首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ferrobacillus ferrooxidans, grown on either elemental sulfur or ferrous sulfate, was able to use either substrate as an energy source for the assimilation of CO(2). In both cases, 0.01 mumole of carbon was incorporated per mumole of oxygen utilized. Glucose inhibited substrate oxidation and CO(2) fixation. Sulfur and iron oxidation were inhibited 5 to 15% and 40 to 50%, respectively, in the presence of 10% glucose. Under the same conditions, CO(2) assimilation was inhibited 50% with elemental sulfur as the energy source, and was almost totally inhibited when ferrous iron was used.  相似文献   

2.
Turnover of glucose and acetate in the presence of active reduction of nitrate, ferric iron and sulfate was investigated in anoxic rice field soil by using [U-(14)C]glucose and [2-(14)C]acetate. The turnover of glucose was not much affected by addition of ferrihydrite or sulfate, but was partially inhibited (60%) by addition of nitrate. Nitrate addition also strongly reduced acetate production from glucose while ferrihydrite and sulfate addition did not. These results demonstrate that ferric iron and sulfate reducers did not outcompete fermenting bacteria for glucose at endogenous concentrations. Nitrate reducers may have done so, but glucose fermentation may also have been inhibited by accumulation of toxic denitrification intermediates (nitrite, NO, N(2)O). Addition of nitrate resulted in complete inhibition of CH(4) production from [U-(14)C]glucose and [2-(14)C]acetate. However, addition of ferrihydrite or sulfate decreased the production of (14)CH(4) from [U-(14)C]glucose by only 70 and 65%, respectively. None of the electron acceptors significantly increased the production of (14)CO(2) from [U-(14)C]glucose, but all increased the production of (14)CO(2) from [2-(14)C]acetate. Uptake of acetate was faster in the presence of either nitrate, ferrihydrite or sulfate than in the unamended control. Addition of ferrihydrite and sulfate reduced (14)CH(4) production from [2-(14)C]acetate by 83 and 92%, respectively. Chloroform completely inhibited the methanogenic consumption of acetate. It also inhibited the oxidation of acetate, completely in the presence of sulfate, but not in the presence of nitrate or ferrihydrite. Our results show that, besides the possible toxic effect of products of nitrate reduction (NO, NO(2)(-) and N(2)O) on methanogens, nitrate reducers, ferric iron reducers and sulfate reducers were active enough to outcompete methanogens for acetate and channeling the flow of electrons away from CH(4) towards CO(2) production.  相似文献   

3.
Toluene-treated cells of Streptococcus bovis JB1 phosphorylated cellobiose, glucose, maltose, and sucrose by the phosphoenolpyruvate-dependent phosphotransferase system. Glucose phosphorylation was constitutive, while all three disaccharide systems were inducible. Competition experiments indicated that separate phosphotransferase systems (enzymes II) existed for glucose, maltose, and sucrose. [14C]maltose transport was inhibited by excess (10 mM) glucose and to a lesser extent by sucrose (90 and 46%, respectively). [14C]glucose and [14C]sucrose transports were not inhibited by an excess of maltose. Since [14C]maltose phosphorylation in triethanolamine buffer was increased 160-fold as the concentration of Pi was increased from 0 to 100 mM, a maltose phosphorylase (Km for Pi, 9.5 mM) was present, and this activity was inducible. Maltose was also hydrolyzed by an inducible maltase. Glucose 1-phosphate arising from the maltose phosphorylase was metabolized by a constitutive phosphoglucomutase that was specific for alpha-glucose 1-phosphate (Km, 0.8 mM). Only sucrose-grown cells possessed sucrose hydrolase activity (Km, 3.1 mM), and this activity was much lower than the sucrose phosphotransferase system and sucrose-phosphate hydrolase activities.  相似文献   

