首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
C2C12 cells are a well-established model system for studying myogenesis. We examined whether inhibiting the process of myogenesis via expression of dominant negative (DN) mitogen-activated protein kinase kinase-3 (MKK3) facilitated the trans-differentiation of these cells into adipocytes. Cells expressing DN MKK3 respond to rosiglitazone, resulting in adipocyte formation. The effects of rosiglitazone appear to be potentiated through peroxisome proliferator activating receptor-gamma. This trans-differentiation is inhibited by the use of the phosphoinositide-3 (PI3) kinase inhibitor, LY294002. These results indicate that preventing myogenesis through expression of DN MKK3 facilitates adipocytic trans-differentiation, and involves PI3 kinase signalling.  相似文献   

2.
3.
Summary The differentiation grade of cells in culture is dependent on the composition of the culture medium. Two commonly used myogenic cell lines, mouse C2C12 and rat L6, usually differentiate at a low concentration of horse serum. In this study we compared the effect of horse serum with a medium containing a low percentage of Ultroser G and rat brain extract. The maturation grade was evaluated on the basis of various biochemical, (immuno)histochemical and cell-physiological parameters. Substitution of horse serum by Ultroser G and rat brain extract during the differentiation phase resulted in a higher maturation grade of the myotubes of both cell lines, on the basis of creatine kinase activity and the diameter of the myotubes. In addition, the C2C12 myotubes display cross-striation, contain a higher percentage of creatine kinase muscle-specific isoenzyme MM, show a ninefold increase in acetylcholine receptor (AChR) clusters, form a continuous basement membrane, and have a lower resting cytosolic Ca2+ concentration. L6 myotubes show a fivefold increase in AChR clusters and a twofold increase in the expression of the mRNA of the ɛ-subunit of AChR. C2C12 cells show spontaneous contraction and response of cytosolic Ca2+ to various stimulants in contrast to L6 cells which do not. These studies established that the Ultroser G/brain extract medium leads to a higher differentiation grade of both cell lines, but parameters appropriate for use as differentiation markers appear to differ between both cell lines.  相似文献   

4.
The myogenic factors, MyoD, myogenin, Myf5 and MRF4, can activate skeletal muscle differentiation when overexpressed in non-muscular cells. Gene targeting experiments have provided much insight into the in vivo functions of MRF and have defined two functional groups of MRFs. MyoD and Myf5 may be necessary for myoblast determination while myogenin and MRF4 may be required later during differentiation. However, the specific role of these myogenic factors has not been clearly defined during one important stage of myogenesis: the fusion of myoblasts. Using cultured C2C12 mouse muscular cells, the time-course of these proteins was analyzed and a distinct expression pattern in fusing cells was revealed. In an attempt to clarify the role of each of these regulators during myoblast fusion, an antisense strategy using oligonucleotides with phosphorothioate backbone modification was adoped. The results showed that the inhibition of myogenin and Myf5 activity is capable of significantly preventing fusion. Furthermore, the inhibition of MyoD can wholly arrest the engaged fusion process in spite of high endogenous expression of both myogenin and Myf5. Consequently, each MRF seems to have, at this defined step of myogenesis, a specific set of functions that can not be substituted for by the others and therefore may regulate a distinct subset of muscle-specific genes at the onset of fusion.  相似文献   

5.
《Cell differentiation》1978,7(6):399-403
The effect of variations in medium horse serum (HS) and chick embryo extract on the extent of myogenesis in primary mouse muscle cultures was investigated. Seeding efficiency at 24 h in culture did not vary with medium composition, but total cell number at 8 days was diminished at low embryo extract concentrations. Five media from the range of 16 tested, supported significantly greater myogenesis. Within this group of 5, there was no difference in ability to support myogenesis. The effect of medium composition on myogenesis is discussed.  相似文献   

