首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Loss of E-cadherin-mediated cell-cell adhesion and expression of proteolytic enzymes characterize the transition from benign lesions to invasive, metastatic tumor, a rate-limiting step in the progression from adenoma to carcinoma in vivo. A soluble E-cadherin fragment found recently in the serum and urine of cancer patients has been shown to disrupt cell-cell adhesion and to drive cell invasion in a dominant-interfering manner. Physical disruption of cell-cell adhesion can be mimicked by the function-blocking antibody Decma. We have shown previously in MCF7 and T47D cells that urokinase-type plasminogen activator (uPA) activity is up-regulated upon disruption of E-cadherin-dependent cell-cell adhesion. We explored the underlying molecular mechanisms and found that blockage of E-cadherin by Decma elicits a signaling pathway downstream of E-cadherin that leads to Src-dependent Shc and extracellular regulated kinase (Erk) activation and results in uPAgene activation. siRNA-mediated knockdown of endogenous Src-homology collagen protein (Shc) and subsequent expression of single Shc isoforms revealed that p46(Shc) and p52(Shc) but not p66(Shc) were able to mediate Erk activation. A parallel pathway involving PI3K contributed partially to Decma-induced Erk activation. This report describes that disruption of E-cadherin-dependent cell-cell adhesion induces intracellular signaling with the potential to enhance tumorigenesis and, thus, offers new insights into the pathophysiological mechanisms of tumor development.  相似文献   

3.
4.
5.
Developing drugs that can effectively block STAT3 activation may serve as one of the most promising strategy for cancer treatment. Currently, there is no putative STAT3 inhibitor that can be safely and effectively used in clinic. In the present study, we investigated the potential of dihydroartemisinin (DHA) as a putative STAT3 inhibitor and its antitumor activities in head and neck squamous cell carcinoma (HNSCC). The inhibitory effects of DHA on STAT3 activation along with its underlying mechanisms were studied in HNSCC cells. The antitumor effects of DHA against HNSCC cells were explored both in vitro and in vivo. An investigation on cooperative effects of DHA with cisplatin in killing HNSCC cells was also implemented. DHA exhibited remarkable and specific inhibitory effects on STAT3 activation via selectively blocking Jak2/STAT3 signaling. Besides, DHA significantly inhibited HNSCC growth both in vitro and in vivo possibly through induction of apoptosis and attenuation of cell migration. DHA also synergized with cisplatin in tumor inhibition in HNSCC cells. Our findings demonstrate that DHA is a putative STAT3 inhibitor that may represent a new and effective drug for cancer treatment and therapeutic sensitization in HNSCC patients.  相似文献   

6.
High levels of the soluble form of E-cadherin can be found in the serum of cancer patients and are associated with poor prognosis. Despite the possible predictive value of soluble E-cadherin, little is understood concerning its patho-physiological consequences in tumor progression. In this study, we show that soluble E-cadherin facilitates cell survival via functional interaction with cellular E-cadherin. Exposure of cells to a recombinant form of soluble E-cadherin, at a concentration found in cancer patient's serum, prevents apoptosis due to serum/growth factor withdrawal, and inhibits epithelial lumen formation, a process that requires apoptosis. Further, soluble E-cadherin-mediated cell survival involves activation of the epidermal growth factor receptor (EGFR) and EGFR-mediated activation of both phosphoinositide-3 kinase (PI3K)/AKT and ERK1/2 signaling pathways. These results are evidence of a complex functional interplay between EGFR and E-cadherin and also suggest that the presence of soluble E-cadherin in cancer patients' sera might have relevance to cell survival and tumor progression.  相似文献   

7.
E-cadherin is a well characterized adhesion molecule that plays a major role in epithelial cell adhesion. Based on findings that expression of E-cadherin is frequently lost in human epithelial cancers, it has been implicated as a tumor suppressor in carcinogenesis of most human epithelial cancers. However, in ovarian cancer development, our data from the current study showed that E-cadherin expression is uniquely elevated in 86.5% of benign, borderline, and malignant ovarian carcinomas irrespective of the degree of differentiation, whereas normal ovarian samples do not express E-cadherin. Thus, we hypothesize that E-cadherin may play a distinct role in the development of ovarian epithelial cancers. Using an E-cadherin-expressing ovarian cancer cell line OVCAR-3, we have demonstrated for the first time that the establishment of E-cadherin mediated cell-cell adhesions leads to the activation of Akt and MAPK. Akt activation is mediated through the activation of phosphatidylinositol 3 kinase, and both Akt and MAPK activation are mediated by an E-cadherin adhesion-induced ligand-independent activation of epidermal growth factor receptor. We have also demonstrated that suppression of E-cadherin function leads to retarded cell proliferation and reduced viability. We therefore suggest that the concurrent formation of E-cadherin adhesion and activation of downstream proliferation signals may enhance the proliferation and survival of ovarian cancer cells. Our data partly explain why E-cadherin is always expressed during ovarian tumor development and progression.  相似文献   

