首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 529 毫秒
1.
A new well-preserved basal therapsid skull from the Xidagou Formation, Middle Permian of China, is identified as Biseridens qilianicus. The following synapomorphies distinguish Biseridens as an anomodont and not an eotitanosuchian as previously described: short snout; dorsally elevated zygomatic arch and septomaxilla lacking elongated posterodorsal process between nasal and maxilla. The presence of a differentiated tooth row; denticles on vomer, palatine and pterygoid; contact between tabular and opisthotic; lateral process of transverse flange of pterygoid free of posterior ramus and absence of mandibular foramen exclude it from other anomodonts. Our cladistic analysis indicates Biseridens to be the most basal anomodont, highlights separate Laurasian and Gondwanan basal anomodont clades and suggests that dicynodonts had their origins in the Gondwanan clade. The co-occurrence of the most basal anomodont (Biseridens) together with the most basal therapsid (Raranimus), basal anteosaurid dinocephalians, bolosaurids and dissorophids suggests that the earliest therapsid faunas are from China.  相似文献   

2.
Pacific giant salamanders (Dicamptodon) rank among the largest terrestrial caudates. Their ontogeny produces two distinct morphs—larval‐neotenic and metamorphosed—which differ in many morphological traits. We identified changes that are initiated by metamorphosis (distinguishing transformed from neotenic specimens) and also recognized age‐related changes occurring irrespective of transformation. During metamorphosis, specimens remodel the palate, rearrange the vomerine dentition, expand the maxilla, broaden the cheek, foreshorten the posterior skull table and develop specific serrated suture patterns in the dermal bones. Instead, large larvae grow a robust pterygoid sutured with a fully ossified trapezoidal vomer and a short maxilla. Small larvae are readily distinguished by tooth count, morphology and arrangement from more advanced larvae. Age‐related features, irrespective of metamorphosis, include pedicellate teeth, morphological differentiation of parasphenoid, enlargement of the orbitosphenoid, distal expansion of columella, and loss of coronoid teeth.  相似文献   

3.
An account is given of a generally unrecognized fascial ligament (lig. temporo-pterygoideum) found to occur in eutherian mammals. This structure is a functional specialization of the salpingo-palatal fascia, developed in response to the activity of the palatal tensor and levator musculature. The ligament is attached superiorly to the Eustachian process of the temporal bone and inferiorly to the hamular process of the medial pterygoid lamina. It is responsible for the development of both these processes, which, in the macerated cranium, testify to the original presence of this ligament.  相似文献   

4.
Rosette strain gage, electromyography (EMG), and cineradiographic techniques were used to analyze loading patterns and jaw movements during mastication in Macaca fascicularis. The cineradiographic data indicate that macaques generally swallow frequently throughout a chewing sequence, and these swallows are intercalated into a chewing cycle towards the end of a power stroke. The bone strain and jaw movement data indicate that during vigorous mastication the transition between fast close and the power stroke is correlated with a sharp increase in masticatory force, and they also show that in most instances the jaws of macaques are maximally loaded prior to maximum intercuspation, i.e. during phase I (buccal phase) occlusal movements. Moreover, these data indicate that loads during phase II (lingual phase) occlusal movements are ordinarily relatively small. The bone strain data also suggest that the duration of unloading of the jaw during the power stroke of mastication is largely a function of the relaxation time of the jaw adductors. This interpretation is based on the finding that the duration from 100% peak strain to 50% peak strain during unloading closely approximates the half-relaxation time of whole adductor jaw muscles of macaques. The EMG data of the masseter and medial pterygoid muscles have important implications for understanding both the biomechanics of the power stroke and the external forces responsible for the "wishboning" effect that takes place along the mandibular symphysis and corpus during the power stroke of mastication. Although both medial pterygoid muscles reach maximum EMG activity during the power stroke, the activity of the working-side medial pterygoid peaks after the balancing-side medial pterygoid. Associated with the simultaneous increase of force of the working-side medial pterygoid and the decrease of force of the balancing-side medial pterygoid is the persistently high level of EMG activity of the balancing-side deep masseter (posterior portion). This pattern is of considerable significance because the direction of force of both the working-side medial pterygoid and the balancing-side deep masseter are well aligned to aid in driving the working-side lower molars across the upper molars in the medial direction during unilateral mastication.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
目的:探讨以乳突切迹和翼钩为基点的侧颅底分区新方法.方法:在乳突切迹后缘、翼钩、枕骨大孔前缘中点和颧根四个结构间相互连线,区分侧颅底并测量连线的长度.结果:乳突切迹与侧颅底重要结构的关系密切,切迹后缘与翼钩连线和正中线将侧颅底分成内、外侧两个大的三角区,每个区再分成前后两个三角区共四个三角区,即腭和颞下三角、咽三角、关节和听三角、血管神经三角,其中血管神经三角的三边长度左右侧分别为(74.52±5.47)mm和(74.66±5.41)mm、(59.77±3.84)mm和(59.67±3.56)mm、(42.23±3.11)mm和(42.48±2.60)mm.结论:本研究提供了新的侧颅底分区方法,且血管神经三角的区域划分更为科学,为临床侧颅底手术入路和定位提供了解剖学参考.  相似文献   

