首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Uncoupling proteins (UCPs) are specialized members of the mitochondrial transporter family. They allow passive proton transport through the mitochondrial inner membrane. This activity leads to uncoupling of mitochondrial respiration and to energy waste, which is well documented with UCP1 in brown adipose tissue. The uncoupling activity of the new UCPs (discovered after 1997), such as UCP2 and UCP3 in mammals or avUCP in birds, is more difficult to characterize. However, extensive data support the idea that the new UCPs are involved in the control of reactive oxygen species (ROS) generation. This fits with the hypothesis that mild uncoupling caused by the UCPs prevents ROS production. Activators and inhibitors regulate the proton transport activity of the UCPs. In the absence of activators of proton transport, the UCP allows the permeation of other ions. We suggest that this activity has physiological significance and, for example, UCP3 expressed in glycolytic muscle fibres may be a passive pyruvate transporter ensuring equilibrium between glycolysis and oxidative phosphorylation. Induction of UCP2 expression by glutamine strengthens the proposal that new UCPs could act to determine the choice of mitochondrial substrate. This would obviously have an impact on mitochondrial bioenergetics and ROS production.  相似文献   

2.
Capsiate is a nonpungent capsaicin analog, a recently identified principle of the nonpungent red pepper cultivar CH-19 Sweet. In the present study, we report that 2-wk treatment of capsiate increased metabolic rate and promoted fat oxidation at rest, suggesting that capsiate may prevent obesity. To explain these effects, at least in part, we examined uncoupling proteins (UCPs) and thyroid hormones. UCPs and thyroid hormones play important roles in energy expenditure, the maintenance of body weight, and thermoregulation. Two-week treatment of capsiate increased the levels of UCP1 protein and mRNA in brown adipose tissue and UCP2 mRNA in white adipose tissue. This dose of capsiate did not change serum triiodothyronine or thyroxine levels. A single dose of capsiate temporarily raised both UCP1 mRNA in brown adipose tissue and UCP3 mRNA in skeletal muscle. These results suggest that UCP1 and UCP2 may contribute to the promotion of energy metabolism by capsiate, but that thyroid hormones do not.  相似文献   

3.
 为探讨禁食和胰岛素对解偶联蛋白 - 1、2、3基因 (UCP1 ,2 ,3)表达的影响 ,应用 RT- PCR方法观察了在不同禁食时间和应用胰岛素条件下大鼠白色脂肪组织、棕色脂肪组织和骨骼肌中 UCP1 ,2 ,3m RNA水平的变化 .UCP1基因只在大鼠棕色脂肪组织中表达 .UCP2 ,3基因在三种组织中均有表达 ,在白色脂肪组织中以 UCP2表达为主 ;在骨骼肌中以 UCP3表达为主 .过夜禁食使棕色脂肪组织 UCP1 ,3m RNA水平明显下降 (P<0 .0 1 ) ;UCP2 m RNA水平在三种组织中均呈上升反应 ,以白色脂肪组织中表现最为明显 (P<0 .0 5) ;而对白色脂肪组织和骨骼肌中 UCP3基因表达无明显影响 .禁食时间延长至 48h,除棕色脂肪组织中 UCP2 ,3基因有明显下降外 ,各组织中UCPs基因表达基本调节至正常或高于对照组水平 .胰岛素对 UCPs基因表达水平有一定的上调作用 ,这一作用对棕色脂肪组织 UCPs各基因及骨骼肌中 UCP3基因表现得尤为明显 (P<0 .0 5) .大鼠 UCPs基因表达有一定的组织特异性 ;禁食时间对三种组织中 UCPs各成员基因表达的影响有时相上的区别 ;胰岛素可以调 UCPs各成员基因的表达 .结果反映了 UCPs各成员在能量代谢调节上的不同作用 ,这为理解膳食 -产热与体重调节的关系 ,及其能量代谢平衡与疾病关系提供了实验依据  相似文献   

