase in their adherence to E (137.4 and 59.4%, respectively). Specificity for complement receptor function was confirmed by the ability of anti-CR1 antibody to block adherence of LIF-treated PMN to EAC3b (77.0% inhibition) and anti-CR3 antibody to block adherence to EAC3bi (70.2% inhibition). Increased C3b and C3bi function may have been due, at least in part, to increased expression of their respective surface membrane receptors. Thus, using indirect immunofluorescence, LIF induced a 38.2% increase in fluorescence of the anti-CR1 antibody and a 96.1% increase in anti-CR3 binding. These studies describe an additional mechanism through which LIF may have an important pro-inflammatory role in vivo.  相似文献   

4.
We have examined the effects of NaF on C3b receptor (CR1) expression and function in human polymorphonuclear leukocytes (PMN). Plasma membrane expression of CR1 was determined with a monoclonal antibody (3D9); CR1 function was assessed with erythrocytes bearing C3b (EC3b) or C3b oligomers prepared with avidin and biotin. NaF inhibited in a dose-dependent manner CR1-mediated phagocytosis and NaF inhibited f-met-leu-phe or phorbol dibutyrate-induced increases in CR1 expression, with 50% inhibition at 5 mM NaF. Increased plasma membrane expression of CR3 induced by f-met-leu-phe also was inhibited by NaF. However, increased CR1 and CR3 expression due to incubation at 37 degrees C were unaffected by 10 mM NaF. Incubation of PMN with 10 mM NaF depleted 80% of intracellular adenosine triphosphate (ATP) after 10 min. However, inhibition of CR1 function was unrelated to ATP level, inasmuch as normal increases in CR1 expression and in phagocytosis occurred 20 min after removal of NaF, whereas ATP levels remained below 25% of normal. Strikingly, internalization of soluble oligomeric C3b ligands was unaffected by 10 mM NaF, which completely inhibited phorbol dibutyrate-induced CR1 internalization and EC3b phagocytosis. We conclude that there are two different mechanisms for increasing plasma membrane expression of CR1, one of which is inhibitable by NaF. Moreover, there are two distinct pathways of CR1 internalization which can also be distinguished by their sensitivity to NaF.  相似文献   

5.
Two types of opsonic phagocytosis have been defined depending on the receptor engaged: FcgammaRs mediate type I phagocytosis of IgG-coated particles; complement receptor 3 (CR3) mediates type II phagocytosis of complement-coated particles. In addition to opsonic phagocytosis, CR3 also mediates nonopsonic phagocytosis of zymosan (Z) and Mycobacterium kansasii through engagement of distinct sites. Using Chinese hamster ovary cells stably expressing human CR3, we studied CR3-mediated ingestion of nonopsonized particles, Z or M. kansasii, compared with opsonized zymosan (OZ). We show that 1) while OZ sinks into cells, Z is engulfed by pseudopodia as visualized by electron microscopy; 2) in contrast to OZ, nonopsonic phagocytosis of Z and M. kansasii depends on Rac and Cdc42 but not on Rho activity; and 3) CR3-mediated phagocytosis of Z depends on the kinase activity of the Src family tyrosine kinase Hck, while OZ internalization does not. Therefore, CR3 mediates type I phagocytosis under nonopsonic conditions and type II under opsonic conditions. This is the first evidence that a single receptor can mediate both types of phagocytosis depending on the ligand used.  相似文献   