4.
Toluene-treated cells of Streptococcus bovis JB1 phosphorylated cellobiose, glucose, maltose, and sucrose by the phosphoenolpyruvate-dependent phosphotransferase system. Glucose phosphorylation was constitutive, while all three disaccharide systems were inducible. Competition experiments indicated that separate phosphotransferase systems (enzymes II) existed for glucose, maltose, and sucrose. [14C]maltose transport was inhibited by excess (10 mM) glucose and to a lesser extent by sucrose (90 and 46%, respectively). [14C]glucose and [14C]sucrose transports were not inhibited by an excess of maltose. Since [14C]maltose phosphorylation in triethanolamine buffer was increased 160-fold as the concentration of Pi was increased from 0 to 100 mM, a maltose phosphorylase (Km for Pi, 9.5 mM) was present, and this activity was inducible. Maltose was also hydrolyzed by an inducible maltase. Glucose 1-phosphate arising from the maltose phosphorylase was metabolized by a constitutive phosphoglucomutase that was specific for alpha-glucose 1-phosphate (Km, 0.8 mM). Only sucrose-grown cells possessed sucrose hydrolase activity (Km, 3.1 mM), and this activity was much lower than the sucrose phosphotransferase system and sucrose-phosphate hydrolase activities.  相似文献   

5.
Lazaroff, Norman (British Columbia Research Council, Vancouver, B.C., Canada). Sulfate requirement for iron oxidation by Thiobacillus ferrooxidans. J. Bacteriol. 85:78-83. 1963.-The growth of Thiobacillus ferrooxidans is initially inhibited in media containing ferrous chloride in place of ferrous sulfate. This inhibition of growth is due to the requirement of a high relative proportion of sulfate ions to chloride (or other anions) for iron oxidation. Adaptation takes place, producing strains which are able to oxidize iron in media containing an initially unfavorable anionic composition. Adaptation is possibly due to the selection of spontaneous mutants capable of oxidizing iron in high chloride, low sulfate media. Such cells are found at a frequency of 10(-5) of the population of unadapted cultures.  相似文献   

6.
The iron-oxidizing bacterium, Acidithiobacillus ferrooxidans, was cultivated on a medium without ferrous iron. Molecular hydrogen and air were supplied to the medium. It was found that A. ferrooxidans could grow with hydrogen in the pH range between 2.0 and 3.5. A trickle-bed contactor was used to increase the dissolution rate of hydrogen. The doubling time was increased and the cell concentration reached 4.0 x 10(9) cells ml(-1) after 6 days. When the cells taken from the hydrogen medium were transferred back into the medium containing ferrous iron, the growth rate and the iron-oxidizing ability were the same as the predictions assuming that the microorganism grown with hydrogen was A. ferrooxidans.  相似文献   

7.
Glucose metabolism by preimplantation pig embryos   总被引:2,自引:0,他引:2  
Pig embryos were collected, 2-7 days after oestrus, in modified BMOC-2 containing glucose as the only energy source. Embryos were incubated individually in medium containing [5-(3)H]-, [1-(14)C]- or [6-(14)C]glucose. Total glucose metabolism, as measured by [5-(3)H]glucose use, increased steadily from the 1-cell to the 8-cell stage. Total glucose use increased (P less than 0.05) at the compacted morula stage and was highest (P less than 0.05) at the blastocyst stage. Production of 14CO2 from embryos metabolizing [1-(14)C]glucose increased steadily from the unfertilized ovum to the 8-cell stage. Metabolism of [1-(14)C]glucose increased at the compacted morula stage (P less than 0.05) and continued to increase (P less than 0.05) to the blastocyst stage. Metabolism of [6-(14)C]glucose increased steadily from the unfertilized ovum to the compacted morula stage. Metabolism of [6-(14)C]glucose was highest (P less than 0.05) for the blastocyst stage. Percentage pentose phosphate pathway activity of total glucose metabolism before the 4-cell stage was higher (greater than 5%) than that of 8-cell to blastocyst stage embryos (approximately 1%). When embryo metabolism was determined on a per cell basis for each isotope, the compacted morulae stage (16 cells) had a higher total glucose metabolism than all other embryo stages (P less than 0.05), while early blastocyst (32 cells) and blastocyst (64 cells) stage embryos metabolized more [5-(3)H]glucose than all stages except compacted morulae (P less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Dave SR 《Bioresource technology》2008,99(16):7803-7806
Presence of Leptospirillum ferrooxidans plays significant role in ferric sulphate generation during bioleaching process. Thus, an attempt was made to select L. ferrooxidans from the polymetallic concentrate leachate and further developed it for enhanced ferric iron regeneration from the leachate in shake flask, stirred tank and column reactor. When ferric to ferrous iron ratio in the shake flask reached to 20:1, L. ferrooxidans out competed Acidithiobacillus ferrooxidans and accounted for more than 99% of the total population. The isolate was confirmed by 16S rRNA genes sequence analysis and named as L. ferrooxidans SRPCBL. When the culture was exposure to UV dose and the oxidation-reduction potential of the inoculation medium was adjusted to 40 0mV by ferrous:ferric iron ratio, the IOR reached to as high as 1.2 g/L/h in shake flask, even with initial ferrous iron concentration of 200 g/L. The chalcopyrite concentrate leachate containing 12.8, 15.7, and 42.0 g/L ferrous iron, ferric iron and copper, respectively was studied for ferric iron regeneration with the developed polymetallic resistant L. ferrooxidans SRPCBL in stirred tank and a developed biofilm airlift column, the highest IOR achieved were 2.20 g/L/h and 3.1 g/L/h, respectively, with ferrous oxidation efficiency of 98%. The ferric regeneration ability of the developed isolate from the leachate proves useful for a two-stage metal extraction process.  相似文献   