6.
A polarizing analysis of the crimped collagen ligament in the maxillary barbel of the catfish Parauchenipterus galeatus showed clearly that the maxillo-mandibular ligament of this species is formed by two types of collagen fibres. The first is composed of uncrimped, and the second of crimped collagen fibres. An anatomical examination of the muscular and osteological components which act in the movement of the barbel revealed that abduction of the barbel is performed by the extensor tentaculi muscle and the mechanism of adduction by muscular relaxation of the extensor tentaculi combined with release of the stored elastic energy of the maxillo-mandibular ligament. This ligament has rubber properties and because of this can store energy during abduction (first stage of the cycle of barbel movement). The stored energy is released when the action of the extensor tentaculi muscle ceases. The second half of the locomotory cycle is to return the maxilla to its original position by the antagonistic action of the ligament. The crimping of the ligament permits the take up of slack, allowing greater extension, with less chance of snapping. The connective tissue between the hyomandibular and the maxilla may assist the adduction of the barbel.  相似文献   

7.
8.
Most small fossorial proteroglyphous Australian snakes of the genus Simoselaps feed on adult lizards, but the species of one lineage (the semifasciatus group) feed exclusively on the eggs of squamate reptiles. Examination of cleared, alizarin preparations showed that dentition of the saurophagous species is similar to that of other elapids, but dentition of the oophagous taxa is highly modified. The anterior (palatine and maxillary) teeth other than the fangs are reduced in size and number whereas those of the pterygoid (and in S. 'ropert ', the dentary) are enlarged posteriorly, becoming compressed along a longitudinal plane and angled medially. The shape of the pterygoid and quadrate is also modified.
Two Simoselaps species with broader diets (eating both adult lizards and their eggs) show typical 'saurophagous' dentition in one case, 'oophagous' dentition in the other, showing that either type of dentition can be used to capture and ingest either type of prey. We suggest functional explanations for the dentitional modifications in the egg-eating snakes, primarily in terms of the advantages of applying considerable force to the eggshell. Oophagous modifications within Simoselaps are convergent with those seen in several independently-derived lineages of oophagous colubrid snakes, but (perhaps because of the presence of the fang) differ in having the enlarged blade-like teeth on the pterygoid or dentary rather than the maxilla.  相似文献   