6.
The generation of the 5-lipoxygenase product, leukotriene B4 (LTB4) by human mononuclear phagocytes (monocytes) following incubation with 25 different uropathogenic strains of Escherichia coli correlated with the haemolytic activity of the strains (r = 0.572, P less than 0.01). LTB4 generation by human neutrophils (PMN), however, was unrelated to this haemolytic potential (r = 0.164). In contrast, both prelabelled monocytes and PMN were stimulated by haemolytic strains of E. coli and by haemolytic culture supernatants to release significant amounts of [3H]arachidonic acid. There was a significant correlation between haemolytic activity and [3H]arachidonic acid release generated by individual strains from monocytes (r = 0.804, P less than 0.001) and PMN (r = 0.888, P less than 0.001). In addition, nonhaemolytic strains but not their culture supernatants were capable of causing slow release of both [3H]arachidonic acid and LTB4 from PMN and mononuclear cells. These results suggest that both the possession of haemolytic activity, and the direct interaction of bacteria with the leukocyte surface are mechanisms by which uropathogenic strains of E. coli may cause the release and metabolism of arachidonic acid. In addition, there was synergistic augmentation by nonhaemolytic bacteria of the PMN LTB4 response to haemolytic culture supernatants or to low doses of the calcium ionophore A23187. These results support an ionophore-like mechanism for the activation of the cell by haemolysin. LTB4 generation by PMN incubated with haemolytic supernatants was also augmented by particulate zymosan in a manner dependent on the dose of zymosan, suggesting that the direct interaction of E. coli with PMN may involve an activation mechanism similar to that for zymosan. These results demonstrate differing responses of peripheral mononuclear cells and PMN from the same donors to identical strains of E. coli and suggest that the generation of the potent chemotactic agent LTB4 in response to E. coli infection in vivo need not depend solely on the elaboration of cytotoxic haemolysins by individual strains.  相似文献   

7.
The adherence of serum-opsonized yeast to neutrophils results in phagocytosis of these particulate stimuli and activation of the respiratory burst. Both events are mediated or modulated in part by the surface receptors for IgG and complement. The link between the binding of complex particulate stimuli to the cell surface, and the triggering of these neutrophil functions, is not completely understood. We have previously described an anti-human neutrophil, murine monoclonal antibody PMN7C3, which specifically inhibits the respiratory burst of neutrophils stimulated with serum-opsonized yeast. In the present study, we show that the antigen recognized by PMN7C3 (PMN7 antigen) is present on a number of neutrophil proteins, including the recently described group of related leukocyte membrane glycoproteins CR3, LFA-1, and p150,95. The PMN-7 antigen differs from other antigens associated with the C3bi receptor complex (MAC 1, MO 1, OKM1, OKM10) in that it is present only on neutrophils among peripheral blood cells. Furthermore, the binding of PMN7C3 to the neutrophil surface inhibits the activation of the respiratory burst by serum opsonized zymosan without affecting phagocytosis of these particulate stimuli. The cross-linking of cell surface PMN7 antigen by multivalent antibody is associated with the capping and internalization of antigen-antibody complexes, and appears to be necessary for the expression of maximum inhibition of opsonized zymosan-triggered respiratory burst activity. PMN7C3 also binds to a group of granule-associated proteins biochemically distinct from CR3, LFA-1, and p150,95. These granule-associated proteins containing PMN7 antigen can be mobilized to the cell surface with secretion. PMN7 antigen-bearing proteins may play a role in modulating the activation of the respiratory burst associated with phagocytosis of serum-opsonize zymosan.  相似文献   

8.
Receptors involved in the phagocytosis of microorganisms under nonopsonic conditions have been little studied in neutrophils. Complement receptor type 3 (CR3) is a pattern recognition receptor able to internalize zymosan and C3bi-coated particles. We report that Abs directed against CR3 strongly inhibited nonopsonic phagocytosis of Mycobacterium kansasii in human neutrophils. In these cells CR3 has been found associated with several GPI-anchored proteins localized in cholesterol-rich microdomains (rafts) of the plasma membrane. Cholesterol sequestration by nystatin, filipin, or beta-cyclodextrin as well as treatment of neutrophils with phosphatidylinositol phospholipase C to remove GPI-anchored proteins from the cell surface markedly inhibited phagocytosis of M. kansasii, without affecting phagocytosis of zymosan or serum-opsonized M. kansasii. Abs directed against several GPI-anchored proteins inhibited phagocytosis of M. kansasii, but not of zymosan. N:-acetyl-D-glucosamine, which is known to disrupt interactions between CR3 and GPI proteins, also strongly diminished phagocytosis of these mycobacteria. In conclusion, phagocytosis of M. kansasii involved CR3, GPI-anchored receptors, and cholesterol. In contrast, phagocytosis of zymosan or opsonized particles involved CR3, but not cholesterol or GPI proteins. We propose that CR3, when associated with a GPI protein, relocates in cholesterol-rich domains where M. kansasii are internalized. When CR3 is not associated with a GPI protein, it remains outside of these domains and mediates phagocytosis of zymosan and opsonized particles, but not of M. kansasii.  相似文献   

