首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Polyclonal B lymphocyte activation during Trypanosoma cruzi infection   总被引:8,自引:0,他引:8  
Infection of A/J mice with Trypanosoma cruzi results in the polyclonal activation of B lymphocytes in vivo as assessed by the spontaneous plaque-forming cell (PFC) response to trinitrophenyl and to goat, equine, and sheep erythrocytes. The peak response to these antigens is found at 5 to 6 days of infection. Additionally, a polyclonal response to syngeneic erythrocytes can be detected in infected mice by using aged but not fresh indicator cells. Polyclonally stimulated PFC to human gamma-PFC found late in infection during a period of marked splenomegaly and parasitemia. This trypanosoma-induced polyclonal B cell activation may well be responsible for the abnormalities in immunoglobulin synthesis and secretion that have been reported to occur during human infection with T. cruzi.  相似文献   

2.
It is well recognized that zinc is an essential trace element, influencing growth and affecting the development and integrity of the immune system. The use of oligoelements as zinc can be considered a tool in modulating the effectiveness of the immune response. In this work zinc was daily and orally supplied in male Wistar rats infected with the Y strain of Trypanosoma cruzi. Parasitemia was evaluated and a significant reduction on blood parasites was observed. In order to check some immunological parameters peritoneal macrophages were counted revealing higher percentages for zinc supplied group. Consequently enhanced concentrations of IFN-gamma was found and for the first time NO was evaluated in T. cruzi infected animals under the influence of zinc therapy, revealing enhanced concentrations when compared to unsupplied counterparts. We conclude that zinc is able to up-regulate the host's immune response against parasite replication.  相似文献   

3.
CD8+ T cells have been shown to be required for acute resistance to infection with the protozoan parasite, Trypanosoma cruzi, the causative agent of Chagas' disease. However, to date, the mechanism by which CD8+ T cells mediate protection in vivo has not been determined. While CD8+ T cells can exhibit cytolytic function, they also secrete cytokines such as IFN-gamma, which is known to mediate protection against T. cruzi infections. To determine whether cytolysis is an important effector function in vivo, we have compared outcomes of T. cruzi infection in normal and perforin-deficient mice. Our results indicate that while perforin-dependent cytolytic mechanisms clearly make a major contribution to acute resistance to T. cruzi infection, this contribution may be strain and challenge dose-dependent, since perforin-deficient mice challenged with lower doses of a less virulent strain survived and were subsequently resistant to challenge with virulent organisms. In vivo depletion studies demonstrated that survival of perforin-deficient mice challenged with low doses of T. cruzi requires both CD4+ and CD8+ T cells and is dependent on IFN-gamma secretion. These studies document the participation of both perforin-dependent cytotoxic and perforin-independent, IFN-gamma-dependent immune mechanisms in acute resistance to T. cruzi infection.  相似文献   

4.
Preimmunization with attenuated Corpus Christi stain Trypanosoma cruzi provides survival to C3H mice and enhances resistance of C57 mice to Brazil strain infection. C3H(He) and C57 B1/6 mice surviving acute infection of T. cruzi are shown to have heart specific autoantibodies through acute and chronic infection. ELISA assays were performed using nondenatured extract of hearts from normal syngeneic mice as target antigen reacted with sera from immunized and/or infected mice. Surviving C3H mice developed a specific anti-heart response as early as Day 21 of infection and this response continued at a high level to Day 300. The response in C57 mice, both immunized-infected and infected only, increased to Day 100 followed by a decline in intensity. The heart specificity of the response in mice was suggested by negligible reaction of sera with smooth muscle preparations and a reduced autoreactivity with skeletal muscle. Laminin, a suggested target of autoimmunity in Chagas' disease, was shown not to be the target of the responses in these mice. Immunoaffinity-purified heart specific antibodies show strong cross-reactivity with parasite antigen and like purified parasite specific antibodies, reacted with heart antigen.  相似文献   