6.
We have been studying extracellular proteins such as proteinases and attachment factors under serum-free culture conditions. A number of studies on myogenesis using an in vitro culture system have reported that proteinases and ECM components play significant roles in muscle differentiation. However, most of the studies were performed in the presence of serum. Serum is abundant in the aforementioned proteins and its use in serum-free culture affects many cellular functions significantly. In this study, we tried to establish serum-free culture conditions for analyzing extracellular proteins involved in mouse myogenic differentiation. By evaluating media, supplements, and procedure of cell inoculation under serum-free conditions and by comparing the resultant conditions with conventional conditions on differentiated characteristics of the cells, it was revealed that serum-free Dulbecco's modified Eagle's medium/Ham's F-12 plus insulin more efficiently supported myogenesis morphologically and biochemically than conventional 2% horse serum-containing culture and that secretory proteinases obtained from our serum-free culture were different from those obtained utilizing conventional serum-free cultures in their activities and patterns. Since our serum-free medium consists of simple components, the medium is low cost and easy to prepare. Furthermore, the results suggest that our culture conditions are superior to conventional conditions biochemically and morphologically and will provide more precise and accurate information on extracellular proteins involved in myogenesis.  相似文献   

7.
In the present study, we have examined the insulin-signaling pathways involved in myogenesis in mouse C2C12 skeletal muscle cell line, a cellular system that expresses high number of high affinity insulin receptors. Insulin (50 nM) rapidly (5 min) stimulated beta-chain insulin receptor, activated the phosphatidylinositol (PI) 3-kinase/Akt/p70S6-kinase signaling pathway, as well as phosphorylated both p44/p42- and p38-mitogen-activated protein kinases (MAPKs). Preconfluent cells were differentiated in a serum-free medium in response to 50 nM insulin for 72 h, as revealed by the formation of multinucleated myotubes and the induction of the creatine kinase activity. This differentiation process was also monitored by the inhibition of the PCNA content and induction of the cell cycle inhibitor p21. Furthermore, insulin induced nuclear factor-kappaB (NF-kappaB) DNA binding activity and down-regulated activating protein-1 (AP-1) DNA binding activity throughout the differentiation process. The use of specific inhibitors of the insulin-signaling pathways indicated that myogenesis was precluded by treatment for 72 h with LY294002 (an inhibitor of PI 3-kinase), rapamycin (a p70S6-kinase blocker), and SB203580 or PD169316 (p38-MAPK inhibitors). These inhibitors abolished insulin induction of NF-kappaB DNA binding activity and kappaB-chloramphenicol acetyltransferase (CAT) promoter activity, maintaining expressed cytosolic IkappaB-alpha protein, and increased AP-1 DNA binding activity and TRE-CAT promoter activity. These data suggest that insulin induces myogenesis in C2C12 through PI 3-kinase/ p70S6-kinase and p38-MAPK pathways, the signaling through p44/p42-MAPK being inhibited.  相似文献   

8.
Hybrid cells derived from rat L6 myoblasts and mouse primary fibroblasts (M x F hybrids), as well as those derived from rat L6 myoblasts and mouse primary myoblasts (M x M hybrids), were examined for their ability to engage in myogenesis as judged by muscle fiber formation plus the expression of skeletal muscle myosin and creatine kinase (CK). Of 172 primary hybrid colonies scored, 59% were myogenic in the M x F fusion and 97% exhibited muscle fiber formation in the M x M fusion. Individual hybrid clones from each cross were isolated, expanded and analyzed for myogenic capabilities as well. All three M x M and all ten M x F isolated clones exhibited preferential elimination of mouse chromosomes. Nonetheless, all were capable of fusing spontaneously and of elaborating skeletal muscle myosin and CK. The three M x M hybrids expressed only MM-CK whereas nine out of ten M x F hybrids produced all three CK isoenzymes (MM, MB, BB). These results suggest that M X M hybrids express CK patterns reminiscent of the rat L6 parental cells while M X F hybrids apparently mimic mouse muscle fiber CK patterns. Various models are discussed which address these phenomena.  相似文献   