9.
The respective capacities of adherent human monocytes to metabolize endogenous arachidonic acid into leukotrienes C4 (LTC4) and B4 (LTB4) in response to activation with an ionophore, A23187, or to phagocytosis of unopsonized zymosan particles and IgG-sensitized sheep erythrocytes ( EsIgG ) were compared under optimal conditions for each stimulus. Resolution of the cellfree supernatant, after ionophore activation, by reverse-phase high performance liquid chromatography (RP-HPLC) identified only two products which eluted at the retention times of LTC4 and LTB4. There was correspondence between their quantitation by integrated optical density and radioimmunoassay, and the recoveries from the initial supernatant were 80% by radioimmunoassay. Activation of adherent monocytes from 12 donors by ionophore and by zymosan particles released 68.1 ng and 10.0 ng LTB4 and 29.5 ng and 2.1 ng LTC4, respectively. With trypsin pretreatment, the monocytes responded fully to ionophore activation but were inhibited in their response to zymosan particles as assessed by phagocytosis and leukotriene release, indicating that the zymosan stimulus acted through a trypsin-sensitive membrane receptor. When the response of adherent monocytes from nine donors to zymosan particles and to EsIgG were compared at identical particle concentrations and with similar numbers of ingesting monocytes, zymosan elicited LTB4 release (mean 6.7 ng) from all and LTC4 (mean 1.5 ng) from eight donors, while EsIgG caused low level release of LTB4 (mean 0.7 ng) from six and LTC4 from only one of the donors. Neither zymosan nor ionophore stimulation led to the metabolism of exogenously added [3H]LTB4 or [3H]LTC4 as assessed by RP-HPLC of the cellfree supernatants and by quantitation of the eluted labeled products. Thus, transmembrane activation of adherent monocytes by their receptor for particulate activators, in contrast to stimulation of their IgG-Fc receptor, reproducibly releases substantial quantities of LTB4 and LTC4, and may represent an important mechanism for regulating the microenvironment in the nonimmune host.  相似文献   

10.
5-oxo-(7E,9E,11Z,14Z)-eicosatetraenoic acid (5-oxo-ETE) has been identified as a non-enzymatic hydrolysis product of leukotriene A(4) (LTA(4)) in addition to 5,12-dihydroxy-(6E,8E,10E, 14Z)-eicosatetraenoic acids (5,12-diHETEs) and 5,6-dihydroxy-(7E,9E, 11Z,14Z)-eicosatetraenoic acids (5,6-diHETEs). The amount of 5-oxo-ETE detected in the mixture of the hydrolysis products of LTA(4) was found to be pH-dependent. After incubation of LTA(4) in aqueous medium, the ratio of 5-oxo-ETE to 5,12-diHETE was 1:6 at pH 7.5, and 1:1 at pH 9.5. 5-Oxo-ETE was isolated from the alkaline hydrolysis products of LTA(4) in order to evaluate its effects on human polymorphonuclear (PMN) leukocytes. 5-Oxo-ETE induced a rapid and dose-dependent mobilization of calcium in PMN leukocytes with an EC(50) of 250 nM, as compared to values of 3.5 nM for leukotriene B(4) (LTB(4)500 nM for 5(S)-hydroxy-(6E,8Z,11Z,14Z)-eicosatetraenoic acid (5-HETE). Pretreatment of the cells with LTB(4) totally abolished the calcium response induced by 5-oxo-ETE. In contrast, the preincubation with 5-oxo-ETE did not affect the calcium mobilization induced by LTB(4). The calcium response induced by 5-oxo-ETE was totally inhibited by the specific LTB(4) receptor antagonist LY223982. These data demonstrate that 5-oxo-ETE can induce calcium mobilization in PMN leukocyte via the LTB(4) receptor in contrast to the closely related analog 5-oxo-(6E,8Z,11Z, 14Z)-eicosatetraenoic acid which is known to activate human neutrophils by a mechanism independent of the receptor for LTB(4).  相似文献   

