首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Early Stage (ES) intermediate represents the starting structure in protein folding simulations based on the Fuzzy Oil Drop (FOD) model. The accuracy of FOD predictions is greatly dependent on the accuracy of the chosen intermediate. A suitable intermediate can be constructed using the sequence-structure relationship information contained in the so-called contingency table − this table expresses the likelihood of encountering various structural motifs for each tetrapeptide fragment in the amino acid sequence. The limited accuracy with which such structures could previously be predicted provided the motivation for a more indepth study of the contingency table itself. The Contingency Table Browser is a tool which can visualize, search and analyze the table. Our work presents possible applications of Contingency Table Browser, among them − analysis of specific protein sequences from the point of view of their structural ambiguity.  相似文献   

2.
prediction of the protein secondary structure of Homo sapiens is one of the more important domains. Many methods have been used to feed forward neural networks or SVMs combined with a sliding window. This method’s mechanisms are too complex to be able to extract clear and straightforward physical meanings from it. This paper explores population-based incremental learning (PBIL), which is a method that combines the mechanisms of a generational genetic algorithm with simple competitive learning. The result shows that its accuracies are particularly associated with the Homo species. This new perspective reveals a number of different possibilities for the purposes of performance improvements.  相似文献   

3.
4.
Sumonja  Neven  Gemovic  Branislava  Veljkovic  Nevena  Perovic  Vladimir 《Amino acids》2019,51(8):1187-1200
Amino Acids - Over the last decade, various machine learning (ML) and statistical approaches for protein–protein interaction (PPI) predictions have been developed to help annotating...  相似文献   

5.
A simple and fast nuclear magnetic resonance method for docking proteins using pseudo-contact shift (PCS) and 1HN/15N chemical shift perturbation is presented. PCS is induced by a paramagnetic lanthanide ion that is attached to a target protein using a lanthanide binding peptide tag anchored at two points. PCS provides long-range (~40 Å) distance and angular restraints between the lanthanide ion and the observed nuclei, while the 1HN/15N chemical shift perturbation data provide loose contact-surface information. The usefulness of this method was demonstrated through the structure determination of the p62 PB1-PB1 complex, which forms a front-to-back 20 kDa homo-oligomer. As p62 PB1 does not intrinsically bind metal ions, the lanthanide binding peptide tag was attached to one subunit of the dimer at two anchoring points. Each monomer was treated as a rigid body and was docked based on the backbone PCS and backbone chemical shift perturbation data. Unlike NOE-based structural determination, this method only requires resonance assignments of the backbone 1HN/15N signals and the PCS data obtained from several sets of two-dimensional 15N-heteronuclear single quantum coherence spectra, thus facilitating rapid structure determination of the protein–protein complex.  相似文献   

6.
Deng H  Jia Y  Wei Y  Zhang Y 《Proteins》2012,80(9):2311-2322
Many statistical potentials were developed in last two decades for protein folding and protein structure recognition. The major difference of these potentials is on the selection of reference states to offset sampling bias. However, since these potentials used different databases and parameter cutoffs, it is difficult to judge what the best reference states are by examining the original programs. In this study, we aim to address this issue and evaluate the reference states by a unified database and programming environment. We constructed distance-specific atomic potentials using six widely-used reference states based on 1022 high-resolution protein structures, which are applied to rank modeling in six sets of structure decoys. The reference state on random-walk chain outperforms others in three decoy sets while those using ideal-gas, quasi-chemical approximation and averaging sample stand out in one set separately. Nevertheless, the performance of the potentials relies on the origin of decoy generations and no reference state can clearly outperform others in all decoy sets. Further analysis reveals that the statistical potentials have a contradiction between the universality and pertinence, and optimal reference states should be extracted based on specific application environments and decoy spaces.  相似文献   

7.
Continuum solvent models such as Generalized-Born and Poisson–Boltzmann methods hold the promise to treat solvation effect efficiently and to enable rapid scoring of protein structures when they are combined with physics-based energy functions. Yet, direct comparison of these two approaches on large protein data set is lacking. Building on our previous work with a scoring function based on a Generalized-Born (GB) solvation model, and short molecular-dynamics simulations, we further extended the scoring function to compare with the MM-PBSA method to treat the solvent effect. We benchmarked this scoring function against seven publicly available decoy sets. We found that, somewhat surprisingly, the results of MM-PBSA approach are comparable to the previous GB-based scoring function. We also discussed the effect to the scoring function accuracy due to presence of large ligands and ions in some native structures of the decoy sets.  相似文献   