9.
Ligand activation of the fibroblast growth factor receptor (FGFR) represses myogenesis and promotes activation of extracellular signal-regulated kinases 1 and 2 (Erks). The precise mechanism through which the FGFR transmits both of these signals in myoblasts remains unclear. The SH2 domain-containing protein tyrosine phosphatase, SHP-2, has been shown to participate in the regulation of FGFR signaling. However, no role for SHP-2 in FGFR myogenic signaling is known. In this study, we show that stimulation of C2C12 myoblasts with FGF-2 induces SHP-2 complex formation with tyrosyl-phosphorylated FGFR substrate 2 alpha (FRS-2 alpha). Both the catalytic activity and, to a much lesser extent, the Grb2 binding-tyrosyl phosphorylation sites of SHP-2 are required for maximal FGF-2-induced Erk activity and Elk-1 transactivation. When overexpressed in C2C12 myoblasts, wild-type SHP-2, but not a catalytically inactive SHP-2 mutant, potentiates the suppressive effects of FGF-2 on muscle-specific gene expression. In addition, expression of a constitutively active mutant of SHP-2 is sufficient to prevent myogenesis. The constitutively active mutant of SHP-2 induces hyper-tyrosyl phosphorylation of FRS-2 alpha but fails to stimulate or potentiate either FGF-2-induced Erk activation or Elk-1 transactivation. These data suggest that in myoblasts, SHP-2 represses myogenesis via a pathway that is independent of the Erks. We propose that SHP-2 plays a pivotal role in FGFR signaling in myoblasts via both Erk-dependent and Erk-independent pathways.  相似文献   

10.
Myoblasts of the L6 rat cell line were grown in Ham's F12 nutrient medium containing 10% fetal calf serum (F12 + FCS). Although the cells were confluent by 6 days in culture, fusion was not observed even if cultures were maintained for 10–14 days. At least 80% of the cells in such confluent unfused cultures were in the G1 phase of the cell cycle and less than 5% of the cells in confluent cultures synthesized DNA during a 4-day period. The synthesis of muscle-specific proteins (α-actin, β-tropomyosin, and myosin light chains LC1emb and LC2F) was negligible when compared to fused cultures of L6 cells grown for a similar time in Dulbecco's medium with 10% FCS (DME + FCS). When the unfused cultures were shifted from F12 + FCS to DME + FCS, DNA synthesis could be demonstrated in more than 95% of the cells and fusion occurred, indicating that neither proliferative nor myogenic capacity had been irreversibly lost. Raising the levels of calcium, varying the serum concentration from 0 to 20%, or the addition of medium components (present in DME but reduced or absent in F12) all failed to induce fusion in the L6 cells grown in F12. However, L6 cells will fuse in mixtures of F12 + FCS and DME + FCS. Fusion will also occur if L6 cells are grown at clonal density in F12 + FCS supplemented with calcium. While it has not been possible to determine why F12 + FCS is nonpermissive for L6 cells in confluent mass cultures, the results demonstrate that prolonged residence in the G1 phase of the cell cycle is not a sufficient condition for L6 myoblast differentiation to occur.  相似文献   

11.
12.
Protein phosphorylation was studied in L6 cultured muscle cells by incubating cells with Na 32Pi and subsequently exposing them to external agents. L6 cells readily incorporated 32Pi into a number of peptides approaching steady-state incorporation by 2 h. Insulin stimulated the phosphorylation of one peptide of molecular mass 29,000 daltons by 37% with an ED50 of 3 mU/ml. This peptide was located in the high-speed pellet (105,000 g 60 min) which is consistent with an S6 ribosomal protein. Epinephrine (10(-5) M) led to only a modestly stimulated (less than 14%) phosphorylation of three peptides of molecular masses 39,000, 29,000 and 21,000 daltons. Glucose (5-50 mM) stimulated the phosphorylation of one peptide of molecular mass 19,000 daltons by 24%.  相似文献   

13.
Myogenesis is a crucial process governing skeletal muscle development and homeostasis. Differentiation of primitive myoblasts into mature myotubes requires a metabolic switch to support the increased energetic demand of contractile muscle. Skeletal myoblasts specifically shift from a highly glycolytic state to relying predominantly on oxidative phosphorylation (OXPHOS) upon differentiation. We have found that this phenomenon requires dramatic remodeling of the mitochondrial network involving both mitochondrial clearance and biogenesis. During early myogenic differentiation, autophagy is robustly upregulated and this coincides with DNM1L/DRP1 (dynamin 1-like)-mediated fragmentation and subsequent removal of mitochondria via SQSTM1 (sequestosome 1)-mediated mitophagy. Mitochondria are then repopulated via PPARGC1A/PGC-1α (peroxisome proliferator-activated receptor gamma, coactivator 1 alpha)-mediated biogenesis. Mitochondrial fusion protein OPA1 (optic atrophy 1 [autosomal dominant]) is then briskly upregulated, resulting in the reformation of mitochondrial networks. The final product is a myotube replete with new mitochondria. Respirometry reveals that the constituents of these newly established mitochondrial networks are better primed for OXPHOS and are more tightly coupled than those in myoblasts. Additionally, we have found that suppressing autophagy with various inhibitors during differentiation interferes with myogenic differentiation. Together these data highlight the integral role of autophagy and mitophagy in myogenic differentiation.  相似文献   