11.
Leukotriene B(4) (LTB(4)) is a bioactive lipid derived from the metabolism of arachidonic acid. Mainly produced by polymorphonuclear leukocytes (PMN) and macrophages, LTB(4) triggers several functional responses important in host defense, including the secretion of lysosomal enzymes, the activation of NADPH oxidase activity, NO formation, and phagocytosis. We report that LTB(4), but not structural analogs thereof, stimulates primed human PMN to release molecules having potent antimicrobial activities. Exposure of bacteria (Escherichia coli and Staphylococcus aureus) or viruses (herpes simplex virus type 1 and HIV type 1) to supernatants of LTB(4)-activated PMN led to > or =90% reduction in infectivity. ELISA and mass spectroscopy analysis of proteins released from LTB(4)-activated PMN have identified several antimicrobial proteins, including alpha-defensins, cathepsin G, elastase, lysozyme C, and LL-37, that are likely to participate in the killing of microorganisms. In addition to these in vitro observations, i.v. injections of LTB(4) (50 microg/kg) to monkeys led to an increase in alpha-defensin plasmatic levels and enhanced ex vivo antimicrobial activities of plasma. These results demonstrate the ability of LTB(4) to cause the release of potent antimicrobial agents from PMN in vitro as well as in vivo and add further support to the important role of LTB(4) in host defense.  相似文献   

12.
Interleukin-10 inhibits neutrophil phagocytic and bactericidal activity   总被引:10,自引:0,他引:10  
Abstract Effective host defense against bacterial invasion is characterized by the vigorous recruitment and activation of inflammatory cells, which is dependent upon the coordinated expression of both pro- and anti-inflammatory cytokines. Interleukin-10 (IL-10) is a recently described cytokine with potent anti-inflammatory properties in vivo and in vitro. In this study we investigated whether IL-10 could directly regulate the ability of neutrophils (PMN) to phagocytose and kill bacteria. Initial studies demonstrated that human recombinant IL-10 (hrIL-10) inhibited the ability of PMN to phagocytose Escherichia coli in vitro. Inhibition of phagocytosis occurred in the absence of changes in CR1 (C3b) or Fc receptor expression, as treatment of PMN with IL-10 failed to induce significant changes in FcγIIR, FcγIIIR or CR1 cell surface expression. However, incubation of PMN with IL-10 resulted in a dose-dependent decrease in CD11b (Mac-1) expression. In addition to effects on PMN phagocytosis, hrIL-10 significantly attenuated PMN microbicidal activity, as bactericidal assays revealed that co-incubation of PMN with hrIL-10 resulted in a marked decrease in killing of phagocytosed bacteria. Furthermore, IL-10 inhibited the production of superoxide from PMA-stimulated PMN, suggesting that the detrimental effects of IL-10 on PMN microbicidal activity were due, in part, to suppression of respiratory burst. In summary, our studies indicate that IL-10 inhibits PMN-dependent phagocytosis and killing of E. coli in vitro, and suggest that this cytokine may impair effective antibacterial host defense in vivo.  相似文献   

13.
The compartmentalization of cAMP in human neutrophils during phagocytosis of serum-opsonized zymosan suggests that cAMP is an important second messenger for regulating phagocytosis. Type 4 cAMP-specific phosphodiesterase (PDE-4), cAMP-dependent protein kinase (PKA), and adenylate cyclase are the principal effector molecules for cAMP regulation in phagocytes. Immunofluorescence microscopy demonstrated that PDE-4 isoforms (HSPDE-4A, HSPDE-4B, HSPDE-4D) were targeted to the forming phagosome in neutrophils, and were colocalized with the catalytic subunit of PKA and degranulated myeloperoxidase. Phagocytosis and accumulation of PDE-4 and PKA near adherent zymosan were inhibited by elevating cAMP levels with forskolin or rolipram. cAMP, PDE-4, and PKA were localized at sites of zymosan adherence in cells treated with cytochalasin D to inhibit phagosome formation, suggesting that zymosan engagement to Fc/CR3 receptors triggers cAMP elevations at sites of phagocytosis. HSPDE-4A, HSPDE-4B, HSPDE-4D, and PKA also were localized at the forming phagosome in monocyte-derived macrophages, and the lysosomal marker CD63 demonstrated the absence of PDE-4 around internalized phagolysosomes. These results suggest that cAMP levels are focally regulated by PDE-4 at the nascent phagosome, and that PKA may phosphorylate proteins associated with pseudopodia formation and phagosome internalization.  相似文献   