8.
9.
The establishment and maintenance of epithelial polarity are crucial for tissue organization and function in mammals. Epithelial cadherin (E-cadherin) is expressed in epithelial cell membrane and is important for cell-cell adhesion, intercellular junctions formation, as well as epithelial cell polarization. We report herein that CAS (CAS/CSE 1), the human cellular apoptosis susceptibility protein, interacts with E-cadherin and stimulates polarization of HT-29 human colon epithelial cells. CAS binds with E-cadherin but not with beta-catenin in the immunoprecipitation assays. Interaction of CAS with E-cadherin enhances the formation of E-cadherin/beta-catenin cell-cell adhesive complex. Electron microscopic study demonstrated that CAS overexpression in cells stimulates intercellular junction complex formation. The disorganization of cellular cytoskeleton by cytochalasin D, colchicine, or acrylamide treatment disrupts CAS-stimulated HT-29 cell polarization. CAS-mediated HT-29 cell polarity is also inhibited by antisense E-cadherin DNA expression. Our results indicate that CAS cooperates with E-cadherin and plays a role in the establishment of epithelial cell polarity.  相似文献   

10.
11.
The establishment and maintenance of precisely organized tissues requires the formation of sharp borders between distinct cell populations. The maintenance of segregated cell populations is also required for tissue homeostasis in the adult, and deficiencies in segregation underlie the metastatic spreading of tumor cells. Three classes of mechanisms that underlie cell segregation and border formation have been uncovered. The first involves differences in cadherin-mediated cell-cell adhesion that establishes interfacial tension at the border between distinct cell populations. A second mechanism involves the induction of actomyosin-mediated contraction by intercellular signaling, such that cortical tension is generated at the border. Third, activation of Eph receptors and ephrins can lead to both decreased adhesion by triggering cleavage of E-cadherin, and to repulsion of cells by regulation of the actin cytoskeleton, thus preventing intermingling between cell populations. These mechanisms play crucial roles at distinct boundaries during development, and alterations in cadherin or Eph/ephrin expression have been implicated in tumor metastasis.  相似文献   

12.
Associated with the metastatic progression of epithelial tumors is the dynamic regulation of cadherins. Whereas E-cadherin is expressed in most epithelium and carcinomas, recent studies suggest that the up-regulation of other cadherin subtypes in carcinomas, such as N-cadherin, may function in cancer progression. We demonstrate that a signal transduction cascade links the N-cadherin.catenin adhesion complex to up-regulation of the anti-apoptotic protein Bcl-2. In suspension, aggregates of DU-145 cells, an E-cadherin expressing human prostate carcinoma line, survive loss of integrin-dependent adhesion by a different anti-apoptotic signaling pathway than the N-cadherin expressing lines PC3 and PC3N. N-cadherin intercellular adhesion mediates a 3.5-fold increase in Bcl-2 protein expression, whereas the level of the proapoptotic protein Bax remains constant. Only N-cadherin ligation in PC3 cells, which express both N-cadherin and E-cadherin, is sufficient to induce activation of Akt/protein kinase B. N-cadherin homophilic ligation initiates phosphatidylinositol 3-kinase-dependent activation of Akt resulting in Akt phosphorylation of Bad on serine 136. Following N-cadherin homophilic adhesion phosphatidylinositol 3-kinase was identified in immunoprecipitates of the N-cadherin.catenin complex. The recruitment of phosphatidylinositol 3-kinase to the adhesion complex is dependent on ligation of N-cadherin and an organized actin cytoskeleton because cytochalasin D blocks the recruitment. We propose that N-cadherin homophilic adhesion can initiate anti-apoptotic signaling, which enhances the Akt cell survival pathway in metastatic cancer.  相似文献   

13.
E-cadherin 参与形成细胞间黏附性连接,是胚胎发育过程中的一个关键因子。越来越多的研究表明,E-cadherin 在肿瘤的发生发 展过程中也发挥了至关重要的作用。在生物体内,E-cadherin 的表达和功能受到多个水平、多重因素的调控,而 E-cadherin 又可以影响 多条重要信号通路的活性,参与到多种生理病理过程中。E-cadherin 下调造成细胞间黏附性连接减少、极性减弱,细胞由上皮样转变为间 质样,这一变化是上皮间质转化(EMT)的重要标志之一。E-cadherin 与多种肿瘤的发生有一定的相关性。同时 E-cadherin 下调所引起 的 EMT 促进肿瘤细胞的迁移运动,肿瘤细胞侵袭力增强,促进转移的发生。近年来,大量研究关注到 E-cadherin 对肿瘤细胞的耐药及干 细胞特性的获得都有影响。综述 E-cadherin 在肿瘤发生发展中的作用,探讨以 E-cadherin 为靶点的肿瘤治疗的现状及展望。  相似文献   