14.
In a previous study, it has been shown that presumptive mouse C2 myoblast cells are strongly resistant to HVJ (hemaglutinating virus of Japan, Sendai virus)-mediated cell fusion, but do become capable of fusion upon differentiation. Quail myoblasts transformed with a temperature-sensitive mutant of Rous sarcoma virus (QM-RSV cells) also become more sensitive to HVJ-mediated cell fusion during differentiation. Investigations were undertaken to see whether heterokaryotic myotubes were formed spontaneously by co-culture of two different kinds of myogenic cells, QM-RSV cells and C2 cells. When both cells were committed to myotube formation, they spontaneously fused without HVJ on co-culture. On the other hand, when both or one of the cells were in the presumptive state, heterokaryons were not formed by co-culturing. Furthermore, committed QM-RSV cells did not fuse with non-myogenic cells. These results indicate that the membranes of myogenic cells change to become capable of fusion for myotube formation during differentiation.  相似文献   

15.
16.
An increase in the rate of protein synthesis in living cells can be achieved by regulating the quantity of mRNA, ribosomes, and enzymes available for translation or by regulating the efficiency at which existing components are used. Efficiency can be measured by comparing the number of ribosomes actively engaged in the synthesis of protein (polysomes) to the pool of free ribosomes. The objective of this study was to determine the percentage of ribosomes found as polysomes in C2C12 cells deprived of serum or exposed to insulin or dexamethasone 24 h before and after being stimulated to differentiate. Individual 60 mm culture dishes were exposed to serum-free control medium, medium containing serum, insulin, or dexamethasone for a period of 1 h or 2 h and then quickly frozen. The ribosomes and polysomes from these cells were separated by ultracentrifugation on 15 to 60% sucrose gradients and the absorbance across the gradient at 254 nm was recorded. Polysome percentages were determined as the area under the polysome peak divided by the total area under the curve. Serum deprivation caused a 12% decline in the percentage of ribosomes found as polysomes (P < 0.01). Dexamethasone caused a quadratic decline (P < 0.05) in polysome percentage, while insulin yielded a quadratic increase (P < 0.05). Protein synthesis assays measuring 3H-tyrosine uptake showed similar responses. These changes occurred in the absence of any differences in total RNA concentration. It was concluded that differentiation and the absence of serum in the media reduced the rate of recruitment of ribosomes for protein synthesis. Insulin increased ribosome recruitment which was also observed by a similar increase in incorporation of radio-labeled tyrosine.  相似文献   

17.
We report here the expression in C2C12 myoblasts of the intermediate-conductance Ca2+-activated K+ (IKCa) channel. The IKCa current, recorded under perforated-patch configuration, had a transient time course when activated by ionomycin (0.5 µM; peak current density 26.2 ± 3.7 pA/pF; n = 10), but ionomycin (0.5 µM) + 5,6-dichloro-1-ethyl-1,3-dihydro-2H-benzimidazol-2-one (100 µM) evoked a stable outward current (28.4 ± 8.2 pA/pF; n = 11). The current was fully inhibited by charybdotoxin (200 nM), clotrimazole (2 µM), and 5-nitro-2-(3-phenylpropylamino)benzoic acid (300 µM), but not by tetraethylammonium (1 mM) or D-tubocurarine (300 µM). Congruent with the IKCa channel, elevation of intracellular Ca2+ in inside-out patches resulted in the activation of a voltage-insensitive K+ channel with weak inward rectification, a unitary conductance of 38 ± 6 pS (at negative voltages), and an IC50 for Ca2+ of 530 nM. The IKCa channel was activated metabotropically by external application of ATP (100 µM), an intracellular Ca2+ mobilizer. Under current-clamp conditions, ATP application resulted in a membrane hyperpolarization of 35 mV. The IKCa current downregulated during myogenesis, ceasing to be detectable 4 days after the myoblasts were placed in differentiating medium. Downregulation was prevented by the myogenic suppressor agent basic FGF (bFGF). We also found that block of the IKCa channel by charybdotoxin did not inhibit bFGF-sustained myoblast proliferation. These observations show that in C2C12 myoblasts the IKCa channel expression correlates inversely with differentiation, yet it does not appear to have a role in myoblast proliferation. ATP; cell proliferation  相似文献   