14.
During the process of phagocytosis, polymorphonuclear leukocytes (PMN) release lysosomal enzymes into the extracellular medium. When the antibiotic cytochalasin B (CB) is present in the incubation medium along with phagocytable particles, enhanced recovery of enzyme activities from the incubation medium has been observed. These findings have led to the interpretation that CB enhances lysosomal enzyme release. Our results contradict this interpretation. The lysosomal enzymes acid phosphatase and β-galactosidase are unstable after they are released from cells. During the first 5–15 min of phagocytosis, significant amounts of both acid phosphatase and β-galactosidase can be recovered from the extracellular medium. After this, the recovery of enzyme from the medium declines, presumably because the rate of loss of lysosomal enzyme activity exceeds the rate of release at later time periods. In the presence of CB, the appearance of lysosomal enzymes in the extracellular medium of cells exposed to zymosan is retarded for 5–10 min, after which it begins and then continues for approximately 20 min. At the end of a 30-min incubation period, therefore, in the absence of CB, extracellular levels of lysosomal enzymes (especially those which are unstable) are declining toward low levels while, in the presence of CB, extracellular enzyme levels are continuing to rise. We also measured the lysosomal enzyme remaining within cells after exposure to zymosan. CB retarded the disappearance of enzyme from cells and resulted in significantly less total cell enzyme loss. Thus, in the presence of CB, a greater proportion of the lysosomal enzyme lost from cells is recovered in the extracellular medium. In contrast to the previous conclusions that CB enhances lysosomal enzyme release, our results indicate that CB delays and decreases the zymosan-stimulated release of lysosomal enzymes from PMN. Since CB inhibits phagocytosis by PMN, our results indicate that the antibiotic modifies the mechanism of release of lysosomal enzymes, resulting in zymosan stimulation of their release independently of phagocytosis.  相似文献   

15.
Individual human neutrophils (PMN) isolated by Hypaque-Ficoll gradient sedimentation, dextran sedimentation, or buffy coat preparation were assessed for the effects of leukotriene B4 (5S,12R dihydroxy 6,14-cis-8, 10 trans eicosatetraenoic acid (LTB4)-pretreatment on N-formylmethionyl-leucyl-phenylalanine (FMLP)-mediated membrane potential or oxidative responses by using flow cytometry and a lipophilic probe of membrane potential (di-pentyl-oxacarbocyanine, di-O-C(5)3), or the nitroblue tetrazolium dye (NBT) reduction test, respectively. Although exposure to LTB4 (10(-7) M) had no effect on the membrane potential of resting PMN and little effect on oxidant production, pretreating PMN with LTB4 followed by FMLP (10(-6) M) demonstrated a significant enhancement in the proportion of depolarizing PMN over that seen with FMLP alone (p = 0.0014, N = 9). This recruitment of previously unresponsive cells by LTB4 was dose and time dependent, with the maximal relative increase in the proportion of depolarizing cells occurring at LTB4 concentrations of 10(-8) to 10(-7) M and within 1 min of LTB4 addition. The recruitment effect persisted despite vigorous washing of the cells. LTB4 also increased the proportion of NBT-positive PMN in response to FMLP. Although LTB4 alone did not depolarize PMN it did induce a light scatter shift indicative of cell activation. 3H-FMLP binding studied at 0 degree C comparing buffer and LTB4-treated PMN indicated no significant change in the number or affinity of FMLP binding. The data provide evidence for the recruitment of a greater proportion of cells into a FMLP-responsive state as a mechanism for the enhanced functional response of PMN pretreated with LTB4, as well as for a dissociation of the membrane potential and light scattering responses of cells to this pro-inflammatory LT. The mechanism of recruitment remains unclear, but it most likely involves the modulation of a post-FMLP binding step.  相似文献   