9.
This study investigates the amphisbaenian species skull which includes cranium, lower jaw and hyoid apparatus. The medial dorsal bones comprise the premaxilla, nasal, frontal and parietal. The premaxilla carries a large medial tooth and two lateral ones. The nasals are paired bones and separated by longitudinal suture. Bones of circumorbital series are frontal, orbitosphenoid and maxilla. The occipital ring consists of basioccipital, supraoccipital and exooccipital. Supraoccipital and basioccipital are single bones while the exo-occipitals are paired. The bones of the palate comprise premaxilla, maxilla, septomaxilla, palatine, pterygoid, ectopterygoid, basisphenoid, parasphenoid, orbitosphenoid and laterosphenoid. Prevomer and pterygoid teeth are absent. Palatine represent by two separate bones. The temporal bones are clearly visible. The lower jaw consists of the dentary, articular, coronoid, supra-angular, angular and splenial. The hyoid apparatus is represented by a Y-shaped structure. The mandible is long and is suspended from the braincase via relatively short quadrate. There is an extensive contact between the long angular and the large triangular coronoid. Thus inter-mandibular joint is bridged completely by the angular and consequently, the lower jaws are relatively rigid and kinetic. The maxillae are suspended from the braincase largely by ligaments and muscles rather than through bony articulation. In conclusion, the skull shape affects feeding strategy in Diplometopon zarudnyi. The prey is ingested and transported via a rapid maxillary raking mechanism.  相似文献   

10.
Knee laxity, defined as the net translation or rotation of the tibia relative to the femur in a given direction in response to an applied load, is highly variable from person to person. High levels of knee laxity as assessed during routine clinical exams are associated with first-time ligament injury and graft reinjury following reconstruction. During laxity exams, ligaments carry force to resist the applied load; however, relationships between intersubject variations in knee laxity and variations in how ligaments carry force as the knee moves through its passive envelope of motion, which we refer to as ligament engagement, are not well established. Thus, the objectives of this study were, first, to define parameters describing ligament engagement and, then, to link variations in ligament engagement and variations in laxity across a group of knees. We used a robotic manipulator in a cadaveric knee model (n = 20) to quantify how important knee stabilizers, namely the anterior and posterior cruciate ligaments (ACL and PCL, respectively), as well as the medial collateral ligament (MCL) engage during respective tests of anterior, posterior, and valgus laxity. Ligament engagement was quantified using three parameters: (1) in situ slack, defined as the relative tibiofemoral motion from the neutral position of the joint to the position where the ligament began to carry force; (2) in situ stiffness, defined as the slope of the linear portion of the ligament force–tibial motion response; and (3) ligament force at the peak applied load. Knee laxity was related to parameters of ligament engagement using univariate and multivariate regression models. Variations in the in situ slack of the ACL and PCL predicted anterior and posterior laxity, while variations in both in situ slack and in situ stiffness of the MCL predicted valgus laxity. Parameters of ligament engagement may be useful to further characterize the in situ biomechanical function of ligaments and ligament grafts.  相似文献   

11.
前已报道白鱀豚(Lipotes vexillifer)的皮肤肌、肩和鳍肢肌肉、胸壁肌肉、腹壁肌肉,颈、背和尾部肌肉(周开亚等,1981)。本篇包括咀嚼肌、舌和舌骨部肌肉、喉部肌肉及鼻咽和咽部肌肉。 一、咀嚼肌(图1、2) 咬肌m.masseter很薄,起自颧突后部的腹缘,颧突下方颞肌的筋膜及颧弓的腹缘。纤维尾腹向,止于下颌骨后部下半的外侧。后端有少量纤维绕过下颌骨腹缘,止于下颌内脂肪体,紧贴下颌骨的部分咬肌纤维已脂化形成下颌外脂肪体。咬肌仍有提起下颌的作用,但力量很弱。  相似文献   