18.
Summary Our previous studies have demonstrated that expression of growth-associated genes is regulated by the adhesive state of the cell. To understand the role of cell adhesion in regulating the switch from growth to differentiation, we are studying the differentiation of mouse myoblasts into multinucleated contractile myotubes. In this report, we describe a novel means of culturing C2C12 myoblasts that permits an analysis of the role of cell adhesion in regulating the sequential induction of muscle-specific genes that control myogenesis. Suspension of an asynchronous, proliferating population of myoblasts in a viscous gel of methylcellulose dissolved in medium containing 20% serum induces growth arrest in G0 phase of the cell cycle without a concomitant induction of muscle-specific genes. Reattachment to a solid substratum in 20% serum, 0.5nM bFGF, or 10 nM IGF-1 rapidly activates entry of the quiescent cells into G1 followed by a synchronous progression of the cell population through into S phase. bFGF or IGF-1 added separately facilitate only one passage through the cell cycle, whereas 20% serum or the two growth factors added together support multiple cell divisions. Adhesion of suspended cells in DMEM alone or with 3 nM IGF-1 induces myogenesis as evidenced by the synthesis of myogenin and myosin heavy chain (MHC) proteins followed by fusion into myotubes. bFGF completely inhibits this differentiation process even in the presence of myogenic doses of IGF-1. Addition of 3 nM IGF-1 to quiescent myoblasts maintained in suspension culture in serum-free conditions does not induce myogenin or MHC expression. Thus, adhesion is a requirement for the induction of muscle gene expression in mouse myoblasts. The development of a muscle cell culture environment in which proliferating myoblasts can be growth arrested in G0 without activating muscle-specific gene expression provides a means of analyzing the synchronous activation of either the myogenic or growth programs and how adhesion affects each process, respectively. Supported by training grant T32-HL07035  相似文献   

19.
The effects of culture age, muscle activity, and cell fusion on the metabolism of acetylcholine receptors in the mouse muscle cell line, C2, were determined. Receptor degradation followed complex kinetics and was dependent on culture age. One or two day old myotubes degraded receptors rapidly (t50 = 7–8 h) in a nearly single exponential process. Four or five day old myotubes, however, degraded receptors more slowly (t50 = 12–16 h) in a process that deviated substantially from single exponential kinetics. A similar complex pattern of receptor degradation was seen with the L6 cell line, but receptor degradation followed single exponential kinetics and was independent of culture age in primary rat myotubes and the BC3H-1 cell line. Acetylcholine receptors on C2 myotubes were immunologically similar to the extrajunctional receptors of denervated mouse muscle. Clustered receptors were degraded at approximately the same rate as the total receptor population and receptor turnover was not changed when spontaneous contractions of the C2 myotubes were inhibited. Newly synthesized receptors were more rapidly degraded than older receptors. Finally, receptors on fusion-arrested C2 myoblasts were degraded at the same rate (t50 = 16 h) regardless of culture age.  相似文献   

20.
We show that a single myogenic progenitor cell in vitro generates two types of myoblasts committed to two distinct myogenic cell lineages. Using fast and slow myosin heavy chain isoform content to define myotube type, we found that myogenic cells from fetal quail (day 10 in ovo) formed two types of myotubes in vitro: fast and mixed fast/slow. Clonal analysis showed that these two types of myotubes were formed from two types of myoblasts committed to distinct fast and fast/slow lineages. Serial subcloning demonstrated that the initial myoblast progeny of an individual myogenic progenitor cell were in the fast lineage, whereas later progeny were in the fast/slow lineage. Fast and slow myosin expression within particular myotubes reflects the genetic processes underlying myoblast commitment to diverse myogenic lineages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号