9.
Activities of enzymes which mediate the oxidation of thiosulfate to sulfate and the assimilation of sulfate to sulfide were assayed in various cell-free fractions of Thiobacillus ferrooxidans grown autotrophically on either ferrous iron or thiosulfate or heterotrophically on glucose. There was no activity of the thiosulfate-oxidizing enzyme in extracts of bacteria grown with ferrous iron. Comparable activities for ATP-sulfurylase (EC 2.7.7.4), ADP-sulfurylase (EC 2.7.7.5), and adenylate kinase (EC 2.7.4.3) were found in the bacteria grown autotrophically with either Fe2+ or S2O32- or heterotrophically with glucose.  相似文献   

10.
【目的】研究Acidithiobacillus ferrooxidans BY-3对雄黄表面改性作用,为进一步研究雄黄的生物炮制技术提供实验基础与理论依据。【方法】在4组生物浸出体系中(每组包含100 mL无亚铁离子的9K培养基和0.500 g雄黄):第1组无添加;第2组添加4.469 g硫酸亚铁;第3组添加0.100 g硫粉;第4组加入4.469 g硫酸亚铁和0.100 g硫粉。在上述4组中使用A.ferrooxidans BY-3对雄黄进行生物浸出。浸出前后雄黄表面形貌及元素变化,使用扫描电镜(SEM)与能谱仪(EDS)、X-射线衍射(XRD)、拉曼光谱(Raman)、电感耦合等离子体原子发射光谱仪(ICP-AES)进行分析。【结果】4组浸出体系均发现A.ferrooxidans BY-3粘附于雄黄表面以此来产生直接作用。含Fe2+的浸出体系中雄黄表面产生非常明显的变化,含硫的浸出体系中雄黄表面变化不明显;只有Fe2+存在的浸出体系中As/S比率增高,而其余3组浸出体系中As/S比率均明显下降;另外,改性雄黄的表面存在黄钾铁矾、硫、赤铁矿、针铁矿和磁铁矿等,但未检测到砷华(As2O3)与副雄黄(Pararealgar)。【结论】A.ferrooxidans对雄黄改性具有重要作用。Fe2+对雄黄的改性具有促进作用,而硫对雄黄的改性具有抑制作用。雄黄改性前后的物化分析结果证实了生物浸出技术可有效解决传统方法制备雄黄及贮存过程中氧化和光化问题。  相似文献   

11.
Thiobacillus ferrooxidans, the bacterium most widely used; in bioleaching or microbial desulfurization studies, was grown in an electrolytic bioreactor containing a synthetic, ferrous sulfate medium. Passage of current through the medium reduced the bacterially generated ferric iron to the ferrous iron substrate. When used in conjunction with an inoculum that had been adapted to the electrolytic growth conditions, this technique increased the protein (cell) concentration by 3.7 times, increased the protein (cell) production rate by 6.5 times, increased the yield coefficient (cellular efficiency) by 8.0 times, and increased the ferrous iron oxidation rate by 1.5 times at 29 degrees C, compared with conventional cultivation techniques. A Monod-type equation with accepted values for the maximum specific growth rate could not account for the increased growth rate under electrolytic conditions.  相似文献   