4.
Instead of a comprehensive review, we describe the basic undisputed facts and a modest contribution of our group to the fascinating area of the research on mitochondrial uncoupling proteins. After defining the terms uncoupling, leak, protein-mediated uncoupling, we discuss the assumption that due to their low abundance the novel mitochondrial uncoupling proteins (UCP2 to UCP5) can provide only a mild uncoupling, i.e. can decrease the proton motive force by several mV only. Contrary to this, the highly thermogenic role of UCP1 in brown adipose tissue is not given only by its high content (approximately 5 % of mitochondrial proteins) but also by the low ATP synthase content and high capacity respiratory chain. Fatty acid cycling mechanism as a plausible explanation for the protonophoretic function of all UCPs and some other mitochondrial carriers is described together with the experiments supporting it. The phylogenesis of all UCPs, estimated UCP2 content in several tissues, and details of UCP2 activation are described on the basis of our experiments. Functional activation of UCP2 is proposed to decrease reactive oxygen species (ROS) production. Moreover, reaction products of lipoperoxidation such as cleaved hydroperoxy-fatty acids and hydroxy-fatty acid can activate UCP2 and promote feedback down-regulation of mitochondrial ROS production.  相似文献   

5.
Mechanistic studies on uncoupling proteins (UCPs) not only are important to identify their cellular function but also are pivotal to identify potential drug targets to manipulate mitochondrial energy transduction. So far, functional and comparative studies of uncoupling proteins in their native environment are hampered by different mitochondrial, cellular and genetic backgrounds. Artificial systems such as yeast ectopically expressing UCPs or liposomes with reconstituted UCPs were employed to address crucial mechanistic questions but these systems also produced inconsistencies with results from native mitochondria. We here introduce a novel mammalian cell culture system (Human Embryonic Kidney 293 - HEK293) to study UCP1 function. Stably transfected HEK293 cell lines were derived that contain mouse UCP1 at concentrations comparable to tissue mitochondria. In this cell-based test system UCP1 displays native functional behaviour as it can be activated with fatty acids (palmitate) and inhibited with purine nucleotides guanosine-diphosphate (GDP). The catalytic centre activity of the UCP1 homodimer in HEK293 is comparable to activities in brown adipose tissue supporting functionality of UCP1. Importantly, at higher protein levels than in yeast mitochondria, UCP1 in HEK293 cell mitochondria is fully inhibitable and does not contribute to basal proton conductance, thereby emphasizing the requirement of UCP1 activation for therapeutic purposes. These findings and resulting analysis on UCP1 characteristics demonstrate that the mammalian HEK293 cell system is suitable for mechanistic and comparative functional studies on UCPs and provides a non-confounding mitochondrial, cellular and genetic background.  相似文献   

6.
Frédéric Bouillaud 《BBA》2009,1787(5):377-4873
In mammals the two proteins UCP2 and UCP3 are highly similar to the mitochondrial uncoupling protein found in the brown adipose tissue (UCP1). Accordingly, it was proposed that UCP2 and UCP3 are also uncoupling proteins i.e. protonophores with impact on mitochondrial ROS production and glucose signaling. However, it appears now impossible to explain the physiological relevance of the new UCPs uniquely by their uncoupling activity as observed in vitro. Therefore, we propose a metabolic hypothesis in which UCP2 acts through a transport distinct of the proton transport. A consequence of this transport activity would be a decrease of the mitochondrial oxidation of the pyruvate originating from glucose. This would put UCP2 and UCP3 in a crucial position to influence cellular metabolism. The tight control exerted on UCP2 expression appears consistent with it. In this hypothesis, UCP2/3 would allow a cell to remain glycolytic within an aerobic organism. This tallies with the high expression level of UCP2 or UCP3 in glycolytic cells. The metabolic hypothesis would explain the spectacular modifications associated with UCP2 manipulation as well as the uncoupling activity usually called for and which in fact remains elusive in vivo.  相似文献   