5.
6.
Trypanosoma cruzi, the etiological agent of Chagas disease, is an adequate model for studies on the evolution of signal transduction pathways. These pathways involve molecular entities such as membrane receptors, transduction G proteins, protein kinases and second messengers (Ca(2+), cyclic AMP, cyclic GMP, nitric oxide). In this article, Mirtha M. Flawiá, María T. Téllez-I?ón and Héctor N. Torres describe the studies performed on T. cruzi transduction pathways and their role in the control of metacyclogenesis and cell motility.  相似文献   

7.
Trypanosoma cruzi, the causative agent of Chagas' disease, infects an estimated 12 million people in Latin America and may induce cardiopathy and megaformation of the oesophagus and colon. During the early, acute stage of the infection, parasite-induced inflammatory infiltrates may cause transitory disease which terminates with the emergence of an immune response sufficient to reduce the parasite to insignificant levels. Even so, severe disease may develop many years after the original infection. It has been suggested that this might result from an autoimmune process triggered by the parasite and mediated either (1) by the adsorption of parasite antigens to host cells, thus rendering these cells susceptible to the host's own antiparasite immune response, or (2) via cross-reactive antigens shared by the host and parasite. In common with many parasitic diseases, there is an urgent need for studies on the T-cell response to T cruzi infection, as this might not only hold the key to the immunopathology but also serve as a means of clearing this lifelong infection which survives by sequestering into an intracellular site.  相似文献   

8.
Regulation of intracellular Ca2+ homeostasis was characterized in epimastigote forms of Trypanosoma cruzi using the fluorescence probe Fura-2. Despite an increase in extracellular Ca2+, [Ca2+]o, from 0 to 2 mM, cytosolic Ca2+, [Ca2+]i, increased only from 85 +/- 9 to 185 +/- 21 nM, indicating the presence of highly efficient mechanisms for maintaining [Ca2+]i. Exposure to monovalent Na+ (monensin)-, K+ (valinomycin, nigericin)-, and divalent Ca2+ (ionomycin)-specific ionophores, uncouplers of mitochondrial respiration (oligomycin), inhibitors of Na+/K(+)-ATPase (ouabain), and Ca(2+)-sensitive ATPase (orthovanadate) in 0 or 1 mM [Ca2+]o resulted in perturbations of [Ca2+]i, the patterns of which suggested both sequestration and extrusion mechanisms. Following equilibration in 1 mM [Ca2+]o, incubation with orthovanadate markedly increased [Ca2+]i, results which are compatible with an active uptake of [Ca2+]i by endoplasmic reticulum. In contrast, equilibration in 0 or 1 mM [Ca2+]o did not influence the relatively smaller increase in [Ca2+]i following incubation with oligomycin, suggesting a minor role for the mitochondrial compartment. In cells previously equilibrated in 1 mM [Ca2+]o, exposure to monensin or ouabain, conditions known to decrease the [Na+]o/[Na+]i gradient, upon which the Na+/Ca2+ exchange pathways are dependent, markedly increased [Ca2+]i. In a complementary manner, decreasing the extracellular Na+ gradient with Li+ increased [Ca2+]i in a dose-dependent manner. Finally, the calcium channel blockers verapamil and isradipine inhibited the uptake of Ca2+ by greater than 50%, whereas diltiazem, nifedipine, and nicardipine were ineffective. The results suggest that epimastigote forms of T. cruzi maintain [Ca2+]i by uptake, sequestration, and extrusion mechanisms, with properties common to eukaryotic organisms.  相似文献   