8.
9.
10.
11.
Prediction of the 3D structure greatly benefits from the information related to secondary structure, solvent accessibility, and nonlocal contacts that stabilize a protein's structure. We address the problem of \beta-sheet prediction defined as the prediction of \beta--strand pairings, interaction types (parallel or antiparallel), and \beta-residue interactions (or contact maps). We introduce a Bayesian approach for proteins with six or less \beta-strands in which we model the conformational features in a probabilistic framework by combining the amino acid pairing potentials with a priori knowledge of \beta-strand organizations. To select the optimum \beta-sheet architecture, we significantly reduce the search space by heuristics that enforce the amino acid pairs with strong interaction potentials. In addition, we find the optimum pairwise alignment between \beta-strands using dynamic programming in which we allow any number of gaps in an alignment to model \beta-bulges more effectively. For proteins with more than six \beta-strands, we first compute \beta-strand pairings using the BetaPro method. Then, we compute gapped alignments of the paired \beta-strands and choose the interaction types and \beta--residue pairings with maximum alignment scores. We performed a 10-fold cross-validation experiment on the BetaSheet916 set and obtained significant improvements in the prediction accuracy.  相似文献   

12.
Feng Y  Luo L 《Amino acids》2008,35(3):607-614
This paper develops a novel sequence-based method, tetra-peptide-based increment of diversity with quadratic discriminant analysis (TPIDQD for short), for protein secondary-structure prediction. The proposed TPIDQD method is based on tetra-peptide signals and is used to predict the structure of the central residue of a sequence fragment. The three-state overall per-residue accuracy (Q 3) is about 80% in the threefold cross-validated test for 21-residue fragments in the CB513 dataset. The accuracy can be further improved by  taking long-range sequence information (fragments of more than 21 residues) into account in prediction. The results show the tetra-peptide signals can indeed reflect some relationship between an amino acid’s sequence and its secondary structure, indicating the importance of  tetra-peptide signals as the protein folding code in the protein structure prediction.  相似文献   

13.
14.
Here we describe various methods currently under development aimed at identifying a proteins function from its three-dimensional structure. We are combining a number of these methods to create a pipeline of applications, called ProFunc, which will take a given 3D structure, run all the applications on it and compile and summarise the results obtained. The aim is to provide a best guess as to the proteins function from the evidence provided by the different methods. Here we present three examples, using structures solved by the Midwest Center for Structural Genomics consortium, illustrating the strengths and weaknesses of current approaches.  相似文献   

15.
Secondary structure of messenger RNA plays an important role in the bio-synthesis of proteins. Its negative impact on translation can reduce the yield of protein by slowing or blocking the initiation and movement of ribosomes along the mRNA, becoming a major factor in the regulation of gene expression. Several algorithms can predict the formation of secondary structures by calculating the minimum free energy of RNA sequences, or perform the inverse process of obtaining an RNA sequence for a given structure. However, there is still no approach to redesign an mRNA to achieve minimal secondary structure without affecting the amino acid sequence. Here we present the first strategy to optimize mRNA secondary structures, to increase (or decrease) the minimum free energy of a nucleotide sequence, without changing its resulting polypeptide, in a time-efficient manner, through a simplistic approximation to hairpin formation. Our data show that this approach can efficiently increase the minimum free energy by >40%, strongly reducing the strength of secondary structures. Applications of this technique range from multi-objective optimization of genes by controlling minimum free energy together with CAI and other gene expression variables, to optimization of secondary structures at the genomic level.  相似文献   

16.
Background: The fatty-acid profile of the vegetable oils determines its properties and nutritional value. Palm-oil obtained from the African oil-palm [Elaeis guineensis Jacq. (Tenera)] contains 44% palmitic acid (C16:0), but, palm-oil obtained from the American oilpalm [Elaeis oleifera] contains only 25% C16:0. In part, the b-ketoacyl-[ACP] synthase II (KASII) [EC: 2.3.1.179] protein is responsible for the high level of C16:0 in palm-oil derived from the African oil-palm. To understand more about E. guineensis KASII (EgKASII) and E. oleifera KASII (EoKASII) proteins, it is essential to know its structures. Hence, this study was undertaken. Objective: The objective of this study was to predict three-dimensional (3D) structure of EgKASII and EoKASII proteins using molecular modelling tools. Materials and Methods: The amino-acid sequences for KASII proteins were retrieved from the protein database of National Center for Biotechnology Information (NCBI), USA. The 3D structures were predicted for both proteins using homology modelling and ab-initio technique approach of protein structure prediction. The molecular dynamics (MD) simulation was performed to refine the predicted structures. The predicted structure models were evaluated and root mean square deviation (RMSD) and root mean square fluctuation (RMSF) values were calculated. Results: The homology modelling showed that EgKASII and EoKASII proteins are 78% and 74% similar with Streptococcus pneumonia KASII and Brucella melitensis KASII, respectively. The EgKASII and EoKASII structures predicted by using ab-initio technique approach shows 6% and 9% deviation to its structures predicted by homology modelling, respectively. The structure refinement and validation confirmed that the predicted structures are accurate. Conclusion: The 3D structures for EgKASII and EoKASII proteins were predicted. However, further research is essential to understand the interaction of EgKASII and EoKASII proteins with its substrates.  相似文献   