12.
Thiobacillus ferrooxidans cells grown on ferrous iron oxidized sulfite to sulfate at pH 3, possibly by a free radical mechanism involving iron and cytochrome oxidase. A purely chemical system with low concentrations of Fe3+ simulated the T. ferrooxidans system. Metal chelators, ethylenediamine tetraacetic acid (EDTA), 4,5-dihydroxy-1-3-benzene disulfonic acid (Tiron), o-phenanthroline, and 2,2'-dipyridyl, inhibited both sulfite oxidation systems, but the T. ferrooxidans system was inhibited only after the initial brief oxygen consumption. EDTA and Tiron, strong chelators of Fe3+, inhibited the oxidation at lower concentrations than o-phenanthroline and 2,2'-dipyridyl, strong chelators of Fe2+. Inhibition of Fe3+-catalyzed sulfite oxidation by EDTA and Tiron was instant, but the inhibition by o-phenanthroline and dipyridyl was briefly delayed, presumably for the reduction of Fe3+ to Fe2+. Mannitol, a free radical scavenger, inhibited both systems to the same extent. Cyanide and azide inhibited only the T. ferrooxidans system, suggesting a role of cytochrome oxidase. It is proposed that sulfite is oxidized by a free radical mechanism initiated by Fe3+ on the cell surface of T. ferrooxidans. Cytochrome oxidase is possibly involved in the regeneration of Fe3+ from Fe2+ by the normal Fe2+-oxidizing system of T. ferrooxidans.  相似文献   

13.
From several presumably pure cultures of Thiobacillus ferrooxidans, we isolated a pair of stable phenotypes. One was a strict autotroph utilizing sulfur or ferrous iron as the energy source and unable to utilize glucose; the other phenotype was an acidophilic obligate heterotroph capable of utilizing glucose but not sulfur or ferrous iron. The acidophilic obligate heterotroph not only was encountered in cultures of T. ferrooxidans, but also was isolated with glucose-mineral salts medium, pH 2.0, directly from coal refuse. By means of deoxyribonucleic acid homology, we have demonstrated that the acidophilic heterotrophs are of a different genotype from T. ferrooxidans, not closely related to this species; we have shown also that the acidophilic obligate heterotrophs, regardless of their source of isolation, are related to each other. Therefore, cultures of T. ferrooxidans reported capable of utilizing organic compounds should be carefully examined for contamination. The acidophilic heterotrophs isolated by us are different from T. acidophilis, which is also associated with T. ferrooxidans but is facultative, utilizing both glucose and elemental sulfur as energy sources. Since they are so common and tenacious in T. ferrooxidans cultures, the heterotrophs must be associated with T. ferrooxidans in the natural habitat.  相似文献   

14.
【目的】了解嗜酸异养菌在诸如酸性矿坑水(AMD)和生物浸出体系等极端酸性环境中对浸矿微生物产生的影响。【方法】研究由嗜酸异养菌Acidiphilium acidophilum和自养菌Acidithiobacillus ferrooxidans经长期驯化后形成的共培养体系分别在Cd2+、Cu2+、Ni2+和Mg2+胁迫下的稳定性;并将此共培养体系应用于黄铁矿和低品位黄铜矿的生物浸出实验。【结果】在上述4种金属离子分别存在的条件下,异养菌Aph.acidophilum均能促进At.ferrooxidans对亚铁的氧化,提高其对能源利用的效率。共培养体系中的异养菌Aph.acidophilum使At.ferrooxidans对Cu2+的最大耐受浓度(MTC)由2.0 g/L提高到5.0 g/L,而且共培养的细胞数量与2.0 g/L Cu2+条件下生长的At.ferrooxidans纯培养相似。另外,共培养中的At.ferrooxidans对Mg2+的MTC也由12.0 g/L提高到17.0 g/L。生物浸出实验中嗜酸异养菌Aph.acidophilum促进了At.ferrooxidans对黄铁矿样品的浸出,浸出率较其纯培养提高了22.7%;但在含铁量较低的低品位黄铜矿浸出体系中共培养和At.ferrooxidans纯培养的浸出率均低于33%。在加入2.0 g/L Fe2+的低品位黄铜矿浸出体系中,共培养和At.ferrooxidans纯培养的浸出率均得到提高,分别达到52.22%和41.27%。【结论】以上结果表明,Aph.acidophilum与At.ferrooxidans共培养在一定的环境胁迫下仍能保持其稳定性并完成各自的生态功能,并且嗜酸异养菌Aph.acidophilum适合在含铁量较高的浸出体系中与铁氧化细菌共同作用来提高生物浸出的效率。  相似文献   