7.
8.
Molecular studies of the uncoupling protein   总被引:6,自引:0,他引:6  
  相似文献   

9.
The uncoupling protein 1 (UCP1), a mitochondrial transmembrane protein, is responsible for adaptive thermogenesis in brown adipose tissue (BAT). Two UCP1 homologues, UCP2 and UCP3, were recently discovered, but it is controversial whether they also play a role in energy homeostasis. Djungarian hamster UCPs were found to exhibit high similarity with homologues known in other species. UCP1 mRNA was restricted to BAT, UCP2 mRNA was expressed in multiple tissues, and UCP3 mRNA was detected mainly in BAT and skeletal muscles. We examined the cold-induced regulation of hamster UCP mRNA levels and tested their correlation with serum free fatty acid (FFA) concentrations. In BAT UCP1, UCP2, and UCP3 expression was upregulated in the cold, but the increase and time course of increase differed. In skeletal muscle, UCP2 and UCP3 mRNA levels were not altered. Cold-induced changes of serum FFA levels correlated with the stimulation of UCP1 mRNA in BAT but not with UCP2 and UCP3.  相似文献   

10.
11.
Mitochondrial uncoupling mediated by uncoupling protein 1 (UCP1) is classically associated with non-shivering thermogenesis by brown fat. Recent evidence indicates that UCP family proteins are also present in selected neurons. Unlike UCP1, these proteins (UCP2, UCP4 and BMCP1/UCP5) are not constitutive uncouplers and are not crucial for non-shivering thermogenesis. However, they can be activated by free radicals and free fatty acids, and their activity has a profound influence on neuronal function. By regulating mitochondrial biogenesis, calcium flux, free radical production and local temperature, neuronal UCPs can directly influence neurotransmission, synaptic plasticity and neurodegenerative processes. Insights into the regulation and function of these proteins offer unsuspected avenues for a better understanding of synaptic transmission and neurodegeneration.  相似文献   

12.
Skunk cabbage, Symplocarpus foetidus, expresses two uncoupling proteins (UCPs), termed SfUCPA and SfUCPB, in the thermogenic organ spadix. SfUCPB exhibits unique structural features characterized by the absence of the putative fifth transmembrane domain (TM5) observed in SfUCPA, which is structurally similar to UCP1, and is abundantly expressed in the thermogenic spadix. Here, we conducted a series of comparative analyses of UCPs with six transmembrane domains, SfUCPA and rat UCP1, and TM5-deficient SfUCPB, using a heterologous yeast expression system. All UCPs were successfully expressed and targeted to the mitochondria, although the expression level of SfUCPB protein was approximately 10% of rat UCP1. The growth rate, mitochondrial membrane potential, and ATP content were significantly lower in cells expressing SfUCPB than in those expressing rat UCP1 and SfUCPA. These results suggest that SfUCPB, a novel TM5-deficient UCP, acts as an uncoupling protein in yeast cells.  相似文献   

13.
Three mitochondrial uncoupling proteins (UCP1, 2, 3) have been described. The proton transport activity of UCP1 triggers mitochondrial uncoupling and thermogenesis but the roles of UCP2 and UCP3 remain debated. Accordingly, compounds able to finely control the proton permeability of the mitochondrial inner membrane where and when needed may have enormous practical consequences. Using purified hamster brown adipose tissue UCP1 reconstituted in liposomes, we describe herein a robust assay allowing the measurement of this artificial membrane conductance to protons in a format compatible with high-throughput screening. The assay was initially developed with a known chemical protonophore in an aproteic system. Then, using the proteolipid reconstituted UCP1 preparation, we assessed the assay with known modulators of UCP1, particularly retinoic acid and guanosine 5'-triphosphate. The system was developed for a 96-well plate format. We then exemplified its use by generating primary data on a set of compounds screened in this system. These primary data will open new routes for the search of candidate compounds that will help biochemical studies on UCPs.  相似文献   