12.
The relationship between human craniofacial morphology and the biomechanical efficiency of bite force generation in widely varying muscular and skeletal types is unknown. To address this problem, we selected 22 subjects with different facial morphologies and used magnetic resonance imaging, cephalometric radiography, and data from dental casts to reconstruct their craniofacial tissues in three dimensions. Conventional cephalometric analyses were carried out, and the cross-sectional sizes of the masseter and medial pterygoid muscles were measured from reconstituted sections. The potential abilities of the muscles to generate bite forces at the molar teeth and mandibular condyles were calculated according to static equilibrium theory using muscle, first molar, and condylar moment arms. On average, the masseter muscle was about 66% larger in cross section than the medial pterygoid and was inclined more anteriorly relative to the functional occlusal plane. There was a significant positive correlation (P less than 0.01) between the cross-sectional areas of the masseter and medial pterygoid muscles (r = 0.75) and between the bizygomatic arch width and masseter cross-sectional area (r = 0.56) and medial pterygoid cross-sectional area (r = 0.69). The masseter muscle was always a more efficient producer of vertically oriented bite force than the medial pterygoid. Putative bite force from the medial pterygoid muscle alone correlated positively with mandibular length and inversely with upper face height. When muscle and tooth moment arms were considered together, a system efficient at producing force on the first molar was statistically associated with a face having a large intergonial width, small intercondylar width, narrow dental arch, forward maxilla, and forward mandible. There was no significant correlation between muscle cross-sectional areas and their respective putative bite forces. This suggests that there is no simple relationship between the tension-generating capacity of the muscles and their mechanical efficiency as described by their spatial arrangement. The study shows that in a modern human population so many combinations of biomechanically relevant variables are possible that subjects cannot easily be placed into ideal or nonideal categories for producing molar force. Our findings also confirm the impression that similar bite-force efficiencies can be found in subjects with disparate facial features.  相似文献   

13.
早白垩世热河生物群一新的有尾两栖类   总被引:39,自引:5,他引:34  
描述了内蒙古宁城下白垩统义县组下部一新的有尾两栖类:奇异热河螈(新属、新种)Jeholotriton paradoxus gen. et sp. nov.。标本保存了完好的相关节的骨架印痕,头骨中的翼 骨具有一个不与上颌骨相连,而与头骨中部相连的前内侧突,这使它区别于其他早期有尾类。  相似文献   

14.
New buccinator myomucosal island flap: anatomic study and clinical application   总被引:14,自引:0,他引:14  
The authors studied the vascular anatomy of the buccinator muscle by dissecting fresh cadavers. The anatomy of the buccal branches of the facial artery consistently confirmed the existence of a posterior buccal branch, a few inferior buccal branches, and anterior buccal branches to the posterior, inferior, and anterior portions of the buccinator. The buccal artery and posterior buccal branch anastomose to each other and ramify over the muscle. Several veins originate from the lateral aspect of the muscle, converge into the buccal venous plexus, and drain into the facial vein (from two to four tributaries) or into the pterygoid plexus and the internal maxillary vein (from the buccal vein). These vessels and nerves enter the posterior half of the buccinator posterolaterally. The facial artery and vein are located at variable distances from each other around the oral commissure and the nasal base. Two patterns of buccinator musculomucosal island flaps supplied by these buccal arterial branches are proposed in this article. The buccal musculomucosal neurovascular island flap (posteriorly based), supplied by the buccal artery, its posterior buccal branch, and the long buccal nerve, can be passed through a tunnel under the pterygomandibular ligament for closure of mucosal defects in the palate, pharyngeal sites, the alveolus, and the floor of the mouth. The buccal musculomucosal reversed-flow arterial island flap (superiorly based), supplied by the distal portion of the facial artery through the anterior buccal branches, can be used to close mucosal defects in the anterior hard palate, alveolus, maxillary antrum, nasal floor and septum, lip, and orbit. The authors have used the flaps in 12 patients. There has been no flap necrosis, and results have been satisfactory, both aesthetically and functionally.  相似文献   

15.
Ungulates generally have large masseter and pterygoid muscles and a necessarily large angular process provides attachment surface on the mandible. The temporalis muscle tends to be small. It has been suggested that this is an adaptation for enhanced control of the lower jaw and reduction of forces at the jaw joint. I suggest an additional reason: because of the geometry of the jaw, the length of that segment of the lower jaw that spans the distance from the jaw joint to the most posterior tooth is significantly reduced when the masseler and pterygoid are the dominant muscles; this region is necessarily much longer when the temporalis is large.  相似文献   