16.
《The Journal of cell biology》1993,120(6):1509-1517
The beta 2 integrins (LFA-1, Mac-1, and p150,95) are critical for many adhesive functions of leukocytes. Although the binding of the IgG- opsonized particles occurs normally in the absence of beta 2 integrins, phagocytosis of IgG-opsonized particles by activated neutrophils (PMN) requires these integrins. This observation suggests a role for beta 2 integrins in phagocytosis subsequent to particle binding. To investigate the mechanism of involvement of beta 2 integrins in IgG- mediated functions, we examined the role of beta 2 integrins in adhesion to immune complex (IC)-coated surfaces. Initial adhesion and spreading on IC-coated surfaces were equivalent in control and beta 2- deficient phagocytes. However, both genetically beta 2-deficient PMN and PMN treated with the anti-beta 2 mAb IB4 subsequently detached from the IC-coated surfaces. To determine whether biochemical consequences of IgG activation were also affected by beta 2 deficiency, LTB4 production in response to Fc receptor ligation was assessed. LTB4 production by beta 2-deficient PMN adherent to IC-coated surfaces was markedly decreased in comparison with control PMN. Importantly, LTB4 production by PMN stimulated with fluid phase heat-aggregated IgG also required the beta 2 integrins, showing that the defect was not a simple consequence of abnormal adhesion. In contrast, superoxide production by IC-adherent PMN was equivalent in control and beta 2-deficient PMN. The initial rises in intracytoplasmic [Ca2+]i in response to aggregated IgG also were unaffected by inhibition of beta 2 integrins. These data show that lack of beta 2 integrins does not inhibit all FcR-dependent signal transduction. Finally, LTB4 production by normal PMN adherent to ICs was inhibited by antibodies to FcRII, but not FcRIII, showing that FcRII ligation was required for this effect. Together these data identify a role for the beta 2 integrins in a signal transduction pathway leading to sustained adhesion and LTB4 production in response to IC. Since both beta 2 integrins and FcRII are required for these effects, the data further suggest cooperation between these receptors in generating PMN activation in response to IC stimulation.  相似文献   

17.
Functional activity of enucleated human polymorphonuclear leukocytes   总被引:33,自引:2,他引:31       下载免费PDF全文
Enucleated human polymorphonuclear leukocytes (PMN) were prepared by centrifuging isolated, intact PMN over a discontinuous Ficoll gradient that contained 20 microM cytochalasin B. The enucleated cells (PMN cytoplasts) contained about one-third of the plasma membrane and about one-half of the cytoplasm present in intact PMN. The PMN cytoplasts contained no nucleus and hardly any granules. The volume of the PMN cytoplasts was about one-fourth of that of the original PMN. Greater than 90% of the PMN cytoplasts had an "outside-out" topography of the plasma membrane. Cytoplasts prepared from resting PMN did not generate superoxide radicals (O2-) or hydrogen peroxide. PMN cytoplasts incubated with opsonized zymosan particles or phorbol-myristate acetate induced a respiratory burst that was qualitatively (O2 consumption, O2- and H2O2 generation) and quantitatively (per unit area of plasma membrane) comparable with that of intact, stimulated PMN. Moreover, at low ratios of bacteria/cells, PMN cytoplasts ingested opsonized Staphylococcus aureus bacteria as well as did intact PMN. At higher ratios, the cytoplasts phagocytosed less well. The killing of these bacteria by PMN cytoplasts was slower than by intact cells. The chemotactic activity of PMN cytoplasts was very low. These results indicate that the PMN apparatus for phagocytosis, generation of bactericidal oxygen compounds, and killing of bacteria, as well as the mechanism for recognizing opsonins and activating PMN functions, are present in the plasma membrane and cytosol of these cells.  相似文献   