14.
Mitochondria represent a major source of reactive oxygen species (ROS), particularly during resting or state 4 respiration wherein ATP is not generated. One proposed role for respiratory mitochondrial uncoupling proteins (UCPs) is to decrease mitochondrial membrane potential and thereby protect cells from damage due to ROS. This work was designed to examine superoxide production during state 4 (no ATP production) and state 3 (active ATP synthesis) respiration and to determine whether uncoupling reduced the specific production of this radical species, whether this occurred in endothelial mitochondria per se, and whether this could be modulated by UCPs. Superoxide formation by isolated bovine aortic endothelial cell (BAE) mitochondria, determined using electron paramagnetic resonance spectroscopy, was approximately fourfold greater during state 4 compared with state 3 respiration. UCP1 and UCP2 overexpression both increased the proton conductance of endothelial cell mitochondria, as rigorously determined by the kinetic relationship of respiration to inner membrane potential. However, despite uncoupling, neither UCP1 nor UCP2 altered superoxide formation. Antimycin, known to increase mitochondrial superoxide, was studied as a positive control and markedly enhanced the superoxide spin adduct in our mitochondrial preparations, whereas the signal was markedly impaired by the powerful chemical uncoupler p-(trifluoromethoxyl)-phenyl-hydrazone. In summary, we show that UCPs do have uncoupling properties when expressed in BAE mitochondria but that uncoupling by UCP1 or UCP2 does not prevent acute substrate-driven endothelial cell superoxide as effluxed from mitochondria respiring in vitro.  相似文献   

15.
The mitochondrial uncoupling protein-2: current status   总被引:6,自引:0,他引:6  
In eukaryotic cells ATP is generated by oxidative phosphorylation, an energetic coupling at the mitochondrial level. The oxidative reactions occurring in the respiratory chain generate an electrochemical proton gradient on both sides of the inner membrane. This gradient is used by the ATPsynthase to phosphorylate ADP into ATP. The coupling between respiration and ADP phosphorylation is only partial in brown adipose tissue (BAT) mitochondria, where the uncoupling protein UCP1 causes a reentry of protons into the matrix and abolishes the electrochemical proton gradient. The liberated energy is then dissipated as heat and ATP synthesis is reduced. This property was for a long time considered as an exception and specific to the non-shivering thermogenesis found in BAT. The recent cloning of new UCPs expressed in other tissues revealed the importance of this kind of regulation of respiratory control in metabolism and energy expenditure. The newly characterised UCPs are potential targets for obesity treatment drugs which could favour energy expenditure and diminish the metabolic efficiency. In 1997, we cloned UCP2 and proposed a role for this new uncoupling protein in diet-induced thermogenesis, obesity, hyperinsulinemia, fever and resting metabolic rate. Currently, an abundant literature deals with UCP2, but its biochemical and physiological functions and regulation remain unclear. The present review reports the status of our knowledge of this mitochondrial carrier in terms of sequence, activity, tissue distribution and regulation of expression. The putative physiological roles of UCP2 will be introduced and discussed.  相似文献   

16.
The mitochondrial respiratory uncoupling protein 1 (UCP1) partially uncouples substrate oxidation and oxidative phosphorylation to promote the dissipation of cellular biochemical energy as heat in brown adipose tissue. We have recently shown that expression of UCP1 in 3T3-L1 white adipocytes reduces the accumulation of triglycerides. Here, we investigated the molecular basis underlying UCP1 expression in 3T3-L1 adipocytes. Gene expression data showed that forced UCP1 expression down-regulated several energy metabolism pathways; but ATP levels were constant. A metabolic flux analysis model was used to reflect the gene expression changes onto metabolic processes and concordance was observed in the down-regulation of energy consuming pathways. Our data suggest that adipocytes respond to long-term mitochondrial uncoupling by minimizing ATP utilization.  相似文献   