15.
1. The activities of pyruvate dehydrogenase in rat lymphocytes and mouse macrophages are much lower than those of the key enzymes of glycolysis and glutaminolysis. However, the rates of utilization of pyruvate (at 2 mM), from the incubation medium, are not markedly lower than the rate of utilization of glucose by incubated lymphocytes or that of glutamine by incubated macrophages. This suggests that the low rate of oxidation of pyruvate produced from either glucose or glutamine in these cells is due to the high capacity of lactate dehydrogenase, which competes with pyruvate dehydrogenase for pyruvate. 2. Incubation of either macrophages or lymphocytes with dichloroacetate had no effect on the activity of subsequently isolated pyruvate dehydrogenase; incubation of mitochondria isolated from lymphocytes with dichloroacetate had no effect on the rate of conversion of [1-14C]pyruvate into 14CO2, and the double-reciprocal plot of [1-14C]pyruvate concentration against rate of 14CO2 production was linear. In contrast, ADP or an uncoupling agent increased the rate of 14CO2 production from [1-14C]pyruvate by isolated lymphocyte mitochondria. These data suggest either that pyruvate dehydrogenase is primarily in the a form or that pyruvate dehydrogenase in these cells is not controlled by an interconversion cycle, but by end-product inhibition by NADH and/or acetyl-CoA. 3. The rate of conversion of [3-14C]pyruvate into CO2 was about 15% of that from [1-14C]pyruvate in isolated lymphocytes, but was only 1% in isolated lymphocyte mitochondria. The inhibitor of mitochondrial pyruvate transport, alpha-cyano-4-hydroxycinnamate, inhibited both [1-14C]- and [3-14C]-pyruvate conversion into 14CO2 to the same extent, and by more than 80%. 4. Incubations of rat lymphocytes with concanavalin A had no effect on the rate of conversion of [1-14C]pyruvate into 14CO2, but increased the rate of conversion of [3-14C]pyruvate into 14CO2 by about 50%. This suggests that this mitogen causes a stimulation of the activity of pyruvate carboxylase.  相似文献   

16.
This study was aimed at developing an immobilized bioreactor system in which long-term continuous ferrous iron oxidation can be realized with no formation of jarosite, which causes clogging of support pores and reactor lines. For this purpose, a medium with no jarosite formation was developed first by selecting optimal nitrogen and phosphate sources and their concentrations. Then with the developed medium containing ammonium phosphate instead of ammonium sulfate and potassium phosphate, repeated batch and continuous operations of ferrous iron oxidation by Acidothiobacillus ferrooxidans cells immobilized in a depth filter were successfully performed for an extended period of time. For about 510 h of operation including 450 h of continuous operation at dilution rates of 0.1, 0.2, and 0.3 h(-)(1), no formation of jarosite and thus no clogging of the reactor system were observed. The maximum ferrous iron oxidation rate was as high as 2.6 g/(L.h) at a dilution rate of 0.3 h(-)(1).  相似文献   

17.
In several organisms solute transport is mediated by the simultaneous operation of saturable and non-saturable (diffusion-like) uptake, but often the nature of the diffusive component remains elusive. The present work investigates the nature of the diffusive glucose transport in Olea europaea cell cultures. In this system, glucose uptake is mediated by a glucose-repressible, H(+) -dependent active saturable transport system that is superimposed on a diffusional component. The latter represents the major mode of uptake when high external glucose concentrations are provided. In glucose-sufficient cells, initial velocities of D- and L-[U-(14)C]glucose uptake were equal and obeyed linear concentration dependence up to 100 mM sugar. In sugar starved cells, where glucose transport is mediated by the saturable system, countertransport of the sugar pairs 3-O-methyl-D-glucose/D-[U-(14)C]glucose and 3-O-methyl-D-glucose/3-O-methyl-D-[U-(14)C]glucose was demonstrated. This countertransport was completely absent in glucose-sufficient cells, indicating that linear glucose uptake is not mediated by a typical sugar permease. The endocytic inhibitors wortmannin-A and NH(4)Cl inhibited neither the linear component of D- and L-glucose uptake nor the absorption of the nonmetabolizable glucose analog 3-O-methyl-D-[U-(14)C]glucose, thus excluding the involvement of endocytic mediated glucose uptake. Furthermore, the formation of endocytic vesicles assessed with the marker FM1-43 proceeded at a very slow rate. Activation energies for glucose transport in glucose sufficient cells and plasma membrane vesicles were 7 and 4 kcal mol(-1), respectively, lower than the value estimated for diffusion of glucose through the lipid bilayer of phosphatidylethanolamine liposomes (12 kcal mol(-1)). Mercury chloride inhibited both the linear component of sugar uptake in sugar sufficient cells and plasma membrane vesicles, and the incorporation of the fluorescent glucose analog 2-NBDG, suggesting protein-mediated transport. Diffusive uptake of glucose was inhibited by a drop in cytosolic pH and stimulated by the protein kinase inhibitor staurosporine. The data demonstrate that the low-affinity, high-capacity, diffusional component of glucose uptake occurs through a channel-like structure whose transport capacity may be regulated by intracellular protonation and phosphorylation/dephosphorylation.  相似文献   