14.
15.
E-cadherin, which has a widely acknowledged role in mediating calcium-dependent cell-cell adhesion between epithelial cells, also functions as a tumor suppressor. The ectodomain of human E-cadherin contains four potential Nglycosylation sites at Asn residues 554, 566, 618, and 633. We investigated the role of E-cadherin N-glycosylation in cell cycle progression by site-directed mutagenesis. We showed previously that all four potential N-glycosylation sites of E-cadherin w ere N-gly cosylated in human breast carcinoma MDA-MB-435 cells. Removal of N-glycan at Asn633 dramatically affected E-cadherin stability. In this study we showed that E-cadherin mutant missing N-glycans at AsnS54, Asn566 and Asn618 failed to induce cell cycle arrest in Gt phase and to suppress cell proliferation in comparison with wild-type E-cadherin. Moreover, N-glycans at Asn554 and Asn566, but not at Asn618, seemed to be indispensable for E-cadherin-mediated suppression of cell cycle progression. Removal of N-glycans at either Asn554 or Asn566 of E-cadherin was accompanied with the activation of the extracellular signal-regulated protein kinase signaling pathway. After treatment with PD98059, an inhibitor of the extracellular signal-regulated protein kinase signaling pathway, wild-type E-cadherin transfected MDA-MB-435 and E-cadherin N-glycosylation-deficient mutant transfected MDA-MB-435 cells had equivalent numbers of cells in G1 phase. These rmdings implied that N-glycosylation might be crucial for E-cadherin-mediated suppression of cell cycle progression.  相似文献   

16.
17.
18.
Recent studies have demonstrated pleiotropic roles of pyruvate kinase isoenzyme type M2 (PKM2) in tumor progression. However, the precise mechanisms underlying the effects of PKM2 on esophageal squamous cell carcinoma (ESCC) metastasis and transforming growth factor β1 (TGF-β1)-induced epithelial-mesenchymal transition (EMT) remain to be established. In this study, we observed upregulation of PKM2 in ESCC tissues that was markedly associated with lymph node metastasis and poor prognosis. High PKM2 expression in tumor tissues frequently coincided with the high pSTAT3Tyr705 expression and low E-cadherin expression. Furthermore, altered PKM2 expression was significantly associated with proliferation, migration, and invasion of ESCC cells, in addition to expression patterns of EMT markers (Snail, E-cadherin, and vimentin) and pSTAT3Tyr705/STAT3 ratio. Overexpression of STAT3 significantly attenuated the effects of PKM2 knockdown on cell proliferation and motility as well as expression of pSTAT3 Tyr705 and EMT markers. Consistently, stable short hairpin RNA (shRNA)-mediated silencing of PKM2 reversed the effects of TGF-β1 treatment, specifically, upregulation of PKM2, phosphorylation of STAT3 at Tyr705, and increased EMT, migration, and invasion. We propose that PKM2 regulates cell proliferation, migration, and invasion via phosphorylation of STAT3 through TGF-β1-induced EMT. Our findings collectively provide mechanistic insights into the tumor-promoting role of PKM2, supporting its prognostic value and the therapeutic utility of PKM2 inhibitors as potential antitumor agents in ESCC.  相似文献   

19.
20.
E-cadherin is a transmembrane protein that mediates Ca(2+)-dependent cell-cell adhesion. Cdc42, a member of the Rho family of small GTPases, participates in cytoskeletal rearrangement and cell cycle progression. Recent evidence reveals that members of the Rho family modulate E-cadherin function. To further examine the role of Cdc42 in E-cadherin-mediated cell-cell adhesion, we developed an assay for active Cdc42 using the GTPase-binding domain of the Wiskott-Aldrich syndrome protein. Initiation of E-cadherin-mediated cell-cell attachment significantly increased in a time-dependent manner the amount of active Cdc42 in MCF-7 epithelial cell lysates. By contrast, Cdc42 activity was not increased under identical conditions in MCF-7 cells incubated with anti-E-cadherin antibodies nor in MDA-MB-231 (E-cadherin negative) epithelial cells. By fusing the Wiskott-Aldrich syndrome protein/GTPase-binding domain to a green fluorescent protein, activation of endogenous Cdc42 by E-cadherin was demonstrated in live cells. These data indicate that E-cadherin activates Cdc42, demonstrating bi-directional interactions between the Rho- and E-cadherin signaling pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号