9.
Chagas disease, caused by infection with the protozoan parasite Trypanosoma cruzi, is a major public health problem in Central and South America. The pathogenesis of Chagas disease is complex and the natural course of infection is not completely understood. The recent development of bioluminescence imaging technology has facilitated studies of a number of infectious and non-infectious diseases. We developed luminescent T. cruzi to facilitate similar studies of Chagas disease pathogenesis. Luminescent T. cruzi trypomastigotes and amastigotes were imaged in infections of rat myoblast cultures, which demonstrated a clear correlation of photon emission signal strength to the number of parasites used. This was also observed in mice infected with different numbers of luminescent parasites, where a stringent correlation of photon emission to parasite number was observed early at the site of inoculation, followed by dissemination of parasites to different sites over the course of a 25-day infection. Whole animal imaging from ventral, dorsal and lateral perspectives provided clear evidence of parasite dissemination. The tissue distribution of T. cruzi was further determined by imaging heart, spleen, skeletal muscle, lungs, kidneys, liver and intestines ex vivo. These results illustrate the natural dissemination of T. cruzi during infection and unveil a new tool for studying a number of aspects of Chagas disease, including rapid in vitro screening of potential therapeutical agents, roles of parasite and host factors in the outcome of infection, and analysis of differential tissue tropism in various parasite-host strain combinations.  相似文献   

10.
Many important pathogen-host interactions rely on highly specific carbohydrate binding events. In the case of the protozoan Trypanosoma cruzi, the causative agent of Chagas disease, glycointeractions involving sialic acid (SA) residues are pivotal for parasite infectivity, escape from immune surveillance and pathogenesis. Though unable to synthesize SA de novo, T. cruzi displays a unique trans-Sialidase (TS) enzyme, which is able to cleave terminal SA residues from host donor glycoconjugates and transfer them onto parasite surface mucins, thus generating protective/adhesive structures. In addition, this parasite sheds TS into the bloodstream, as a way of modifying the surface SA signature, and thereby the signaling/functional properties of mammalian host target cells on its own advantage. Here, we discuss the pathogenic aspects of T. cruzi TS: its molecular adaptations, the multiplicity of interactions in which it is involved during infections, and the array of novel and appealing targets for intervention in Chagas disease provided by TS-remodeled sialoglycophenotypes.  相似文献   

11.
Human humoral immunity to hsp70 during Trypanosoma cruzi infection   总被引:4,自引:0,他引:4  
Immunologic screening of cDNA expression libraries has been widely used for the identification of DNA sequences encoding the immunologically relevant proteins of many pathogenic microorganisms. For reasons that are not entirely clear, sequences encoding 70-kDa heat shock and related proteins (hsp70), which are among the most highly conserved proteins known, have routinely been identified by this approach. Consequently, hsp70 proteins have been proposed to be involved in the autoimmune processes thought responsible for the pathogenesis of the diseases caused by some of these organisms, e.g., chronic Trypanosoma cruzi infection (Chagas' disease). Therefore, we investigated whether hsp70 might be a specific target of the human humoral immune response to T. cruzi infection, and, if so, whether humoral autoimmunity to hsp70 might play a role in pathogenesis. We found that hsp70 is indeed a major polypeptide Ag in Chagas' disease, but that the antibodies to T. cruzi hsp70 do not react with human hsp70--even though the proteins display 73% amino acid sequence identify. These results indicate that self-tolerance to hsp70 is maintained during chronic T. cruzi infection and strongly argue against a role for humoral autoimmunity to hsp70 in the pathogenesis of Chagas' disease.  相似文献   

12.
Activation of the hypothalamus-pituitary-adrenal axis plays a major role in the suppression of the immune system. We have investigated the effects of repetitive stress on Wistar rats infected with the Y strain of Trypanosoma cruzi and a control group that underwent stressor stimuli by exposure to ether vapor for one minute twice a day. Repetitive stress resulted in an elevated number of circulating parasites accompanies by deep tissue disorganization, and cardiac histopathological alterations. The infected and stressed group displayed a decrease in body weight, and an increased parasite burden in heart tissue, and adrenal glands. Histological analysis of the heart also showed a moderate to severe diffused mononuclear inflammatory process. These results suggest that repetitive stress could be considered an important factor during development of experimental Chagas' disease, enhancing pathogenesis through disturbance of the host's immune system.  相似文献   