18.
Normal human neutrophils were stimulated with the yeast cell wall product, zymosan, and examined for two biologic responses, ingestion of particles and production of leukotriene B4 (LTB4), under conditions that were comparable and optimal for the quantitation of each response. Monolayers of adherent neutrophils ingested unopsonized zymosan particles, at particle-to-cell ratios of 12.5:1 to 125:1, in a dose- and time-related manner. At a ratio of 125:1, the percentages of neutrophils ingesting greater than or equal to 1 and greater than or equal to 3 zymosan particles reached plateau levels of 55 +/- 6 and 32 +/- 9% (mean +/- SD, n = 8), respectively, within 30 min. At this same ratio, neutrophils during gravity sedimentation with zymosan particles synthesized LTB4 in a time-dependent manner for at least 45 min. The maximum amount of immunoreactive LTB4 released into supernatants was 3.8 +/- 1.2 ng per 10(6) neutrophils (mean +/- SD, n = 5) and the corresponding total immunoreactive LTB4 was 6.2 +/- 1.9 ng per 10(6) neutrophils. Treatment of 2 x 10(7) suspended neutrophils with 250 micrograms of trypsin for 20 min before concurrent assessment of neutrophil phagocytosis and LTB4 production reduced both of these responses by about 50%. Pretreatment of neutrophils with 800 micrograms/ml of soluble yeast beta-glucan inhibited their ingestion of zymosan by 84% (mean +/- SD, n = 3), with 50% inhibition occurring with 100 micrograms/ml of soluble beta-glucan; 800 micrograms/ml of soluble yeast alpha-mannan had no inhibitory effect. Pretreatment of neutrophils with 400 micrograms/ml of soluble yeast beta-glucan inhibited neutrophil synthesis of LTB4 by 90%, with 50% occurring with 200 micrograms/ml; 400 micrograms/ml of soluble yeast alpha-mannan had no inhibitory effect. The presence of 1.25 micrograms/ml of cytochalasin B during incubation with zymosan particles reduced neutrophil phagocytosis from 65 to 6%, and neutrophil synthesis of LTB4 from total levels of 6.0 +/- 0.3 ng/10(6) cells to zero (mean +/- SD, n = 3). Pretreatment with either cytochalasin B or vinblastine did not alter neutrophil generation of LTB4 induced by calcium ionophore. Neutrophils pretreated with vinblastine, at 4 x 10(-6) to 4 x 10(-4) M, and then maintained at one-half these concentrations during incubation with unopsonized zymosan particles exhibited no diminution in particle ingestion, but were markedly reduced in zymosan-induced synthesis of LTB4.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
To determine the relationship of polyisoprenyl phosphate (PIPP) remodeling and signaling to the activation state of human neutrophils (PMN), we examined the impact of leukotriene B(4) (LTB(4)) on the conversion of a unique bioactive isoprenoid (presqualene diphosphate: PSDP), recently identified as a novel endogenous signaling molecule. LTB(4) initiated rapid decrements in total PSDP that were concurrent with the respiratory burst (e.g., O(-2) formation). PSDP was identified in nuclear (39%)-, granule (36%)-, and plasma membrane (16%)-containing fractions of PMN. LTB(4) receptor (BLT) activation led to a decrease in nuclear PSDP and concomitant increase in granule-associated PSDP. In addition, PMN nuclei displayed PSDP associated with chromatin as established by mass spectrometry. Together, these results indicate that PSDP is present in membranes and receptor activation rapidly initiates subcellular PIPP remodeling (i.e., conversion) and distribution predominantly to granule membranes. Moreover, identification of nuclear PSDP provides the basis for novel roles for PIPP and PSDP in nuclear-associated signaling events.  相似文献   

20.
Essential fatty acid (EFA) deficiency exerts an anti-inflammatory effect in several models of inflammation. In an effort to understand underlying mechanisms, the effect of EFA deficiency on the generation of eicosanoids and the elicitation of leukocytes in a model of acute inflammation was examined. Acute inflammation was induced by the i.p. injection of zymosan in mice. The injection of zymosan in normal mice was followed by a short burst of eicosanoid synthesis lasting 2 hr. Leukotriene (LT)B4, LTC4, LTD4, and LTE4, thromboxane B2, and 6-keto-prostaglandin F1 alpha were detected using high pressure liquid chromatography and specific radioimmunoassays. This initial phase of eicosanoid production was followed by a more prolonged infiltration of leukocytes (predominantly polymorphonuclear neutrophils (PMN)) lasting 48 hr with little eicosanoid synthesis. When challenged with zymosan, EFA-deficient mice exhibited a marked decrease in the production of eicosanoids during the early phase. No LTB could be detected at all. The number of resident peritoneal macrophages in EFA-deficient mice was also substantially decreased, and the influx of PMN during the inflammatory response was markedly diminished. In order to establish that the generation of eicosanoids during the early phase of this model of acute inflammation played a causal role in the later infiltration of PMN, the effect of the mixed lipoxygenase/cyclooxygenase inhibitor, BW755C, on LTB formation and PMN influx in this model of inflammation was assessed in control animals. BW755C completely blocked LTB synthesis and inhibited the subsequent influx of PMN. In conclusion, EFA deficiency inhibits eicosanoid generation, depresses levels of resident macrophages, and markedly diminishes the influx of PMN in the acute inflammatory response. The decrease in PMN influx appears to result from the inhibition of the antecedent generation of LTB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号