16.
Studies of ontogenetic series of trichomycterids and other catfishes reveal that the suspensorium of siluroids is highly specialized; several synapomorphies separate siluroids from other teleosts. In siluroids, the palatoquadrate is divided into pars autopalatina and pars pterygoquadrata and both are usually connected by the autopaiatine-metapterygoid ligament. The pterygoquadrate is broadly joined to the dorsal limb of the hyoid arch, forming a cartilaginous hyomandibular-symplectic-pterygoquadrate plate in early ontogeny. This produces a special alignment of the hyomandibula and quadrate which is characteristic of siluroids. A symplectic bone is absent. The interhyal is absent in trichomycterids and astroblepids. Dorsal and ventral limbs of the hyoid arch are connected by a ligament. A rudimentary interhyal and this ligament are present in primitive siluroids such as diplomystids and nematogenyids as well as loricariids. The metapterygoid arises as an anterior ossification of the pars pterygoquadrata in siluroids. The formation and position of the metapterygoid exhibit two patterns: (1) the metapterygoid develops as an ossification of a cartilaginous projection positioned between the future hyomandibula and quadrate in primitive catfishes (e.g., Diplomystes) as well as in Nematogenys, callichthyids, loricariids, and astroblepids; (2) the metapterygoid arises as an ossification of the cartilaginous projection (pterygoid process) positioned just above the articular facet of the quadrate for the lower jaw. An ossified anterior chondral pterygoid process of the complex quadrate is present in trichomycterids, whereas the process is absent (simple quadrate) in catfishes such as diplomystids, nematogenyids, callichthyids, and loricariids. The anterior membranous process of the quadrate of Astroblepus is non-homologous with the chondral pterygoid process of trichomycterids; both structures arose independently within the loricarioids. Despite topological relationships, the origin and development of bones reveal the presence of a chondral hyomandibula which develops a large meinbranous outgrowth during ontogeny and a chondral metapterygoid in trichomycterids. The presence of a compound hyomandibula + metapterygoid or a compound metapterygoid + ectopterygoid + entopterygoid have no developmental support in trichomycterines or other siluroids. The “entopterygoid” of Nematogenys and Diplomystes arises as an ossification of a ligament. The dermal entopterygoid of other ostariophysans and the “entopterygoid” are homologous. An ectopterygoid or tendon bone “ectopterygoid” is absent in loricarioids. The suspensorium is an important structural system which has significant evolutionary transformations which characterize loricarioid subgroups; however, no character, of the suspensorium supports the monophyly of the loricarioids.  相似文献   

17.
我国小鲵科一新属新种的描述   总被引:11,自引:0,他引:11  
1959年至1981年,在大别山、桐柏山、伏牛山及太行山等地区调查,发现小鲵科一种,外部形态和头骨特征与已知小鲵科各属均有明显区别。现将商城标本与相近的小鲵属和北鲵属的主要特征对比如表1(图1—3)。 从表1可以看出,商城标本与相近的小鲵属和北鲵属都有显著区别,应为一个新属新种。模式标本保存在新乡师范学院。现描述如下:  相似文献   

18.
根据头骨和下颌建立了海龙一新属新种——短吻贫齿龙(Miodentosaurus brevis gen.et sp.nov.)。其正型标本是采自贵州三叠纪法郎组的一具骨架(台中自然科学博物馆标本编号NMNS-004727/F003960)。虽然头后骨胳还没有修理,但是几近完好的头骨和下颌显示出许多与众不同的特征,足以确定该标本代表了一新的海龙属种。短吻贫齿龙是个体较大的海龙,其全长超过4 m,头骨背部最长约为33 cm。吻直且极短是其最显著的特征之一。其他主要特征有:前颌骨沿前背中央有一隆嵴;上颌仅前颌骨有6枚圆锥形齿,无上颌骨齿;上颌骨沿前腹侧缘有一沟槽;下颌齿骨齿都集中在前端且至多不超过6枚。依据上述这些特征很易把短吻贫齿龙与其他已知海龙相区别。短吻贫齿龙头骨顶面松果孔大且很前位,头骨腭面的锄骨和翼骨均无齿,它的颈较长(至少可以辨认出13个颈椎)。这些特征显示短吻贫齿龙可能与包括中国安顺龙属(Anshunsaurus)在内的Askeptosauroidea超科有相近的系统关系。  相似文献   