13.
Glucocorticoid hormones have been implicated as an important modulator of Trypanosoma cruzi pathogenesis. Since adrenal steroid hormones play a fundamental role in modulating the immune response, we hypothesized that adrenalectomy affect the course of the experimental T. cruzi infection. This study was undertaken to determine the effects of adrenalectomy during the acute phase of T. cruzi infection. Blood and tissue parasitism, macrophages, nitric oxide (NO) production and IFN-γ were evaluated in male Wistar rats infected with the Y strain of T. cruzi. Our results show that adrenalectomized rats displayed increased number of blood and heart parasites accompanied by decreases in the total number of peritoneal macrophages and IFN-γ when compared to controls. Adrenalectomy also reduced the levels of NO released from peritoneal macrophages of infected animals. These results suggest that adrenal corticosteroid insufficiency due to adrenalectomy could be considered an important factor during development of acute phases of experimental Chagas’ disease, enhancing pathogenesis through disturbance of the host’s immune system.  相似文献   

14.
Infective trypomastigote stages of the obligate intracellular protozoan parasite Trypanosoma cruzi are capable of entering virtually any mammalian cell in vitro. Entry is a complex process, involving initial parasite attachment to surface moieties of the target cell, internalization of the parasite via formation of a vacuole, and finally disruption of the vacuolar membrane to permit access of the parasite to the host cell cytoplasm. Attachment requires parasite metabolic energy. At sites of parasite entry recruitment of host cell lysosomes may occur, and lysosomal membrane components contribute prominently to formation of the parasitophorous vacuole. Parasite escape from the vacuole depends upon vacuolar acidification and is mediated by the coordinated action of a parasite-derived neuramindase/trans-sialidase that is capable of desialylating host-derived vacuolar membrane constituents, and a parasite-derived trans-membrane pore-forming protein. Dissection of the entry process at both the organellar and molecular level is providing fundamental and complementary insights into microbial pathogenesis and cell biology.  相似文献   

15.
The clonal evolution model postulated for Trypanosoma cruzi predicts a correlation between the phylogenetic divergence of T. cruzi clonal genotypes and their biological properties. In the present study, the linkage between phylogenetic divergence of the parasite and IgG, IgG1, IgG2a and IgG2b response has been evaluated during the acute and chronic phases of the experimental infection. Eight laboratory-cloned stocks representative of this phylogenetic diversity and including the lineages T. cruzi I (genotypes 19 and 20), T. cruzi II (genotype 32) and T. cruzi (genotype 39) have been studied. The results showed that the pattern of humoral immune response was correlated with T. cruzi genotype, and that stocks included in genotype 20 were responsible for the high IgG response in the acute and chronic phases. Moreover, T. cruzi I lineage was more efficient in over-expressing all subclasses of specific anti-parasite IgG than either T. cruzi II or T. cruzi lineages. Curiously, the alteration in the pattern of antibodies induced by Benznidazole treatment was related to the phase of the infection but not to the genotype of the parasite. The data suggest that genotypes of T. cruzi are able to drive levels/subclasses of specific IgG, hence giving rise to further concerns about the sensitivity of serological assays in the diagnosis of human Chagas disease.  相似文献   

16.
Chagas disease is caused by persistent Trypanosoma cruzi infection in muscle tissue that ultimately results in chronic inflammation and tissue destruction. It is unclear why T. cruzi is cleared from some tissues but persists in others, despite an active inflammatory response. In this study, we show that the majority of CD8(+) T cells present in muscle tissue express memory and effector cell surface markers but have sharply attenuated effector function compared with their splenic counterparts. The dysfunction of CD8(+) T cells in the muscle tissue suggests a mechanism by which T. cruzi can persist in that location and cause inflammatory damage.  相似文献   