17.
The uncoupling proteins (UCPs) leak protons across the inner mitochondrial membrane, thus uncoupling the proton gradient from ATP synthesis. The main known physiological role for this is heat generation by UCP1 in brown adipose tissue. However, UCPs are also believed to be important for protection against reactive oxygen species, fine-tuning of metabolism and have been suggested to be involved in disease states such as obesity, diabetes and cancer.Structural studies of UCPs have long been hampered by difficulties in sample preparation with neither expression in yeast nor refolding from inclusion bodies in E. coli yielding sufficient amounts of pure and stable protein. In this study, we have developed a protocol for cell-free expression of human UCP1, 2 and 3, resulting in 1 mg pure protein per 20 mL of expression media. Lauric acid, a natural UCP ligand, significantly improved protein thermal stability and was therefore added during purification. Secondary structure characterisation using circular dichroism spectroscopy revealed the proteins to consist of mostly α-helices, as expected. All three UCPs were able to bind GDP, a well-known physiological inhibitor, as shown by the Fluorescence Resonance Energy Transfer (FRET) technique, suggesting that the proteins are in a natively folded state.  相似文献   

18.
19.
The understanding of mitochondrial functioning is of prime importance since it combines the production of energy as adenosine triphosphate (ATP) with an efficient chain of redox reactions, but also with the unavoidable production of reactive oxygen species (ROS) involved in aging. Mitochondrial respiration may be uncoupled from ATP synthesis by a proton leak induced by the thermogenic uncoupling protein 1 (UCP1). Mild uncoupling activity, as proposed for UCP2, UCP3, and avian UCP could theoretically control ROS production, but the nature of their transport activities is far from being definitively understood. The recent discovery of a UCP1 gene in fish has balanced the evolutionary view of uncoupling protein history. The thermogenic proton transport of mammalian UCP1 seems now to be a late evolutionary characteristic and the hypothesis that ancestral UCPs may carry other substrates is tempting. Using in silico genome analyses among taxa and a biochemical approach, we present a detailed phylogenetic analysis of UCPs and investigate whether avian UCP is a good candidate for pleiotropic mitochondrial activities, knowing that only one UCP has been characterized in the avian genome, unlike all other vertebrates. We show, here, that the avian class seems to be the only vertebrate lineage lacking two of the UCP1/2/3 homologues present in fish and mammals. We suggest, based on phylogenetic evidence and synteny of the UCP genes, that birds have lost UCP1 and UCP2. The phylogeny also supports the history of two rounds of duplication during vertebrate evolution. The avian uncoupling protein then represents a unique opportunity to explore how UCPs' activities are controlled, but also to understand why birds exhibit such a particular relationship between high metabolism and slow rate of aging.  相似文献   

20.
Physiological role of mitochondrial uncoupling proteins UCP2 and UCP3, homologous to UCP1 from brown adipose tissue, is unclear. It was proposed recently that UCP2 and UCP3 are metabolic triggers that switch oxidation of glucose to oxidation of fatty acids, exporting pyruvate from mitochondria. In the present study we tried to verify this hypothesis using ground squirrels (Spermophilus undulatus), since expression of all UCPs in different tissues increases during winter season, and UCP1 is abundant in brown fat. We confirmed the possibility of nonspecific transport of pyruvate through UCP1 in brown fat mitochondria and tried to identify similar transport in liver and skeletal muscle mitochondria where UCP2 and UCP3 are expressed. Transport of pyruvate mediated by UCP1 in mitochondria of brown fat was observed using valinomycin-induced swelling of non-respiring mitochondria in 55 mM potassium pyruvate and was inhibited by GDP. In contrast, mitochondria of liver and skeletal muscles in similar conditions did not exhibit electrogenic transport of pyruvate anions that could be related to functioning of UCP2 and UCP3. At the same time, functioning of pyruvate carrier was detected in these mitochondria by nigericin-induced passive swelling or valinomycin-induced active swelling in potassium pyruvate that was inhibited by α-CHC, a specific inhibitor of the pyruvate carrier. Thus, our results suggest that in contrast to UCP1 of brown fat, UCP2 and UCP3 from intact liver and skeletal muscle mitochondria of winter active ground squirrels are unable to carry out pyruvate transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号