19.
Recruitment of knee joint ligaments   总被引:6,自引:0,他引:6  
On the basis of earlier reported data on the in vitro kinematics of passive knee-joint motions of four knee specimens, the length changes of ligament fiber bundles were determined by using the points of insertion on the tibia and femur. The kinematic data and the insertions of the ligaments were obtained by using Roentgenstereophotogrammetry. Different fiber bundles of the anterior and posterior cruciate ligaments and the medial and lateral collateral ligaments were identified. On the basis of an assumption for the maximal strain of each ligament fiber bundle during the experiments, the minimal recruitment length and the probability of recruitment were defined and determined. The motions covered the range from extension to 95 degrees flexion and the loading conditions included internal or external moments of 3 Nm and anterior or posterior forces of 30 N. The ligament length and recruitment patterns were found to be consistent for some ligament bundles and less consistent for other ligament bundles. The most posterior bundle of each ligament was recruited in extension and the lower flexion angles, whereas the anterior bundle was recruited for the higher flexion angles. External rotation generally recruited the collateral ligaments, while internal rotation recruited the cruciate ligaments. However, the anterior bundle of the posterior cruciate ligament was recruited with external rotation at the higher flexion angles. At the lower flexion angles, the anterior cruciate and the lateral collateral ligaments were recruited with an anterior force. The recruitment of the posterior cruciate ligament with a posterior force showed that neither its most anterior nor its most posterior bundle was recruited at the lower flexion angles. Hence, the posterior restraint must have been provided by the intermediate fiber bundles, which were not considered in the experiment. At the higher flexion angles, the anterior bundles of the anterior cruciate ligament and the posterior cruciate ligament were found to be recruited with anterior and posterior forces, respectively. The minimal recruitment length and the recruitment probability of ligament fiber bundles are useful parameters for the evaluation of ligament length changes in those experiments where no other method can be used to determine the zero strain lengths, ligament strains and tensions.  相似文献   

20.
We investigated patterns of jaw-muscle coordination during rhythmic mastication in three species of ungulates displaying the marked transverse jaw movements typical of many large mammalian herbivores. In order to quantify consistent motor patterns during chewing, electromyograms were recorded from the superficial masseter, deep masseter, posterior temporalis and medial pterygoid muscles of goats, alpacas and horses. Timing differences between muscle pairs were evaluated in the context of an evolutionary model of jaw-muscle function. In this model, the closing and food reduction phases of mastication are primarily controlled by two distinct muscle groups, triplet I (balancing-side superficial masseter and medial pterygoid and working-side posterior temporalis) and triplet II (working-side superficial masseter and medial pterygoid and balancing-side posterior temporalis), and the asynchronous activity of the working- and balancing-side deep masseters. The three species differ in the extent to which the jaw muscles are coordinated as triplet I and triplet II. Alpacas, and to a lesser extent, goats, exhibit the triplet pattern whereas horses do not. In contrast, all three species show marked asynchrony of the working-side and balancing-side deep masseters, with jaw closing initiated by the working-side muscle and the balancing-side muscle firing much later during closing. However, goats differ from alpacas and horses in the timing of the balancing-side deep masseter relative to the triplet II muscles. This study highlights interspecific differences in the coordination of jaw muscles to influence transverse jaw movements and the production of bite force in herbivorous ungulates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号