18.
Glucose utilization was studied in isolated fat cells prepared from rat adipose tissue which had been cultured for 18 hr in TC 199 medium. When 1% bovine serum albumin (BSA) was in the culture medium, basal rates of (14)CO(2) and [(14)C]triglyceride production from [1-(14)C]glucose were markedly depressed and there was no effect of insulin. With 4% BSA, basal (14)CO(2) production was the same as in cells prepared from fresh tissue and basal triglyceride production was greatly increased. Insulin effect on these cells was minimal. One-minute uptake of [(14)C]2-deoxyglucose was stimulated by 800-1000% in fresh cells and 300-500% in cells cultured with either 1% or 4% BSA. Oxidation of [U-(14)C]glucose showed a much smaller impairment in cultured cells than for [1-(14)C]glucose, suggesting that the pentose phosphate shunt was more severely impaired than glycolysis. Glyceride-glycerol production was increased in cultured cells relative to preculture (fresh) cells. There was no effect of insulin in the culture medium in any of these systems. Rates of free fatty acid and glycerol release were markedly increased in cultured cells, especially when insulin was present in the culture medium. The acute antilipolytic effect of insulin was retained, so that insulin in the test incubation decreased lipolysis by 40-80%. Nevertheless, cell-associated fatty acids were increased in cultured cells and FFA/albumin ratios in the medium often reached potentially toxic levels. The reduction in pentose phosphate shunt activity, lipogenesis, and insulin effect resembles other models of insulin insensitivity. The impaired metabolism is probably due to an intracellular defect. A possible toxic role of either intracellular or extracellular fatty acids cannot be excluded. This system should be a useful model in which to study the cellular mechanisms of insulin insensitivity in adipocytes.-Bernstein, R. S. Insulin insensitivity and altered glucose utilization in cultured rat adipose tissue.  相似文献   

19.
Thiobacillus ferrooxidans is a chemolithotrophic bacterium capable of fulfilling all of its energy requirements from the oxidation of soluble ferrous sulfate. Rusticyanin is a soluble blue copper protein found in abundance in the periplasmic space of this bacterium. The one-electron transfer reaction between soluble iron and purified rusticyanin has been studied by stopped flow spectrophotometry in acidic solutions containing sulfate. Second order rate constants for the reduction of rusticyanin by Fe2+, FeHSO4+, and FeSO4(0) were 0.022, 0.73, and 2.30 M-1 s-1, respectively. The pseudo-first order rate constant for the reduction of rusticyanin exhibited substrate saturation when the concentration of the total ferrous ion was varied in solutions of limiting sulfate. This saturation behavior was quantitatively described using the values of the second order rate constants listed above and the distribution of the total ferrous ion into its water-, bisulfate-, and sulfate-coordinated forms. Second order rate constants for the oxidation of rusticyanin by Fe3+ and FeSO4+ were 0.73 and 0.26 M-1 s-1, respectively. The electron transfer reactions between iron and rusticyanin monitored in vitro were far too slow to support the hypothesis that rusticyanin is the primary oxidant of ferrous ions in the iron-dependent respiratory electron transport chain of T. ferrooxidans.  相似文献   

20.
A comparative analysis of the protein composition of Acidithiobacillus ferrooxidans cells grown on elemental sulfur and ferrous iron was performed. A newly developed protocol involving immobilized pH gradients, improved protein reduction, mass spectrometry protein identification and full genome sequence information was applied. This approach resulted in more than 1300 protein spots displayed in broad and basic pH ranges, the best A. ferrooxidans proteome resolution to date. A comparative image analysis revealed that the proteome was significantly influenced by the growth type, and allowed for the detection of many physiologically important proteins. Among them were sulfate adenylyltransferase and sulfide dehydrogenase, which are involved in sulfate assimilation and sulfide metabolism, respectively. Many other proteins were related to important processes like cell attachment and electron transport. Co-migration of phosphate and sulfate transport proteins was also observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号