17.
Computational modeling of antibody structures plays a critical role in therapeutic antibody design. Several antibody modeling pipelines exist, but no freely available methods currently model nanobodies, provide estimates of expected model accuracy, or highlight potential issues with the antibody's experimental development. Here, we describe our automated antibody modeling pipeline, ABodyBuilder, designed to overcome these issues. The algorithm itself follows the standard 4 steps of template selection, orientation prediction, complementarity-determining region (CDR) loop modeling, and side chain prediction. ABodyBuilder then annotates the ‘confidence’ of the model as a probability that a component of the antibody (e.g., CDRL3 loop) will be modeled within a root–mean square deviation threshold. It also flags structural motifs on the model that are known to cause issues during in vitro development. ABodyBuilder was tested on 4 separate datasets, including the 11 antibodies from the Antibody Modeling Assessment–II competition. ABodyBuilder builds models that are of similar quality to other methodologies, with sub–Angstrom predictions for the ‘canonical’ CDR loops. Its ability to model nanobodies, and rapidly generate models (~30 seconds per model) widens its potential usage. ABodyBuilder can also help users in decision–making for the development of novel antibodies because it provides model confidence and potential sequence liabilities. ABodyBuilder is freely available at http://opig.stats.ox.ac.uk/webapps/abodybuilder.  相似文献   

18.
Due to the large volume of protein sequence data, computational methods to determine the structure class and the fold class of a protein sequence have become essential. Several techniques based on sequence similarity, Neural Networks, Support Vector Machines (SVMs), etc. have been applied. Since most of these classifiers use binary classifiers for multi-classification, there may be (N) c2 classifiers required. This paper presents a framework using the Tree-Augmented Bayesian Networks (TAN) which performs multi-classification based on the theory of learning Bayesian Networks and using improved feature vector representation of (Ding et al., 2001). In order to enhance TAN's performance, pre-processing of data is done by feature discretization and post-processing is done by using Mean Probability Voting (MPV) scheme. The advantage of using Bayesian approach over other learning methods is that the network structure is intuitive. In addition, one can read off the TAN structure probabilities to determine the significance of each feature (say, hydrophobicity) for each class, which helps to further understand the complexity in protein structure. The experiments on the datasets used in three prominent recent works show that our approach is more accurate than other discriminative methods. The framework is implemented on the BAYESPROT web server and it is available at http://www-appn.comp.nus.edu.sg/~bioinfo/bayesprot/Default.htm. More detailed results are also available on the above website.  相似文献   

19.
Most proteins found in the outer membrane of gram-negative bacteria share a common domain: the transmembrane β-barrel. These outer membrane β-barrels (OMBBs) occur in multiple sizes and different families with a wide range of functions evolved independently by amplification from a pool of homologous ancestral ββ-hairpins. This is part of the reason why predicting their three-dimensional (3D) structure, especially by homology modeling, is a major challenge. Recently, DeepMind's AlphaFold v2 (AF2) became the first structure prediction method to reach close-to-experimental atomic accuracy in CASP even for difficult targets. However, membrane proteins, especially OMBBs, were not abundant during their training, raising the question of how accurate the predictions are for these families. In this study, we assessed the performance of AF2 in the prediction of OMBBs and OMBB-like folds of various topologies using an in-house-developed tool for the analysis of OMBB 3D structures, and barrOs. In agreement with previous studies on other membrane protein classes, our results indicate that AF2 predicts transmembrane β-barrel structures at high accuracy independently of the use of templates, even for novel topologies absent from the training set. These results provide confidence on the models generated by AF2 and open the door to the structural elucidation of novel transmembrane β-barrel topologies identified in high-throughput OMBB annotation studies or designed de novo.  相似文献   

20.
Many eukaryotic channels, transporters and receptors are activated by phosphatidyl inositol bisphosphate (PIP(2)) in the membrane, and every member of the eukaryotic inward rectifier potassium (Kir) channel family requires membrane PIP(2) for activity. In contrast, a bacterial homolog (KirBac1.1) is specifically inhibited by PIP(2). We speculate that a key evolutionary adaptation in eukaryotic channels is the insertion of additional linkers between transmembrane and cytoplasmic domains, revealed by new crystal structures, that convert PIP(2) inhibition to activation. Such an adaptation may reflect a novel evolutionary drive to protein structure, and that was necessary to permit channel function within the highly negatively charged membranes that evolved in the eukaryotic lineage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号