17.
Previous observations in this laboratory showed that injection of culture-derived trypomastigotes (CT), in CBA/J mice, induced an early increased resistance that was detected 24-72 hr after antigen injection and permitted mice to survive a challenge of 10(5) blood trypomastigotes (BT) corresponding to 2000 LD50%. Present experiments were conducted to determine the optimal conditions for inducing this early resistance and to investigate the early morphological changes which occurred in blood and lymphoid organs of mice infected with either BT or CT. Among nine antigens tested, only living CT showed a protective effect permitting most of mice to survive 30 days after BT challenge, while control mice injected with PBS or other antigens died at 10 +/- 1 days. A dose-response relationship was seen when different doses of CT were tested, higher doses of CT inducing higher survival and lower parasitemia. Injection of CT by either an im or ip route induced similar degrees of resistance but significantly different results were obtained when mice were challenged by using ip or im routes. Higher parasitemia and lower survival were always obtained when animals were challenged by the ip route. Within 72 hr, mice injected with BT presented a lymphopenia which reached a maximum at 48 hr, a depletion of thymic cortical zone, and splenomegaly with hyperplasia of the white pulp and congestion of the red pulp. No gross alterations were observed in animals infected with CT. Overall data suggest that the early resistance is a specifically induced phenomenon and that BT and CT induce different early reactions in the CBA/J lymphoid organs.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
An increased level of plasma corticosterone is one manifestation of severe environmental or physiologic stress. The stress response mediated by the hypothalamic-pituitary-adrenal axis is already known to suppress immunoglobulin production and to impair immune function, but there are few studies relating stress and plasma corticosterone to the outcome of Trypanosoma cruzi infection. In this study, male Wistar rats were infected with the Y strain of T. cruzi and then subjected to repetitive stress by exposure to ether vapor for 1min twice a day during the acute phase of infection. Stressed animals showed decreased lytic antibody activity and lowered levels of peritoneal macrophages. Despite an increase in the weight of the spleen, histological analyses demonstrated tissue alterations, the presence of amastigote nests, and a complete absence of activated lymphoid follicles. These results suggest that stress-induced increases in plasma corticosterone can suppress the immune response and worsen tissue injury during the acute phase of T. cruzi infection.  相似文献   

19.
Regulation of immunity in Trypanosoma cruzi infection   总被引:3,自引:0,他引:3  
Immunity to T. cruzi is complex, involving among other components, antibody production, CD4+ helper cells, CD8+ T cells as both regulators and effectors of immunity, and possibly, double-negative T cells. In addition, several of these components have been implicated in pathogenesis in the chronic infection. Although the immunosuppression observed in the infection seems quite severe, it also appears to provide for a sufficient level of immune responsiveness to control the infection in most hosts. At the same time, immunosuppression may provide the regulatory control necessary to prevent massive chronic pathogenesis in all hosts. Continued study of the relative roles of lymphocyte populations and the products they secrete in immunity and pathogenesis may provide the understanding necessary to enhance immunity to T. cruzi without the feared consequence of increased pathogenesis.  相似文献   

20.
Trypanosoma cruzi is the parasite causing Chagas Disease. Several results already published suggest that T. cruzi ribosomes have remarkable differences with their mammalian counterparts. In the present work, we showed that trypanosomatid (T. cruzi and Crithidia fasciculata) ribosomes are highly resistant to inactivation by trichosanthin (TCS), which is active against mammalian ribosomes. Differential resistance is an intrinsic feature of the ribosomal particles, as demonstrated by using assays where the only variable was the ribosomes source. Because we have recently described that TCS interacts with the acidic C-terminal end of mammalian ribosomal P proteins, we assayed the effect of a TCS variant, which is unable to interact with P proteins, on trypanosomatid ribosomes. This mutant showed similar shifting of IC(50) values on rat, T. cruzi and C. fasciculata ribosomes, suggesting that the resistance mechanism might involve other ribosomal components rather than the C-terminal end of P proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号